“Science Fiesta!” Combining student-led community outreach with local culture [version 2; peer review: 1 approved, 1 not approved]

Travis J. Block¹,², Milos Marinkovic¹,², Jodie Gray³, Paul E. Dowell¹,², Charlotte Anthony⁴, Ryan Daly⁵, LaShauna Evans⁶, Chase Fordtran⁷, Elizabeth Hassan⁵, Tara Holmgren⁸, Aaron Horning⁹, Sabrina Martinez-Anz⁵, Rosemary Riggs¹⁰, Thomas Vanasse³, Mikaela Sifuentes¹¹, Jonathan M. Berman⁸, Teresa M. Evans¹¹

¹Department of Biomedical Engineering, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
²Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, USA
³Radiological Science, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
⁴Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
⁵Department of Microbiology and Immunology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
⁶Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
⁷Geriatrics Division, Gerontology and Palliative Medicine, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
⁸Department of Physiology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
⁹Cellular and Structural Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA
¹⁰School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
¹¹Department of Pharmacology, School of Medicine, & Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, USA

Abstract
Science outreach improves science literacy among the public and communication skills of scientists. However, despite the array of well-documented benefits, robust outreach efforts are often absent from communities which stand to benefit the most from these initiatives. Here, we introduce “Science Fiesta,” a graduate student-led outreach initiative which utilizes cultural traditions of South Texas as a vehicle to establish self-sustaining interactions between scientists and their local community. Event assessment surveys indicated that attendees found the event both fun and educational. At the same time, graduate students who organized the event and participated in outreach reported that they strengthened a
variety of professional skills important for their future careers. More importantly, the event had a substantial positive impact on enthusiasm for science outreach. Both public attendees and graduate students reported that they were likely to participate in future science outreach events, even though a majority of both groups had not been previously involved in outreach efforts. Science Fiesta is a model for a highly effective graduate student-led outreach initiative that is capable of 1) improving public scientific literacy, 2) reinforcing graduate education and career development and 3) creating a culture of science engagement within local communities.

Keywords
science outreach , science communication , graduate education , career development

Corresponding authors: Travis J. Block (BlockT@livemail.uthscsa.edu), Milos Marinkovic (marinkovic@uthscsa.edu), Jodie Gray (grayj4@uthscsa.edu), Teresa M. Evans (evanstm@uthscsa.edu)

Competing interests: No competing interests were disclosed.

Grant information: The event described was paid for by San Antonio Science (www.sascience.org), the City of San Antonio (www.sanantonio.gov), and the University of Texas Health Science Center at San Antonio (www.uthscsa.edu). No funds were allocated to complete the surveys described in this manuscript.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2016 Block TJ et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Block TJ, Marinkovic M, Gray J et al. "Science Fiesta!" Combining student-led community outreach with local culture [version 2; peer review: 1 approved, 1 not approved] F1000Research 2016, 5:2319 (https://doi.org/10.12688/f1000research.9560.2)

Introduction

There is a growing appreciation for the importance of community outreach among scientists. However, there is not yet a consensus regarding the most effective method of engaging the public. Instead, a number of public outreach models have emerged, each with a share of supporters and critics from within the scientific community. Even the meaning of “outreach” has also proved contentious among scientists, alternatively defined as either unidirectional communication from scientists to the public or as bidirectional exchanges intended to foster dialogue. In our initiative, we used “outreach” to broadly describe all efforts performed by scientists to communicate scientific information to non-expert audiences. Finally, perceptions regarding the benefits of outreach for scientists are continuing to change. Recently, the traditional view of outreach as a “duty,” which solely benefits public literacy, has been challenged by the view that scientists, and particularly graduate students, also benefit from interactions with diverse public audiences. Science Fiesta was conceived as a platform for scientists to inform, engage, and excite the public, while providing graduate students a unique opportunity for practical training in communication, leadership and project management.

San Antonio is a rapidly-growing metropolis and the largest city in South Texas. The city features a vibrant biotechnology sector. Nearly 1 in 6 jobs are in healthcare or biosciences. The city is home to multiple public and private research universities, and has two large, private, world-class, non-profit research foundations. Furthermore, South Texas can play a critical role in bolstering diversity in science, technology, engineering and math (STEM) education at all levels. A number of colleges and universities in the region are federally-designated “Hispanic-Serving Institutions” (HSIs) and receive funding from the U.S. Department of Education for programs in STEM and healthcare education and NIH-funding for biomedical science training through the Research Centers in Minority Institutions (RCMI) program.

Still, South Texas is faced with specific challenges relating to science education. San Antonio lags behind other major cities in educational attainment with less than one-quarter of adults holding a 4-year degree and the region as a whole is affected by rates of poverty above the national average. Moreover, many of the counties in the region have been designated as “Healthcare Professional Shortage Areas” (HPSAs) by the U.S. Department of Health and Human Services, indicating a need for more STEM professionals in the region. These challenges represent an opportunity for science education, outreach and workforce development to improve quality of life in the entire region. While normative public engagement efforts can be constrained by specific goals, such as educating the public on a particular topic, Science Fiesta’s ultimate aim was to spark a culture of outreach and demonstrate the value of science to the San Antonio community.

Science Fiesta was developed by the Graduate Student Association (GSA) of the University of Texas Health Science Center at San Antonio (UTHSCSA) in order to fulfill the need for broader science outreach and to create awareness and appreciation for the central role of science in the future of South Texas. To achieve this goal, the GSA sought to integrate the branding of its outreach efforts with a widely-attended, yearly event. Held each April, “Fiesta” is an over century-old San Antonio tradition, featuring a full two weeks of parades, festivals and community service activities across the city. As a major local tradition, Fiesta presented a unique opportunity for scientists to engage with the San Antonio community.

Seamlessly integrated within this larger cultural tradition but held a month prior to the yearly Fiesta event, Science Fiesta aimed to preserve both the aesthetic qualities and festive environment of Fiesta events. Science Fiesta was held in venues used for traditional Fiesta events and featured a mixture of science outreach and local entertainment. The event featured dozens of booths representing San Antonio science institutions and industry, interactive science stations, discussion panels, a “Q&A” poster session (featuring science from undergraduate and graduate-level scientists), science-themed art exhibits, food vendors, Mexican folk dancers and musicians. Through these diverse offerings, Science Fiesta was an event embraced by the entire community. By providing activities that engaged both children and adults, trainees in attendance were challenged to practice multiple levels of science communication and tailor their scientific messages to a variety of diverse audiences. Furthermore, graduate students who organized the event further refined their scientific communication skills through selecting the modes of outreach best suited for the different groups in attendance. For example, the student organizers developed a poster template for the “Q&A” poster session accessible to a broad age group but selected questions for the discussion panel on science policy that engaged a more sophisticated audience. For trainees, Science Fiesta was more than an opportunity to practice science outreach and communication, but a unique educational opportunity to *design* and *direct* interactions between scientists and the general public for the maximum benefit of both groups. Importantly, organizing an event of this type allowed graduate students to develop career-specific skills not typically exercised in graduate-level science education.

Methods

The educational evaluation and assessment of Science Fiesta outlined below was deemed to be Not Regulated Research by the UT Health Science Center Institutional Review Board Office (Protocol Number: HSC20160219N).

Marketing

Science Fiesta was promoted through local magazines, as well as via public service announcements on Texas Public Radio, flyers posted in local businesses, and a social media campaign managed...
by graduate students. The social media campaign consisted of regular updates on the planning through Facebook and Twitter, using the hashtags #ScienceFiesta and #ScienceinoldSanAntonio.

Interactive science stations
More than a dozen interactive science stations hosted “hands-on” activities that allowed attendees to conduct simple science fair-style experiments. In order to draw foot traffic into Science Fiesta, interactive science stations were positioned immediately adjacent to the entrances of the venue. All groups were welcome to participate and either responded to direct invitations or applied to host a booth using a link on the event website. These groups were furnished with tables, chairs, table cloths, and electrical outlets, but were expected to furnish activities and information about their group.

Informational booths
Over two dozen informational booths were hosted by local universities, professional societies, scientific organizations, and local industry partners. The booths were intended to promote the awareness of local research and provide the public with ways to engage with science. While informal groups such as astronomy and botany clubs promoted science as recreation, representatives from local universities described educational opportunities to aspiring scientists and representatives from local companies educated the community about the scientific enterprise in San Antonio. Informational booths were recruited in the same manner as interactive stations.

“Q&A” poster session
The poster session served to engage the public with basic science that is being conducted in San Antonio and allow trainees to explain their research directly to the public. The session included more than 50 posters, representing several Texas universities. However, unlike traditional research posters, those featured at Science Fiesta were specifically designed by trainees to maximize their accessibility to a broad audience (Figure 1). The graduate students organizing the event produced a template to guide presenters in tailoring their posters to the public. In communicating their research, trainees were instructed to keep their talks concise while allowing for plenty of time for questions from the public. Students could sign up to present posters on the event website. An invitation for no-cost registration was sent to leaders of all local universities with the template for tailoring posters for public consumption.

Discussion panel
The graduate student planning team organized a discussion panel featuring local, state and national authorities on science policy and communication. The goal of the panel was to enrich the appeal of Science Fiesta to the public and scientists alike. The panel discussed topics related to supporting scientific education and research in South Texas, as well as sharing views on the importance of outreach as a driver of science in the region. Texas Public Radio recorded the panel and posted the audio to their website (www.tpr.org).

Keynote
We hosted a keynote speaker in order to increase interest in attending the event, entertain attendees, and set an example of effective science communication for students and career scientists. Therefore, we invited a nationally-recognized science journalist and New York Times® Bestselling Author.

Participant surveys
An anonymous feedback survey that contained six brief questions was collected via convenience sampling. The survey featured one nominal response, two binary responses, two ordinal responses, and one free-response question. Surveys were distributed at a table where Science Fiesta memorabilia was being sold. People who approached the table were offered a free Science Fiesta pen in exchange for completing the survey. Surveys were handed out and collected at this table from the start of the event, at 12pm, until approximately 5pm. This survey was available for the
duration of the event. Attendees also had the option of scanning a
QRS code and completing the survey online. We collected a total
of 198 surveys.

Graduate student surveys
An anonymous graduate student survey was given to partici-
pants in the week following Science Fiesta. All respondents
were PhD students who actively engaged in communica-
ting their research to the public via the poster session as well
as greeting the public throughout the day. For the purpose of
administering surveys and analyzing results, graduate student
participation was defined as having played a substantive role
in the planning and execution of any part of the event in one’s
own judgement. The survey contained twenty-two questions
featuring ordinal- and free-response questions. Some questions
asked the respondent to compare perceived personal abilities
before and after participation in Science Fiesta in a retrospec-
tive fashion. Out of fifteen surveys distributed, twelve were
returned.

Data analysis
Data were manually input into Excel (Version 15.24) for graph-
ing. When appropriate, Fisher’s exact test was computed using
Graphpad Prism (Version 6.0d) software in order to compare
student confidence in their own abilities before and after participa-
tion in science fiesta.

Results
Community impact of Science Fiesta

Science Fiesta was attended by approximately 3,500 people.
From those who completed the survey we found that most had
never previously attended science outreach events (73.7%).
Survey results indicate that the abundance of hands-on/family-
friendly activities were the most popular element of the event,
with 40.2% of respondents listing in an open-ended response
that those were their favorite aspects of the event. Next most
commonly-cited (37.3%) were the educational activities of the
event, including informational booths, learning about science, and
meeting local scientists. The least common responses were aspects
such as the venue, music and food offerings (3%). A large frac-
tion (19.5%) of attendees answered more broadly, saying that they
enjoyed the diverse offerings (Figure 2A). More importantly, Sci-
ence Fiesta substantially increased interest in science events within
the community. Even though only 26.3% of attendees said they had
attended a science event before, over 90% of respondents said they
were likely or very likely to attend other science events (Figure 3).

Trainees participating in Science Fiesta were characterized by
varying degrees of prior engagement in science outreach (Figure 4).
However, after taking part in Science Fiesta, 100% of participat-
ating graduate students reported the highest level of enthusiasm for
future outreach initiatives. In addition to improved appreciation
for public engagement, trainees reported perceived improvements
in a number of professional skills (Figure 5). Most notably, train-
ees were significantly more likely to characterize themselves as
confident communicating science to the public, and setting and
following through with goals (p=0.047, for both) (Figure 4A-D).
Overall, trainees derived considerable value by participating in
science outreach and consider the skills gained from the experience
to be highly relevant to their career development (Figure 5).

Discussion
Science communication and public engagement are fundamental
roles of scientists. Here, we describe “Science Fiesta,” a student-
led outreach initiative tailored to engage the local community of
San Antonio, Texas. Science Fiesta combined science outreach,
entertainment and local culture in order to attain an exceptionally
diverse appeal within the community.

Science Fiesta succeeded in attracting segments of the public who
either were not previously inclined, or lacked the opportunity, to
gather with science. This assertion is supported by data provided
by public attendees, citing Science Fiesta’s diversity of activities
as the primary sources of satisfaction with the event (Figure 2A).
Interestingly, while relatively few respondents specifically cited
the educational activities as their favorite component, more than
80% reported receiving a positive science learning experience at
the event (Figure 2B). While educational activities were not the
primary focus for attendees, learning outcomes were achieved
through immersion in science. The vast majority of attendees indi-
cated that they learned “some” or “a lot” about science at the event
(87.3%).

Through Science Fiesta, we planned and executed an event that
was perceived by all parties to be enjoyable, family-friendly, and
educational. In doing so, we created enthusiasm for engaging in
future science outreach efforts amongst graduate students and
attendees. Thus, Science Fiesta-“like” events could achieve a
sustained improvement in the culture of scientific engagement
within a community, such as that of San Antonio. This is sup-
ported by evidence from public attendees, as approximately
90% expressed a likelihood of attending future science events
Figure 2. (A) A survey of attendee’s favorite aspects of Science Fiesta show that people enjoyed a variety of aspects (n=169). These responses were further broken down into general themes of family friendliness, educational value, and entertainment value. (B) The vast majority of attendees reported that they learned about science as a result of attending Science Fiesta (n=198).

(Figure 3). This result is even more remarkable when considering that over 70% of respondents had not previously attended science outreach events. Similarly, trainees participating in Science Fiesta were not uniformly involved in science outreach prior to the event. Although the graduate student survey results are based on responses from a small number of students (n=12) we are encouraged by these initial results. Before Science Fiesta, 42% of graduate students participating in organizing the event were not previously engaged in outreach. However, following participation in this initiative, trainee enthusiasm for science outreach increased dramatically. All participating trainees reported that they were “very likely” to engage in future outreach initiatives as a result of their experience with Science Fiesta. It is our hope that the increased interest in science engagement among both the public and graduate students will seed a culture of science-awareness and appreciation in the community.

Importantly, as the job market for scientists with post-secondary training continues to diversify into areas outside of academic research (i.e. public policy, scientific journalism and education) and become increasingly competitive within academic research, increased emphasis on developing programs to promote the career preparedness of trainees is required. We present evidence that graduate student-led outreach initiatives not only instill a consciousness for the importance of public engagement, but offer an effective method for career training. Mastering
Figure 3. After attending Science Fiesta, 90% of community attendees are either “likely” or “very likely” to attend other science events (n=198).

Figure 4. Science Fiesta facilitated student training in a number of skill-areas associated with professional success, including communication to the public (A) and other scientists (B), (C) leadership and (D) organizational management. In each case, results suggest that students benefitted from participation in Science Fiesta (n=12).
communicating research to diverse audiences, as well as organizing outreach initiatives, develops career skills not taught through laboratory training. Importantly, the graduate students reported positive impacts in key professional skills: communication (Figure 4A–B), leading teams of peers (Figure 4C), as well as setting and achieving project objectives (Figure 4D). As indicated by student responses, these skills are valued by trainees as an important part of their professional growth (Figure 5A). As a whole, the trainees deemed their participating in outreach to be a beneficial learning experience that added value to their education (Figure 5B).

It is important to know that all surveys deployed were dependent on self-reporting. Specifically, the positive impacts of participation in Science Fiesta were all dependent on self-report. The authors are aware that self-reported perceived outcomes are not always aligned with actual results, as discussed in Brownell and Kloser (2015)\(^1\). Therefore, additional methods to assess the effectiveness of science outreach efforts will be investigated in the future. Additionally, limits to the benefits of short-duration outreach programs have been previously discussed (see Laursen et al., 2007)\(^1\). Therefore, we must acknowledge that although our results indicate multiple positive outcomes this could be a reflection of the short
duration of the program. However, these efforts are a foundational starting point towards accomplishing our goals of increasing public science understanding, enthusiasm and engagement as well as outreach participation and career readiness within graduate student scientists.

It is clear that planning and participating in Science Fiesta addressed professional development gaps in graduate education. Science Fiesta engaged every level of the STEM pipeline, developed career skills among graduate students, and connected local industry and academia with the larger community. However, the most promising outcome of Science Fiesta was enthusiasm for science within the community, as reflected by survey results citing increased interest in science outreach, among both the public and graduate students. This enthusiasm has the potential to lead to sustained improvement in science awareness and literacy. We propose that Science Fiesta, and events which employ its model, may address issues, such as STEM workforce development, barriers to diversity, low educational attainment, and public investment in the sciences. We assert that weaving science into the local cultural fabric may establish a tradition of engagement between scientists and the community.

Data availability
F1000Research: Dataset 1. Results of Science Fiesta attendee surveys, 10.5256/f1000research.9560.d135259
F1000Research: Dataset 2. Results of student organizer surveys, 10.5256/f1000research.9560.d135258

Author contributions
All authors contributed to, concept and design, critical review and edits, resources and data collection, and data interpretation. TJB, MM, and TME were primarily responsible for manuscript drafting and data analysis. PD also helped with data analysis. JD was primarily responsible for the organization and execution of key fiesta events.

Competing interests
No competing interests were disclosed.

Grant information
The event described was paid for by San Antonio Science (www.sascience.org), the City of San Antonio (www.sanantonio.gov), and the University of Texas Health Science Center at San Antonio (www.uthscsa.edu). No funds were allocated to complete the surveys described in this manuscript.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
Science Fiesta was supported by the UTHSCSA Graduate School of Biomedical Sciences, the Office of the Vice-President for Research, and the Office of the President, as well as donations from number of local businesses, non-profit organizations, individuals, and the City of San Antonio.

References

11. Texas Department of State Health Resources: *Health Profession Shortage Area Designation*. Health Resources and Services Administration, 2014. [Reference Source](#)

Open Peer Review

Current Peer Review Status: ✔️ ✗

Version 2

Reviewer Report 03 January 2017

https://doi.org/10.5256/f1000research.10588.r16842

© 2017 Miller J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jon D. Miller
Center for Political Studies, Northwestern, Ann Arbor, MI, USA

This is an interesting testimonial from a group of graduate students at the University of Texas Health Science Center in San Antonio. It demonstrates the enthusiasm of the students for the communication of science and for the development of speaking and communication skills, but it provides no credible evidence about the impact of the event on the population of San Antonio or even of the people that attended. Unfortunately, the graduates students' enthusiasm for their science exceeded their knowledge or understanding of educational evaluation or social science. The resulting data do not rise to the level of credible educational evaluation and cannot be used to assert any level of impact on the public. Many physical and life scientists assume that educational evaluation or social science are things that they could learn in a couple of hours and disregard the methods of social science measurement and analysis. Had the students read the relevant literature (or included some education or social science graduate students in their group), they would have recognized that the core of the problem is that about 30% of American adults have obtained a credible level of scientific literacy -- sufficient to read the Tuesday New York Times science section -- and that most of the remaining 70% are attentive to other issues and problems. Many American adults who are not scientifically literate may be very knowledgeable about economic policy, foreign policy, agricultural policy, or other realms of public policy. The issue is that science is not salient to many American adults and science needs to compete in the marketplace for adult time and attention. The first task is not to simply try to talk to people about the science that these graduate students are doing, but to argue why it is important for someone to know about that science or other science.

There is a literature covering the last three decades that demonstrates that civic scientific literacy is closely associated with exposure to college level science courses (Miller, 1983, 1987, 1998, 2004, 2010, 2016). In this context, it would have been useful to know whether the San Antonio Science Festival attracted adults who were already scientifically literate, who had been exposed to college level science courses, and who already thought that understanding science is important. Unfortunately, the questionnaire administered to a convenience sample of attendees included only six questions and no educational background questions. The literature on the use of science museums suggests that some adults are drawn to science because they want their children to become scientifically literate or to
consider a career in science or engineering. An evaluation rooted in the literature would have asked about whether each attendee had children and whether the children were attending with the adult. And some understanding of this literature could have informed the marketing effort for the fiesta.

The 12 graduate students who completed a post-fiesta questionnaire indicated that they felt that they had improved their science communication skills. I have no doubt that presenting scientific ideas and material to a non-scientific audience is a learning experience and I think that events like this are useful for graduate students and for many faculty. This is a beneficial result, but it is not clear whether the same result could have been obtained by sending graduate students to work in a local science museum or center, to speak to PTA groups, or to talk to other community groups.

If the rationale for science fiestas and festivals is that they increase public interest in science and foster continuing science-oriented information acquisition activities, this report provides no useful or credible information. A convenience sample may be easier to collect, but it demonstrates an ignorance of why survey research quit using convenience samples 50 years ago. Currently, there is a strong move to address-based national sampling to reflect a probability based sample of respondents. I doubt that these health science graduate students would seriously consider allowing patients to select the arm of a clinical trial that they might prefer. It is important for health scientists and other scientists to recognize that social science methods are important and try to include trained social scientists in the design and evaluation of outreach efforts like the San Antonio Science Fiesta.

References

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.
Greg B. Clark
Department of Molecular Biosciences, UT Austin, Austin, TX, USA

This manuscript describes a recent science outreach event which was held in San Antonio. The authors provide the results of surveys completed by the public as well as the graduate student scientists that participated in the event. Overall this is a well-written manuscript and provides an exciting model for combining outreach with a long-standing cultural event which is to my knowledge a novel approach. It deserves to be published and will hopefully inspire other groups to try this approach in their science outreach. However, I have listed revisions which the authors need to address before this manuscript is indexed.

1. Both surveys are dependent on self-reporting of the positive impacts of participation in Science Fiesta. However perceived outcomes do not always match actual results as discussed in Brownell and Kloser (2015). Please add references and text discussing this issue to the Discussion section.

2. The n-value of 12 for the surveys of the graduate students is relatively low so please also add a statement to the Discussion section acknowledging that this data is based on input from a small number of graduate students.

3. Please add text to the Discussion section describing previous literature discussing limits to the benefits of short-duration outreach programs (see Laursen et al., 2007). In general the Discussion section needs to be modified to include the perspective that although the surveys indicate multiple positive outcomes may have occurred from this outreach program due to the short duration of the program, the main accomplishment may have been as a starting point towards the goals of increasing public science understanding and enthusiasm and science communication and outreach participation by graduate student scientists.

4. Please indicate how many of the participants were Ph.D. students and how many were Masters’ students. Did all the students have the opportunity to communicate science or were some more involved in organizing and greeting the public? This might also be an important point to make regarding your data, if a student did not present a scientific topic then he or she did not likely improve their science communication skills.

5. I had difficulty determining if this event was completely separate from the other Fiesta events physically and/or temporally? Please make it clear if the public participants in Science Fiesta were only participating in science outreach or if there were other non-science outreach activities occurring at the same time in close proximity.

6. I am curious if there is additional background as to how the authors arrived at this outreach model. For example, is there literature to support the idea that pairing scientific outreach with culture events is an effective outreach model? Please add references for any similar models found in the science communication literature and emphasize this approach in the Discussion section.
7. At the beginning of the Results section, the following two statements are misleading and refer to data not shown in the Figures: (1) "Science Fiesta was attended by approximately 3,500 people, most of whom had never previously attended science outreach events (73.7%)"; (2) "Even though only 26.3% of attendees said they had attended a science event before, over 90% of respondents said they were likely or very likely to attend other science events." Please revise the text to indicate that this data is found in the Dataset 2 link and that the 73.7% and 26.3% is for only the attendees that participated in the survey not all 3,500 people.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.