Trialling the use of Google Apps together with online marking to enhance collaborative learning and provide effective feedback [version 2; peer review: 2 approved with reservations]

Nicky J. D. Slee¹, Marty H. Jacobs²

¹School of Biological Sciences, University of Essex, Essex, CO4 3SQ, UK
²Learning and Development, University of Essex, Essex, CO4 3SQ, UK

Abstract

This paper describes a new approach to an ecology practical in which 76 Level 4 students were divided into four groups (n = 20 +/-2) to collect data. Each group studied a different habitat and was further divided into seven subgroups (n = 2 or 3) to collect field data. Each of the four groups collaborated through Google Drive on descriptions and images of the habitat site, and also collaborated at the subgroup level on their own habitat data. The four groups then shared habitat descriptions with the aim to provide enough information to enable everyone to understand the entire data set.

The three-stage assignment was assessed and feedback issued at group and individual level via the University’s online submission service (FASER), with some additional feedback given via Moodle, the University’s Virtual Learning Environment. Two separate submissions were made to FASER, the first was the group and subgroup work (stage 1), and the second included the peer assessment task (stage 2) and the individual evaluation of the habitats (stage 3). Feedback was given after the second submission had been uploaded to FASER and again when the assessment for the second submission was complete. The group and subgroup data sets were provided to all students via Moodle, so that individuals could carry out their own analysis of all four habitats. The use of Google Drive and Google Apps helped to improve the digital literacy of the staff and students involved.

All three stages of the assignment were successful; over 85% of students passed the first two stages, and 82.9% passed stage 3. The collaborative work enabled students to produce high quality descriptive ecology documents valuable for the subsequent stages of the assignment. The peer assessment encouraged students to gain information on expected Undergraduate Minimum Standards, and gave students the opportunity to study multiple habitats. The final stage was open ended and challenged students to make sense of large ecological data sets. There was a positive correlation between levels of success at stages 1 and 3 for students who achieved less than 65% for the independent work, i.e. they benefited from carrying out group work.
This collaborative, three-stage approach is recommended especially as it helps lower ability students gain subject knowledge and improve their presentation skills. However, some modifications are recommended: 1) simplifying the sample and data collection, and 2) providing more guidance for the peer assessment task and individual analysis. Learner autonomy enabled self-directed learning to take place and enriched large scale teaching as it encouraged student-student interaction. Significant differences between gender and ability are discussed.

Keywords

This article is included in the Teaching and communicating science in a digital age collection.

Corresponding authors: Nicky J. D. Slee (nicola@essex.ac.uk), Marty H. Jacobs (marty@essex.ac.uk)

Competing interests: The authors declared no competing interests.

Copyright: © 2017 Slee NJD and Jacobs MH. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Slee NJD and Jacobs MH. Trialling the use of Google Apps together with online marking to enhance collaborative learning and provide effective feedback [version 2; peer review: 2 approved with reservations] F1000Research 2017, 4:177 (https://doi.org/10.12688/f1000research.6520.2)

First published: 01 Jul 2015, 4:177 (https://doi.org/10.12688/f1000research.6520.1)
Introduction
This article is aimed at university lecturers and outlines a method that enables students to enhance their knowledge and understanding of ecology by working in the field, in the lab, and online as members of a small group. The method makes use of free online tools—provided by Google—to facilitate collaborative activities that can be easily monitored by a lecturer; these activities also aim to increase the digital literacy of both the staff and students involved.

This report demonstrates that an academic with limited technological ability, but with an open mind and a small amount of support from a learning technologist, can create and manage an online assignment method that enables students to collaborate within a framework that is both defined and monitored. The approach also meets the “Challenger Philosophy” that is a key driving force at the University of Essex.

The rationale for trying new methods came from a Society for Experimental Biology (SEB) “Researchers – Teachers – Learners” conference (2012). Other influences included the concept of learner autonomy to encourage student engagement (Scott, 2012), Voelkel’s work (2012) on staged assignment to engage students, and the use of technology to promote student engagement and self-directed learning (Mello, 2012). The approach was also developed as part of a process to enrich large-scale teaching (Biggs, 2003) and to encourage student-student interaction, as well as student-led group work to enhance cognitive understanding.

The approach taken involved a new cohort of Level 4 students (first-year undergraduates) taking part in a three-stage assignment designed to give individuals an opportunity to gain practical experience in ecology, both in the field and in the lab, and to increase their knowledge of their local surroundings. This combined field and lab work represented 50% of the practical work associated with their Level 4 ecology module (BS111).

The students enrolled onto the ecology module were following biological sciences (n = 56) or marine biology degree courses (n = 19). There were two additional students studying complex variants, e.g. study abroad. The gender ratio for the cohort was: 1.3 males to every female (see Supplementary material, Dataset 1.1).

The academic involved in developing the new practical (N Slee) is a Fellow of the Higher Education Academy (HEA) and is an experienced part-time lecturer who has used technology to enhance the student learning experience since 2005. For 10 years she has taught a range of subjects to small groups (< n = 55) including general biology with an emphasis on molecular biology, biochemistry, plant science, environmental science and key skills (all at Level 3). More recently she has developed innovative school-based research projects for third years (Level 6 students) and in 2014 she took over the ecology module. Previously, the ecology module had been run by other academics, but they were assigned new roles. For the academic year, 2014–15, both the module supervisor and lecturer for BS111 lacked an animal licence, which was required for one of the existing practical sessions. The practical sessions also needed to be simplified due to the larger number of students involved. The new approach required two practical sessions and was developed to reflect the lecturer’s academic interests. It was decided that the assessment would be open-ended, and would incorporate both group and individual work to develop and broaden the academic skills of the students.

Research has found that students have different interests and thus giving them the control over their learning environment enhances their learning experience as they will be motivated and be actively involved in the process. In student centred learning the instructor becomes a facilitator and the main focus is on the process of student learning (Blumberg, 2008); in this situation “students with control” will build on their own knowledge and reflect on what they have learnt. In addition, the student will determine what it important, take responsibility and be more motivated than if they are told what to do. This aligns with the Berlo’s model of communication and the transactional or dialogue model developed by Bowater & Yeoman (2013); Wood (2003); Springer et al. (1999) reported that small group learning tended to create a collaborative environment where final outcomes were negotiated by the participants; it removed the competitive nature and was shown to be the most effective at enhancing a wide range of attributes in the individuals involved e.g. increased self-esteem and knowledge. These approaches link with the 3E Framework (Smyth et al., 2011) (Enhance-Extend-Empower continuum) which is a structure that gives students responsibility and power to develop skills that incorporate the use of technology that can be transferred to their future profession. In the present study the lecturer is interested in giving student the opportunity to lead their learning in a small group environment to help them feel part of their new community and develop a suitable learning environment for their future.

The aim of the practical was for student to gain first-hand knowledge of one field site. This, together with the group work, would give individuals the confidence to analyse data from other unfamiliar habitats; Scott et al. (2012) concluded that first-hand exposure to field work enhanced pupils’ knowledge in ecology, and thus made them capable of engaging in self-directed learning. It was hoped that the practical work would give students a feeling of ownership over the data collected, and hence make it possible for them to take part in self-directed tasks connected with their data, as well as associated unrelated data (which the students would be able to contextualise through their hands-on experience of collecting data at one of the other four habitats).

F1000Research 2017, 4:177 Last updated: 16 MAY 2019
The ecological aim of the project was for the students to become aware that distinctive habitats arise due to the constant interaction of organisms with biotic and abiotic features of their environment. There are distinctive grassland habitats within the Wivenhoe campus, four of which were investigated; students were asked to identify any differences, patterns or correlations between them.

It was also hoped that this new approach would help the students—new to university life—make the transition from the small group session format popular at most colleges, to the large group teaching scenarios that are commonplace within a university setting. The divided practical work aimed to create a small, friendly atmosphere which would enable students to ask each other questions, and encourage them to engage in discussion with the Graduate Lab Assistant or academic leading the group.

Students regularly work in pairs for practical tasks (School of Biological Sciences, University of Essex), but generally write up reports independently. However, scientific research papers are frequently written by multiple authors. Therefore, another aim of the assignment was to teach students to work collaboratively, using digital tools and self-directed methods, to produce work that met with Minimum Undergraduate Standards. For full details of these standards, please see an extract from the School of Biological Sciences UG Handbook (Supplementary materials 1a).

Ecology scientists frequently handle large datasets and use a variety of statistical methods to identify trends or patterns. Therefore, this work challenged students to use datasets that would not have a pre-determined outcome. Hence, individuals were given open-ended templates to enable creativity within the parameters of the standards required. This fulfils the educator’s task to create an environment with a high level of control where student learning is possible (Brown, 2004). Brown states that a series of tasks are needed to enable successful learning, and that students should start with simple tasks, but later be challenged to complete more complex work. With this in mind, students were first asked to produce group documents; these documents were then used by the whole cohort for peer assessment, and then by the lecturer as a means to accurately assess each student’s contribution to the task as a whole.

The Google Apps service was selected to support the assignment process because Google is a familiar brand and is responsible for running the world’s most popular search engine; it was understood that this familiarity would make engagement more likely. Ease of access and versatility were also important deciding factors when selecting technology to support the assignment. Office 365 and wiki tools were also considered when deciding what technology to use, as they can both be used for online collaborative tasks (Doolan, 2007). However, the Google Apps service has a stronger emphasis on real-time collaboration. Also, the various apps use concepts that students are already familiar with (borrowing several features from traditional office software packages). Google Docs has also been used for effective collaborative English Language Learning (Hosseini, 2014) and has been used by business schools in a similar manner (see unpublished paper by Schneckenberg). The apps enable multiple users to work on a single document via a web browser. The document owner can also retrieve an earlier version if necessary. Knowledge can be created, edited and exchanged (Doolan, 2007) which empowers learners to develop team skills. By using a platform not controlled by the University, students were given greater ownership of the learning environment, which helped with engagement and motivation.

The rationale for a three-stage process was to encourage students to engage in tasks outside of their comfort zone, and to enhance deep rather than surface learning (Biggs, 2003; Rust, 2008). The assignment was also designed to promote student engagement at each stage (Brown, 2004; Voelkel, 2012).

A summative assignment was used to improve student engagement in the task. A peer assessment element was also included to promote a deep learning strategy (Biggs, 2003). The quality of the peer assessment activity was also a key component of the summative assignment. The learning outcome of the peer assessment task was twofold: the students were exposed to other habitats they did not visit, which helped them with their independent work, and, secondly, forced students to understand task requirements and, as a result, involved them in a deeper learning experience (Biggs, 2003).

Methods

A new cohort of students (n = 76), from the School of Biological Sciences, taking a Level 4 module in ecology (BS111) were involved in the assignment. Two practical sessions were used to carry out fieldwork, followed up by subsequent analysis of samples in the laboratory. The cohort was divided into four groups of 20, which, in turn, were split into 7 subgroups. The assignment was split into three stages:

1. **Collaborative work** – Each of the four groups worked on their own set of shared files (see Supplementary material 1b, Supplementary material 2). The seven subgroups also used a separate shared data file to record their datasets (see Supplementary material 3).

2. **Peer assessment** – Students produced an individual report on the entire cohort’s group work (see Supplementary material 4).

3. **Independent work** – Documents were created and submitted for individual assessment (see instructions in Supplementary material 5).

Stage 1 of assignment: collaborative work

Due to the early scheduling of the practical session in the autumn term, a preparatory lecture for the practical sessions was not possible. Therefore, information was disseminated via Moodle (see Supplementary material 6a–Supplementary material 6e).

Documents available on Moodle included: Notifications via News forum, a Guide on how to set up Google Drive, Group lists and the practical handbook, which contained all the relevant information needed for successful completion of the practical sessions and the assignment. During the practical sessions, a presentation was given to guide the students; this was then available from the BS111
Moodle page (see Supplementary material 6c–Supplementary material 6d).

Each group (W, X, Y and Z) went to a different habitat on campus. The habitats used were as follows:

- **Group W** - Benton’s Top Heath and Hay Meadows (Site Number 16).
- **Group X** - Bluebell Wood (Site Number 15).
- **Group Y** - Kingfisher Lake (Site Number 14).
- **Group Z** - Campus farm and pond (Site Number 13).

(For more information about these habitats and site numbers, visit the University’s biodiversity web page.)

For the field and laboratory work the Cohort was randomly divided into four equal groups (n = 20 +/- 2); each was allocated a grassland habitat on the Wivenhoe campus. The groups were further divided into 7 subgroups at the beginning of the practical, then equipment and data recording sheets were collected and graduate lab assistants took them to the correct location. The site was overviewed to assess different plant species, whether monocot or dicot (each group used a unique set of plant codes, which enabled standardization for the group data collection exercise).

A simple guide was used to help student determine if the plant was a monocot or dicot. The group took a sample of the different plants; labelling it using the unique code, which was attached to the stem. The sample was photographed then put in large plastic bag. A data sheet was filled in with the sample code, name (if known) together with any distinguishing features.

Each subgroup collected data from two randomly-thrown square quadrats (0.5 m²). Samples of soil, plants and invertebrates were taken for further analysis. The following information was collected directly from the quadrats: the number of different types of plant, the percentage cover of these plants, and the percentage of bare ground. A point quadrat was placed over the square quadrat (so it was parallel to the sides and went through the centre of the quadrat). The point quadrat was used to assess the height of the vegetation at 10 cm intervals across the quadrat, and also to determine the number of hits, e.g. the number of leaves contacted before the pin hits the ground when following a vertical path.

Temperature of air, plant (IR temperature gun) and soil (temperature probe) were also recorded. Soil was assessed in the field using feel for dampness, odour to determine type of respiration, and colour noted. A sample was taken from the centre of the quadrat using a trowel to a depth of 10 cm. The shoots (vegetation above ground level) were put in one labelled sample bag and the soil with roots in a second. In the lab, fresh and dry weight measurements were determined for the vegetation (roots had to be separated from the soil sample). A subsample of the mixed soil core was also taken for fresh and dry weight analysis. Fresh weight samples were dried in an oven for over 48 hours.

In the second practical session dry weights of plants and soils were recorded on data sheets or in lab book. Soil samples were analysed for pH using the method described in the soil test kits (Palintest, 1997); texture was determined from feeling wet and dry samples and comparing to descriptions of different soil textures. Soil samples were mixed with water and then allowed to settle to determine sedimentation profiles. A standardised amount of soil was placed in a funnel and standard volume of water was poured through and timed to determine soil porosity. Plant samples collected at the group level were identified within the laboratory using laminated identification sheets and a range of plant guides. Further analysis was carried out independently using the photographs taken in situ. The range and type of invertebrates found in the bagged soil samples were recorded, no special method was used to select for invertebrates.

Instructions were given via Moodle and verbally during the practical sessions, so that each student could create a personal Google Account. In addition, a handwritten record of their account details was collected during the practical sessions. Students were instructed to navigate to https://drive.google.com/ to access the Google Apps service.

The lecturer created a folder for the module (BS111) containing four group folders (labelled W, X, Y and Z). Within each group folder there was one folder that was shared at the group level and seven subfolders, each shared only with the relevant subgroup. The Google Drive desktop application was used to duplicate a template folder/file structure, as this proved to be much more efficient than creating all the folders and files through the web interface (see this support article for more details about the desktop application and how it works).

Each group folder (X to Z) contained two template documents: a Google Docs file called “BS111 Practical 1 Description of Habitat” (see Supplementary materials 1b) and a Google Slides file named “BS111 Photo Submission for Group Work (see Supplementary materials 2). The group folder was shared with all students in the group, who were granted full editing rights over the content of the folder. The seven separate sub-folders contained the Google Sheets document for the data collection task, and were only shared with members of the subgroup. The Google Sheets included pre-formatted tables, with some of the column headers already containing units. The documents at the group and subgroup level also contained inline instructions for the collaborative work (see Supplementary materials 3 for example).

Students worked collaboratively at the subgroup and group level; each student downloaded a copy of the Slides and Docs file that was then uploaded to the University’s online coursework submission service (FASER). The group Slides and Docs files were exported as PDF files and the data collection sheets were exported in Excel format (to make further manipulation possible).

Once this point was reached, the lecturer removed the editing rights of the students in Google Drive, so that further editing was not possible, effectively making all of the collaborative documents “read only”. The documents were then uploaded to Moodle and...
students used these copies for stages 2 and 3 of the assignment. The lecturer also established a discussion forum site on Moodle to facilitate student discussion of the fieldwork.

Stage 2 of assignment: Peer assessment
Instructions and a pro forma for peer assessment was issued to the students (see Supplementary materials 4). Each student peer assessed the other group work (including the subgroup data collection sheet). This was worth 10% of the overall assignment mark.

The lecturer assessed two aspects of the student peer assessment process:

1. Evidence of engagement in peer assessment, which required students to review information produced by the other groups and subgroups for the other three habitats.
2. Evidence of engagement/research into definition of “question terms” used and correct application of Minimum Undergraduate Standards.

Stage 3 of assignment: Independent work
Printed instructions, also available in Moodle, were issued. The final part of the assignment was individual analysis of the four habitats for patterns, correlations, and variability. This was an open-ended task (see Supplementary materials 5), facilitated by an Excel guidance file, which was provided on Moodle for download. Students requested further help and support, which was subsequently given.

The assignment files were uploaded to FASER by every individual. Electronic marks and feedback was returned to each student. Group level feedback for Stage 1 was given after the second submission (stages 2 and 3) had been uploaded to FASER. This feedback included information on learning outcomes achieved, advice on areas that needed improvement, and more detailed information on calculations (see Supplementary information 7). Individual annotated feedback was also provided along with the standard feedback sheet for level 4 students (see Supplementary information 5).

Students were given access to the group and sub-group datasets via Moodle after the deadline for the first submission, so that Stages 2 and 3 could be completed.

Analysis of student performance
Performance of students at stage 1 was used as a measure of their engagement. Stage 1 included practical and group work. Students achieving a mark higher than the mean mark (65%) were defined as having a good level of engagement (or good performance) in the practical work and group interaction. Students obtaining marks below the average (65%) were defined as having a poorer level of engagement (or below average performance). This threshold (65%) was used at all stages of the assignment, and was used as an indicator of an individual’s level of ecological knowledge and understanding.

Data was ranked according to the University’s degree classmark divisions; students who passed the assignment obtained 40% or greater. Non-engagement is defined as any situation in which a student did not submit work for assessment.

The three stages of the assignment were analysed for student success and for their level of engagement/performance. Pearson’s correlation analysis was used to establish whether there was any link between the marks achieved at different stages of the assignment, and whether group membership or gender had an effect on performance. Analysis of variance was carried out on marks obtained at each stage, comparing groups and degree schemes (Excel vs 2010). Detailed information for this section is available in Supplementary material, Dataset 1.1 – Dataset 1.6.

Results
Stage 1 of assignment: Collaborative work
Three groups successfully collected all of the expected field data; the fourth group collected half the expected amount, i.e. from single quadrats rather than two. The considerable amount of data collected within the two three-hour practical sessions involved a lot of collaboration in the field, as well as in the lab, to ensure data sampling and recording was accurate.

In order to engage in the online group work, students had to create Gmail Accounts and make a handwritten record during the practical sessions (81.6% of students succeeded in doing this). Lists for two of the four groups were almost complete; the other two groups emailed the missing account details to the lecturer.

There was a good level of online collaboration, 92.1% of students were active on Google Drive (Dataset 1.4). Five students (6.5% of the cohort), who were all absent from one of the practical sessions, failed Stage 1 and one of them did not submit any work at all. Qualitative analysis of Google Drive activity, together with the quality of the group work produced (see Figure 1 – Figure 3) provides strong evidence that students successfully engaged in the group work component of the assignment.

Interesting group dynamics were evident from monitoring the Google Drive activity. Members of one group engaged in the process very actively, and some members became natural leaders. These leaders then became a little too controlling and removed the other group members’ editing permissions. The lecturer intervened by sending an email out via Moodle to let them know this was not acceptable behaviour, and permissions were reinstated for all group members. The students also engaged in group discussions using a forum in Moodle and the Google Apps comments feature. The latter was particularly useful when students were refining their documents; the comments stream acted as a private, student-led forum for discussion.

Students successfully accessed the documents on Google Drive to create a written description of the habitat. All groups also managed to curate photographs of the habitat site and plant species found using Google Slides. Self-directed learning clearly took place during the creation of the group documents, which surpassed the expectations of the lecturer in terms of overall quality and attention to detail. The descriptions and figures for the submissions were of a very high standard, especially considering the students had no formal training on expected undergraduate academic standards.

An example of the type of work completed from one group (X) can be seen in Figure 1; it shows the habitat site ‘The Bluebell Wood’
and one of the plants identified, *Plantago major* (Figure 2); feedback should have been added that this was not a Monocotyledon. This data demonstrates that students did research the Minimum Undergraduate Standards required, as evidenced by the correct use of binomial names and the use and position of figure legends. The students managed to produce group work that met expected standards, all within six weeks of arriving at the University. The task instructions were purposely brief to enable students to make their own contribution. Figure 1 and Figure 2 show that some students used this opportunity to deepen their learning and understanding; the inclusion of additional notes demonstrates that several groups were engaging in high quality research, and managed to identify plants at the species level (Figure 3a) and produced a list of specific plant species present at the site. This also shows an awareness of ecological knowledge.

The group work documents demonstrated that students were more aware of the campus grounds. Each group submitted 10 – 12 photos of habitats/plants and a habitat description (Supplementary materials 8). Group work submissions and individual analysis of the four grassland habitats on the Colchester campus were used as evidence of an increased understanding of ecology (Figure 1–Figure 3). Figure 3 demonstrates that the students in group X gave a good general description of habitat sample and detailed features of

Notes:
The Bluebell Wood is located at the shelter belt alongside the main road from the lake to the middle lodge. It is the woodland along Clinghove Hill Road.

Figure 13: The Edge of the Bluebell Wood

Figure 1. Example of student generated Google Slide of habitat from Stage 1 of assignment.

Notes:
The Greater Plantain (*Plantago major*) commonly known as rat tails, is identified as a monocotyledon from its distinct fibrous root and parallel veins. It is a perennial plant that is pollinated by wind distribution of seeds and can produce as many as 1,500 seeds per individual. The dark green leaves lie close to the ground and form a rosette at the base. There are few veins present on the leaves, and the flowers are borne on a long narrow spike that gives the plant its nickname (rat tail). The leaves and spikes themselves are very resistant to trampling by feet, and can sometimes even harm the thing that trampled on it, giving a small bruise or cut. Consequently, this plant can also be used to treat ulcers and sores, as it has been used in Britain. It is very widespread in the area and has even been used to create bread (way-bread).

Figure 2: Greater Plantain (*Plantago major*)

Figure 2. Example of student generated Google Slide of plant from Stage 1 of assignment.
The Google Sheets data, collected during the subgroup task, highlighted a greater range of student ability and was less successful overall. Raw and calculated data were expected; the submitted information ranged from no data, incomplete data sets, to data sets complying with Minimum Undergraduate Standards. The approach required students to be responsible for keeping data safe until it was inputted online, and to understand the Minimum Undergraduate Standards for tables. Evidence suggests that many students were unaware of these expectations, as more than one of the data sheets had no data submitted. Many others contained data with the units in the body of the table.

The small size of the subgroups meant that there was greater variation in the standard of work. (This is to be expected for normal distribution of data.) This demonstrates that the subgroups were working within the team that they were assigned to. The large number of data sheets generated (28) meant it was difficult to quickly achieve a single, combined dataset in a format that was suitable for the students to access for the latter parts of the assignment. The deadline for the assignment was adjusted to take account of the time needed to collate and disseminate the data to the cohort.

Stage 2 of assignment: Peer assessment
The second part of the assignment was designed to make students aware of the marking process and give them an opportunity to become familiar with the habitats they had not visited. A student who did not take part in the practical sessions (due to a change in degree course) was able to do this and successfully complete the assignment (with a final mark of over 90%).

The peer assessment required students to look at the eight group documents, descriptions and figures of the four habitats, as well as the 28 data sheets. A high proportion of students demonstrated a good level of engagement with the assignment; 78.9% of the cohort obtained over 65% for stage 2. This proves these students reviewed the minimum standards and used their observations to successfully peer assess the work of others (see Figure 4 for an example). Fifty percent of students who obtained a first class mark for the
BS111 Practical 2 & 3 Correlation of species richness to soil properties

Student Name: XXXXXXXXX
Group: Z
Date 04/11/14

<table>
<thead>
<tr>
<th>Element</th>
<th>Requirements</th>
<th>Score Group W</th>
<th>Score Group X</th>
<th>Score Group Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Written description of the habitat</td>
<td>Minimum Standards: Sentences, with descriptive words, no explanation, good grammar, no/few spelling mistakes</td>
<td>3/5 Grammar good, but mistake regarding tense. Describe is factual recall, but included interpretation of factors.</td>
<td>4/5 Sentence structure and wording concise. However different font sizes were used within the text</td>
<td>3/5 Slight grammar mistakes including missing full stop. Simple descriptive words</td>
</tr>
<tr>
<td>2. Provide photos of site & some of the species</td>
<td>Range of photos of habitat and close up of species (12 - 20 photos) Fig number and title below photo (labeling if appropriate)</td>
<td>4/5 Included species and habitat photographs. Some photos out of focus (e.g. fig 11). The photos of species were zoomed out, perhaps not the appropriate level of detail.</td>
<td>4/5 Effective use of notes to give further species description of species. Clear photos of species, including plain background. A few photos of poor quality (e.g. fig 14 &16)</td>
<td>3/5 Lots of general habitat photos and not enough of species. Didn't include any specifically named species identification. Fig. 15 was a repeat of fig. 14.</td>
</tr>
<tr>
<td>3. Provide data obtained from quadrat analysis and subsequent lab work</td>
<td>Tabulated data applying Minimum standards.</td>
<td>2/5 Lots of data missing. Units were included in the table rather than the heading. Some data from the same grouping was not to the same number of decimal places</td>
<td>4/5 One of the sub groups had data missing. Units included in the table. Some cases where the number of decimal places were not uniform.</td>
<td>4/5 Missing data for a few entries. Cases where the same number of decimal places not uniform. Few sub groups included units in their tables.</td>
</tr>
</tbody>
</table>

Overall comment:

Best aspect with reasons why | Group X’s species photographs because the photos were clear, showed close ups and the use of annotation included further detail on species. |

Area that needs most improvement and why | Consistent data collection, because there was data missing throughout tables and this data was not always uniform e.g. to the same number of decimal places. |

Figure 4. Example of a good individual student peer assessment task, stage 2 of assignment.
peer assessment also got a first class mark for their independent work. Some students (2.6%) submitted work but had a second class mark for this stage. In these cases the peer assessment had arbitrary marking patterns and over-inflated scores, e.g. 5/5 for everything, and comments were very brief or absent. This demonstrated that they had limited knowledge of expected requirements and types of answers. A larger sub-set of students (14.5%) did not engage in the peer assessment at all (see Dataset 1.2 & Dataset 1.3).

Stage 3 of assignment: Independent work

The independent work was an open-ended task. The endpoint of the entire assignment was to carry out correlations to establish if there were any discernible patterns in the data from the different habitats. Students found that the data sheets were not in a suitable format to enable correlation, and had to make difficult decisions on what data to include/exclude and how to standardise the results. As a consequence, the students asked for guidance on sorting and analysing the data. Some individuals became stressed, evidenced by emails sent to the lecturer. An extra tutorial was run in a computer lab to support these students. During the tutorial, the majority of the attendees felt anxious because they had not achieved the ultimate endpoint of the assignment. As a result, the task was modified to include a simpler outcome that they could achieve. Students had put a huge amount of time into the activity; the lecturer feedback indicated that they had done well and listed achievements for figures and descriptions, and highlighted the fact that most had created tables and figures that mainly complied with expected academic standards.

However some students had overcome these issues by that stage, e.g. they had produced correlation tables and figures which they submitted in their individual assignment (see Figure 5 and Figure 6). By the end of this process, 47.4% of students were capable of handling, analysing and interpreting ecological data, enabling them to achieve a first class mark.

Table 2: The recorded invertebrate data found from each habitat; W, X, Y and Z

<table>
<thead>
<tr>
<th>Invertebrate type</th>
<th>Habitat W</th>
<th>Habitat X</th>
<th>Habitat Y</th>
<th>Habitat Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spider</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Beetle Larva</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Centipede</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Millipede</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Worm</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Nematode</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Wood louse</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Beetle</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Fly</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Caterpillar</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Ants</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Weevil</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Mite</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Geophilomorpha</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Insect larvae</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 3: The recorded plant identification data from each habitat; W, X, Y and Z

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Habitat W</th>
<th>Habitat X</th>
<th>Habitat Y</th>
<th>Habitat Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creeping Thistle</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Plantain</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Speedwell</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Buttercup</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Grass</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Ragwort</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Chickweed</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Creeping Buttercup</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Yarrow</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Agrimonia</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Broad leaf Dock</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Clover</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Dandelion</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Small Thistle</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Moss</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Daisy</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Figure 5. Demonstrating how a capable student sorted the class data for stage 3.
Overall analysis of the three stages

Over 82% of students were successful in completing all three stages of the assessment; with 85.5% of students passing stage 1 and 86.8% passing stage 2 (see Dataset 1.5a). A small number (5.3%) did not submit any work in any of the three stages. The peer assessment component (stage 2) had the highest level of non-submission (14.5%), followed by the stage 1 group work (9.2%).

Considering the whole class dataset, 59% of students had a good performance (marks greater than 65%) for the group work, 78.9% for peer assessment and 51.3% for the individual work. For the whole class, there was a positive correlation between the mark obtained by students during group work and the later independent work (stage 2 \(r = 0.334 \), \(p < 0.01 \), stage 3 \(r = 0.516 \), \(n = 76 \), \(p < 0.001 \)).

There was a weaker correlation between the mark obtained in peer assessment and the mark obtained for independent work \((r = 0.293, n = 76 p < 0.05 - 0.001) \).

For the set of students with a mark over 65% for the independent work (stages 2 and 3), there was no significant correlation between the marks they obtained in group work and marks achieved at the other two stages of independent work \((n = 41, p > 0.05) \).

However, for students who underperformed, with a final mark less than 65%, there was a significant positive correlation between the mark obtained in the group work and the mark obtained during the stage 3 independent work \((r = 0.597, n = 35 p < 0.001) \). (See Dataset 1.6)

Analysis based on gender indicates female students had a significantly higher mean mark (73.3%) than males (57.8%) for stage 1 \((ANOVA: F_{1,74} = 6.45, p < 0.05) \). For stage 3, the female mean mark was also higher at 76.2% compared to a male mean mark of 47.9%; demonstrating a significant difference between male and female performance \((ANOVA: F_{1,74} = 22.031, p < 0.0001) \). There was no significant difference between the mean marks for male and female students during the stage 2 peer assessment \((p > 0.05) \). For female students there was also a positive correlation between the marks obtained in stage 1 and stage 3 \((r = 0.518, n = 34 p < 0.01) \), but no correlation between stages 2 and stages 3 \((r = -0.013 p > 0.05) \). (See Dataset 1.6 & 1.7).

For males students, there was a positive correlation between all three stages \((r = 0.477, r = 0.430 respectively, n = 42 p < 0.01) \). However, in contrast to the female students, there was a weak
positive correlation between peer assessment marks for males at stage 2, and the marks obtained for independent analysis during stage 3 ($r = 0.349$, $n = 42$ p<0.005).

There were no significant differences in the mean marks of students allocated to the different groups (W, X, Y, Z), or for students studying on different degree schemes (p>0.05).

There were a number of student absences from practical sessions (1.31% of the non-submission data is accounted for by one student, who did not attend either practical session nor submit work during stage 1.) Seven students (9.2% of cohort) did not attend practical 2 resulting in a low level of submission for stage 1 (only 2.62% passed this stage), but these students performed well at stages 2 (with marks over 80%) and two students (2.62% of cohort) also performed well at stage 3 (with marks over 90%) (See Dataset 1.8).

Discussion/Conclusions

The three-stage assignment was a successful learning experience for most of the students involved, who had no prior knowledge of the collaborative learning tools used. The lecturer embraced the University ethos which involves being tenacious, bold and challenging. The collaborative activity stretched the lecturer as well as the students; both learnt how to use these new technologies together.

Stage 1 of assignment: Collaborative work

The division of the cohort into four smaller learning groups and seven subgroups created an effective and friendly environment for practical work, which provided a good situation to meet the challenge of online collaborative work. The approach of creating small friendly groups and subgroups was a success, in terms of collaboration and passing stage 1 of the assignment. The majority of students succeeded in setting up Google Accounts (92.1%) and were active within Google Drive, which was a major achievement one week into the academic year. Group work also appeared to enhance the performance of underperforming individuals.

It was evident from the practicals and data collection stage that there was too much data to collect and analyse; this should be simplified in the future, e.g. reduce sample collection to one quadrat per sub group. Also, improved management during practical 2, e.g. rotating the groups around the laboratory-based activities, would increase the efficiency and reduce the pressure on the limited equipment available in the laboratory. The class data from this year’s survey will be reviewed to reduce the range of data to collect. This would decrease the time pressure for staff and students during the practical sessions, and would also simplify the class data set.

A better system is needed for subgroup data collection; the method used was cumbersome and not as effective as alternative methods. It hindered the process of looking at the data for ecological analysis. Other options include the use of a single document at the group level; use of electronic voting devices (clickers) to collect data, or the use of an online form to collect class data in a standard format (Google have a tool to facilitate this). This would help team leaders provide class data quickly in a usable form. These alternative approaches would make it easier for students to collect and use the data.

Students collaborated within Google Drive and managed to produce high quality documents (Figure 1 to Figure 3) and there was evidence that they had carried out student-directed learning. They had applied the expected minimum undergraduate standards and carried out descriptive and statistical analysis on their data. This was before formal training had been delivered at Level 4 via a Key Skills Module (BS141). There was a noticeable variation of style between the four groups’ description and slides. This indicates that students worked within their own group and were not using other mechanisms to exchange information with other students outside of their allocated group. Therefore this part of the assignment met its intended learning outcomes.

The group work, together with the use of comments within Google Docs, demonstrates that students engaged in self-directed learning. The open-ended nature of the assignments allowed the students to deepen their learning, which is evident from research notes added to Figure 1 and Figure 2. Students demonstrated emergent behaviour, which included self-discovery of features in Google Apps, e.g. the discussion stream and document permission settings, which suggests student-student learning took place. Therefore, this met the intended outcome of this new approach.

During the group work, it emerged that students were using three methods of electronic communication, i.e. discussing and using comments and emails in Google Drive; using the Moodle forum, and also emailing each other directly via Outlook. The communication tools within Google Drive were most advantageous, as they acted as a private forum for student discussion within their group. The disadvantage of the Moodle forum was that it was accessible to the whole cohort and also, more importantly, all lecturers teaching Level 4 modules in the School of Biological Sciences. Having access to these conversations might colour a lecturer’s view of a particular student when setting and marking their future
work. Therefore, it would be wise if the lecturer directed the
students to a single method (most likely within the Google
ecosystem) as this would avoid such problems.

The success of the three stage assignment required the rapid
creation and collection of Google Account details from students. Overall this worked well, but students who didn’t have accounts
could not create any evidence of collaboration, hence did not
pass stage 1. Reasons for lack of student engagement were vari-
ed: Some individuals were reluctant to try something new, others
distrusted the online services, and a few didn’t want to put their
data in the “Google cloud”. Another probable reason for this poor
engagement is the timing of the task; it took place early in the term,
so students had to contend with many new things, such as some
subgroup members changing degree schemes. Student absences
from the practical sessions resulted in 6.5% of them failing Stage 1. Therefore, it appears that the face-to-face interaction with
fellow students, and members of staff, is crucial for the success of
online collaboration and submission of coursework.

In the future, it would be advantageous to use Google Apps for
Education or the Microsoft Office 365 suite of tools, as all mem-
bers of the University have access to both of these services now.
(However, Office 365 would only be used if the collaboration fea-
tures are as good as those found in Google Drive). Using Google
Apps for Education would give the lecturer greater control, e.g.
the ability to establish student accounts for Google Drive before
the start of the practical session and would make it easier for all
students to take part. Google takes the education arm of its busi-
ness very seriously, which should reassure students that their data
is safe. Showing the students a short video revealing the security
measures that Google enforces at its data centres would perhaps
ease any concern, e.g. Inside a Google data center. Getting students
to look at the Google Drive privacy policies and terms of service
would also be helpful.

Using Google Drive/Apps did make it a little difficult to see which
students had done what, as the activity updates are presented as
one continuous stream of information. Using Google Apps for
Education could also help improve this situation. It would be possible to provide formative feedback for the stage 1 work rather
than wait for formal feedback. This environment is good for
self-directed learning, experimentation, and for encouraging
informal communication (which will help students engage at a
deeper level and gain a more comprehensive understanding of the
subject).

Stage 2 of assignment: Peer assessment
The peer assessment provided the link between the group and
individual work. It also ensured that the students engaged in data
that they were not involved in creating.

Stage 2 enabled students to regain entry into the assignment process
if they had failed to complete stage 1, which is a key feature of this
multiple-stage process. A student who came onto the course after
the practical sessions entered late in stage 1, participated in stage
2 and successfully completed the whole assignment. By engaging
students at this stage of the assignment, it was hoped that they
would become familiar with the habitats they had not visited and
not just rely on the site they sampled. Students did analyse all of
the data sets, so the peer assessment activity met its intended aim.
However this was the stage that had most non-submissions and also
included three students who did not submit any work. It is possible
that students were tactical as a larger amount of work was required
for a low proportion of marks. Also some students may have found
it hard to make judgements.

Stage 3 of assignment: Independent work
For the third stage of the assignment, some students used the
tutorial and managed to achieve all of the expected outcomes, i.e.
correlation figures and identified plants to the species level through
their own endeavours (Figure 5 and Figure 6). It is important to
let students know that there is no correct answer expected, and that
the assignment is designed to force them to work outside of their
comfort zone. This would be made clearer in future.

The initial tasks (e.g. finding averages) should have been accessi-
bile to all students. Stage 3 assumed that stages 1 and 2 had been
achieved to a high standard. However, the data sheets between
subgroups were not consistent—one group had a complete data set
missing and other groups had sheets with incomplete data.

The fact that there were three stages to the assignment allowed any
student not succeeding at a particular stage to be successful at a
later stage. Analysis of gender showed that there was no correlation
between stages 2 and 3 marks for females, but a weak positive cor-
relation for male students. This is worth reviewing again in future
years. A benefit of this staggered approach was that it required a
variety of skills for completion, thus enabling a diverse range of
learners to succeed at one or more parts of the assignment.

The overall assignment demanded a high level of engagement, so
students who succeeded were clearly involved in a deep learning
experience. Many students met this challenge, but some became
stressed as they had other assignments to carry out in the same time
frame; there was a definite cost versus benefit relationship between
the stress created and the learning achieved. For a healthier balance,
a simpler data set together with a more directed final assignment
(with some scope for an open-ended approach) will be used in the
future. A student evaluation of the assignment and self-reflection on
skills gained would also be a useful addition.

Data availability
F1000Research: Dataset 1. Raw data for ‘Trialling the use of Google
Apps together with online marking to enhance collaborative learn-
ing and provide effective feedback’, 10.5256/f1000research.6520.
d146293 (Slee & Jacobs, 2016).

Consent
Consent has been obtained from BS111 students using an
electronic voting system and only students giving consent had data
used.

Author contributions
Nicola Slee (NS) and Marty Jacobs (MJ) conceived the study. NS
designed the experiments. MJ carried out the research and training
of Google Drive collaborative tools and integration with FASER. MJ provided support to NS and BS111 students. NS contributed to the design of experiments and assignments. NS and MJ prepared the first draft of the manuscript and preparation of the manuscript. All authors were involved in the revision of the draft manuscript and have agreed to the final content.

Competing interests
The authors declared no competing interests.

Grant information
The author(s) declared that no grants were involved in supporting this work.

Acknowledgements
We would like to thank Students of BS111 (2014–15) for their participation and granting permission to use their data in this research note. Also, we would like to show our appreciation to Google for their provision of free tools and resources.

Supplementary materials
Supplementary materials 1a: Undergraduate Standards of Presentation 2014–15
Minimum Undergraduate Standards as detailed in Biological Sciences UG Handbook 2014 15

Guidelines on writing assignments
a) Latin binomials (species names) must be in italics when word processed (e.g. *Aphis fabae*)
or underlined when handwritten (e.g. *Aphis fabae*)
b) Figures (this term refers to all non-tabulated data: diagrams, graphs, drawings etc)
i. must be numbered and referred to in the text by number e.g. Figure 1, Figure 2 etc
ii. must have a descriptive title (and legend if necessary) so that they can be understood without reference to the text
iii. must have a key to any symbols used
iv. must be produced using appropriate software to generate graphs and diagrams (except for some year 1 worksheets as specified by the lecturer)
v. graphs must have labelled axes with units and may have only sparing and selective use of colour, where appropriate to improve clarity
vi. hand-drawings must be made with single clear lines using a hard (2H) pencil and must not use artistic shading (cross hatching to differentiate between tissue types may be appropriate)
vii. as appropriate, drawings must have a scale and be labelled, using ruled pencil lines (without arrowheads or other end markers) as pointers
c) Tables
i. must be drawn with a ruler or using appropriate software.
ii. must have a descriptive title and column headings so that they are comprehensible without reference to the text.
iii. must be numbered and referred to in the text by number e.g. Table 1, Table 2 etc.
d) Numbers
i. must have units where appropriate (leave a space between the number and the unit) and should be rounded off appropriately.
ii. numbers from one to ten should generally be written as words in the text. Numbers greater than ten should generally be written as Arabic numerals (i.e. 11, 126 etc.). When making reference to figures or tables use Arabic numerals.
e) All references
i. must be cited correctly in text (see section on Referencing)
ii. must be listed in a reference list in the appropriate way
iii. cited in text must be in reference list
iv. in reference list must have been cited in text.
f) Font
i. must be 11 point Arial
Referencing

The most important independent measure of the research a scientist has produced is their research publication list, so writing scientific papers is central to a career in science. All scientific papers have to include references in the research journal style, so it is a key scientific skill to be able to follow the details of reference style guidelines and apply these precisely to your work. An important principle in all forms of research and scholarship is that you must fully reference the sources of all ideas and results that you are quoting or using. In the context of your learning, references also show the reader or examiner that you have read and can integrate information from different sources. It also helps you to avoid plagiarism.

The point of the referencing system is to make it clear who came up with an observation or idea and make it possible for readers to track that material down. There are general conventions for referencing sources, both how they are referred to in the text, and how the reference is given in the reference list. Different disciplines and publications do use slightly different formats, but for consistency we have adopted one standard across the school.

Referencing in text ('citation'):
References in the text are cited using only AUTHOR (surname only) and DATE (year only):
“Smith (1989) reported that…” or “X was discovered by Smith and Jones (1989)” or “there have been reports in support of this mechanism in other species (Smith and Jones, 2002; Smith et al., 2008)”

One author: (Smith, 2004)
Two authors: (Smith and Jones, 2002)
More than two authors: (Smith et al., 2008)
Two or more papers: (Smith and Jones, 2002; Smith et al., 2008) oldest first
Two or more papers by the same authors in the same year (Smith et al., 2002a and b)

Where an author cannot be identified (for example some internet sources) use the name of the organization, such as BBC or Online Mendelian Inheritance in Man. Do not insert the URL in the text. The data used should be the last time the information was updated.

Reference lists: must be in alphabetical order at the end of the work. Do not number your references. This is the complete information that identifies the source and includes (in this order):
Surname(s), initial(s), year, title of paper, journal, volume (in bold) and first and last page number.

Sometimes you will have to put your information into this format, for example abbreviating first names to initials only. The issue number (sometimes in brackets, after the volume) is not required.

For journals:

For internet sources:
Supplementary materials 1b: Google Docs document instructions for group task

BS111 Practical 1 Description of Habitat

Aim to apply minimum Undergraduate Standards of Presentation. See Undergraduate Handbook for Guidance: http://www.essex.ac.uk/bs/current_students/default.aspx (see page 27–32) (see Supplementary materials 1a)

Provide a written description of the habitat you visited and sampled including details of its location. Apply Minimum Undergraduate Standards of Presentation and appropriate details for term “Describe” (see Undergraduate Handbook for guidance). Ideal word count 500–750 words

[10% of overall mark Practical 2 and 3.]

Supplementary materials 2: Google Slides document instructions

BS111 Photo Submission for Group Work

Provide photos of site and some of the species found. Apply standards required for figures (See guidance in Undergraduate Handbook, section on Minimum Standards of Presentation Diagram/Figures) (see Supplementary materials 1a). Ideal number of Figures: 12–20.

[10% of overall mark Practical 2 and 3.]

Supplementary materials 3: Google Sheets document instructions

BS111 Ecology Practical 2 and 3 Part A Subgroup Data Sheet Instructions

It is important that you all access your own version of this via your Google Drive. Divide the tasks up, e.g. for your subgroup one member can put in raw data information from data sheets, one member can work on calculation needed, other members to check.

One member to check requirements of Minimum Undergraduate Standards for tables, and apply them.

One member can cross-check with descriptions and photos for details on species identification.

Final version to be downloaded as an Excel document from Google Drive. The final version will be uploaded to the BS111 Moodle page after the Part A deadline to be used for Part B (evaluation and analysis).

This will be worth 10% of your assignment
Add units, etc, to comply with Minimum Undergraduate Standards.
Supplementary materials 4: Peer assessment Instructions and Pro forma

Worksheet Instructions for BS111 Practicals 2 & 3 Part B: Individual submission:
Aim to apply minimum Undergraduate Standards of Presentation. See Undergraduate Handbook for Guidance) http://www.essex.ac.uk/bs/current_students/default.aspx (see page 27–32, Supplementary Material 1b)

Using all the group data that is accessible on Moodle BS111 i.e.
The written description of the 4 different habitats; photos of habitats and plant species of the four sites and group data from quadrats, cores that included vegetation, soil, invertebrate analysis carry out the following for this worksheet.

Part B submission: (Stage 2 & 3)
Work to be assessed (see Practical 2 & 3 Part B):

1. Peer assessment & submitted with Part B. Use the Peer assessment form from the BS111 Practical 2 & 3 handbook to assess the other groups information on

 [10% of overall mark Pract 2 & 3]

Instructions:

1. Access the group data which will be uploaded to Moodle in section for BS111 Practical 2 & 3. Using Peer assessment form peer assess the following:
 a. Group descriptions for each habitat (excluding own group)
 b. Figures of the site and species (excluding own group).
 c. Group data sheets (excluding own group)

 Use Guidance given in instructions and example excel workbook.

Worksheet for BS111 Practical 2 & 3 Part B: (Pro forma for Peer Assessment)
Individual work submission:

1. BS111 Practical 2 & 3 Peer Assessment form.

 [10% of overall mark Pract 2 & 3, part of Part B mark.]

Student Name: …………………………. Group: ………………… Date: …………..

Peer Assessment form for other groups: W, X, Y, Z (delete as appropriate)

<table>
<thead>
<tr>
<th>Element</th>
<th>Requirements</th>
<th>Score Group W (5)</th>
<th>Score Group X (5)</th>
<th>Score Group Y (5)</th>
<th>Score Group Z (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Written description of the habitat</td>
<td>Minimum Standards : Sentences, with descriptive words, no explanation, good grammar, no/few spelling mistakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Provide Photos of site & some of the species</td>
<td>Range of photos of habitat and close up of species (12 – 20 photos) Figure number and title below photo (labeling if appropriate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Provide data obtained from quadrat analysis and subsequent lab work</td>
<td>Tabulated data applying Minimum standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall comment: (exclude your group which is --------)
Supplementary materials 5: Individual: Instructions and Generic Feedback sheet for individual work (Stage 3)

Stage 3: Final Instructions for Individual Work to be assessed (see Practical 2 & 3 Part B):
Questions
1. Individual evaluation of class data on the 4 habitats. Details

You will have access to 3 excel documents that will provide you with
1. Information and examples of the types of analysis to carry out.
2. Class data for the four habitat sites in one workbook where each habitat will have a separate page in the excel workbook. There is also the original downloaded sub-group data in another excel workbook
3. In the class data workbook, save with your surname BS111 2 & 3 Part B then Analyse to determine habitats species richness and variability in habitats following quadrat sampling & further laboratory analysis: Some guidelines of potential analysis.
 a. For each habitat calculate the average, standard deviation and standard error for each parameters (numerical data), just a few are shown in the example document.
 b. Tabulate the average data into a new table (must comply with Minimum Undergraduate Standards).
 c. Decide how many dp are appropriate for numbers.
 d. Past Table(s) & if appropriate Figures into word document, reformat as necessary to comply with expected standards.
 e. Analysis of data to find out if there are patterns and correlations in the habitats investigated. See information at the end of worksheet on how to carry out analysis.
 f. Your aim is to create a correlation table of the different parameter,
 g. Work out if there is a significant correlation between the different factors
 h. For two significant correlations produce figures of the scatter plots of the data but add a different symbol or colour for the different habitat sites. (See examples on example sheet)
 i. Past relevant tables and Figures in this document of correlation data.

Steps e to i became a bonus section
j. Write your interpretation of the determine habitats species richness and variability in habitats results in text box (ideal word count <750 words)

Click here to access the data

Generic Feedback sheet used by students to complete Peer assessment task (Stage 2) and used by lecturer for Stage 3 assessment.

Student Name: ______________________

FEEDBACK SHEET FOR YEAR 1 FOR BS111.2 & 3 Part B:
COMMENTS: (Good points/areas for improvement)

<table>
<thead>
<tr>
<th>Text (written answers)</th>
<th>GOOD POINTS</th>
<th>BAD POINTS</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat presentation</td>
<td>Careless, untidy presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear answers</td>
<td>Points not made clearly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concise writing style</td>
<td>Waffle and irrelevant material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legible</td>
<td>Difficult to read writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/few spelling mistakes</td>
<td>Many spelling mistakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good grammar</td>
<td>Poor grammar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct units always included</td>
<td>Units missing/wrong/poor choice (e.g. 1.2 ml, not 1200 µl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct number of d.p.</td>
<td>Excessive d.p. used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figures

<table>
<thead>
<tr>
<th>GOOD POINTS</th>
<th>BAD POINTS</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbered consecutively</td>
<td>Not always given a number</td>
<td></td>
</tr>
<tr>
<td>Number and title together BELOW</td>
<td>Titles sometimes above or beside figure</td>
<td></td>
</tr>
<tr>
<td>Title concise and contains all key information</td>
<td>Title too brief/long or missing important details</td>
<td></td>
</tr>
<tr>
<td>Figure fully and neatly labelled</td>
<td>Untidy/inappropriate labels</td>
<td></td>
</tr>
<tr>
<td>Sharp hard pencil used for drawing, scale included where appropriate</td>
<td>No scale</td>
<td></td>
</tr>
<tr>
<td>Axes always labelled on graphs, units included</td>
<td>Poor/un-labelled/units missing</td>
<td></td>
</tr>
<tr>
<td>Good choice of graph type: line or bar chart (continuous or discontinuous data)</td>
<td>Inappropriate format selected</td>
<td></td>
</tr>
<tr>
<td>Grouped data presented</td>
<td>Raw/individual data presented</td>
<td></td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>GOOD POINTS</th>
<th>BAD POINTS</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbered consecutively</td>
<td>Not always a number</td>
<td></td>
</tr>
<tr>
<td>Number and title together ABOVE the table</td>
<td>Titles sometimes below table</td>
<td></td>
</tr>
<tr>
<td>Title concise and contains all key information</td>
<td>Title too brief/long or missing important details</td>
<td></td>
</tr>
<tr>
<td>Neat layout</td>
<td>Gridlines not drawn with a ruler or untidy</td>
<td></td>
</tr>
<tr>
<td>Appropriate headings</td>
<td>Headings missing/unclear</td>
<td></td>
</tr>
</tbody>
</table>

Part 3: Mark out of 60

Supplementary materials 6: Preparatory Information on BS111 Moodle

Supplementary materials 6a Moodle News Forum

Preparation for Ecology Practical Sessions (2 & 3, 2014) for Students

BS111 Practicals 2 & 3
by Nicola Slee - Friday, 3 October 2014, 4:28 PM (News Forum)

Dear All,

It was good to meet a number of you this morning for the tour of campus and surrounding area. You will be doing a couple of practical sessions before you start your lecture course for Ecology (BS111). Dr. Alex Dumbrell will be running the first practical on Tuesday (9.00 – 12.00) and I will be doing the second practical session (Thursday 10.00 – 13.00).

I have made various documents available on Moodle BS111 for you to start looking at for practicals 2 & 3. These include your practical handbook and some instructions to set up a Google account for your collaborative team work.

Read through your practical handbook and also have a go at creating this account before the practical. I may add other documents during the week.

Remember to bring wellies, waterproof coat, lab coat, pens/pencils and a device to take photos.

Alex is planning to send you details about his practical on Monday.

With best wishes

Nicky
For practicals 2 & 3 you will be assigned into a specific group. It is important that you know which group you are in and remain in that group.

These two practicals will be developing practical skills in the field and in the lab for collecting & analysing data on species richness. It is also developing team work and collaborative work which is a key feature of many ecological research and workplace situations.

Julie Snell has emailed you with details of which group you will be in for Thursday 9th October and Monday 13th October.

Documents to access: information on how to set up Google drive that was needed for team work; group allocation for teams (W, X, Y & Z); Practical Handbook which contained timetable and requirements for the practical, learning outcomes Safety, Introduction, methods for teamwork, field work, lab work, assessment coversheets, feedback sheet for Year 1, link to Undergraduate standards, worksheet questions for for part A (group work & sub-group work), part B (peer assessment and individual evaluation, assessment weighting of the different stages of the assignment.

Supplementary materials 6b: Google Drive instruction set up for team work for BS111 Practicals 2 & 3

Team work:
You will have been allocated to a group before you come to the first practical session. Go to that group in the teaching lab; Find two other people in that group to form a sub-group. Sign the register and on a separate sheet note the members of the sub-group and allocated code.

Before the end of the first practical you will need to enter your Google account details onto the group register list (In the practical).

Google Drive instruction set up to enable your teamwork (collaboration) during/after the first practical session.
You will be carrying out your collaborative work in Google Drive.
In Google: Search for Google Docs
https://drive.google.com/

If you can have a go at setting this up before the practical next Thursday you will a step ahead.

Supplementary materials 6c – d: PowerPoint Instructions and Guidance
Clink here to access the data
Clink here to access the data

Supplementary materials 6e: BS111 Ecology Practical Data Collection Forms
BS111 Ecology Practical 2 & 3 Part A Date: 9th October 2014

Group Data.

<table>
<thead>
<tr>
<th>Group No. (W, X, Y Z)</th>
<th>Habitat Number Name & Location on Wivenhoe Campus (Figure 1)</th>
</tr>
</thead>
</table>

General Description of Area/habitat:

Photos taken of habitat:
Identification of plants in habitat:

Do this as a group activity before collecting quadrat data so that each group uses the same code.

<table>
<thead>
<tr>
<th>Different Plant Species identified in the two quadrats</th>
<th>Monocot/Dicot (M/D)</th>
<th>Further ID. (in lab)</th>
<th>Sample taken, labelled & put in plastic bag.</th>
<th>Photo taken (y/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare ground.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-Group Data: Group No. (W, X, Y, Z) (Circle appropriate letter for group) Sub Gp No: ____

Student Names in trio (sub-group): 1____________________________________ 2_________________________ 3 _____________________________________

<table>
<thead>
<tr>
<th>Different Plant Species identified in the two quadrats</th>
<th>Monocot/Dicot (M/D)</th>
<th>further ID.</th>
<th>Quadrat 1 (% cover)</th>
<th>Quadrat 2 (% cover)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare ground.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrat Data</td>
<td>Quadrat 1</td>
<td>Quadrat 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of different plants species in quadrat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of monocot species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Dicot species.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plant temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil temperature (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant samples taken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil water content based on feel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil respiration based on smell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil colour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group : W. X, Y or Z (circle) Sub-group code: _________________

Student Names:

<table>
<thead>
<tr>
<th>Point Quadrat</th>
<th>Point</th>
<th>No of hits on bare ground</th>
<th>Height of tallest vegetation above ground.</th>
<th>No of hits on plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COUNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point Quadrat</th>
<th>Point</th>
<th>No of hits on bare ground</th>
<th>Height of tallest vegetation above ground.</th>
<th>No of hits on plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COUNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Label 2 bags per quadrat – one for the vegetation and the other for the soil sample; include group and subgroup code and date.
 - For one of the quadrat samples put soil of quadrat in one of the labeled bags and the vegetation and roots in the other.
 - Core Samples are taken from central areas of the quadrats

Gather as a group and return to the lab (6.04)
Data collection in Lab
Make notes in your lab book. This data will be collected over the two practical sessions. Steps essential to be done on the first day are in bold.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Core 1</th>
<th>Core 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gmail details on group data sheet.</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Fresh weight (F.W.) of total soil core (in bag)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh weight plant material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh weight of shoot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g f.w. soil sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil texture (dry) descriptive observations and deductions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil texture (wet) descriptive observations and deductions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity of soil rate ()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification of plant samples from habitat site (Plant ID)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of worms in core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of different invertebrate types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>List types of different invertebrates found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Info on sedimentation profile (% sand, silt & clay particles)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other information that may be collected:

- soil potassium mg/l K
- Potassium levels (520nm)

This information will form part of your Part A submission. You will put the data into documents available on your Google Drive which you can access after your Gmail account has been received. Each student needs to access their own Google Drive and demonstrate they have taken part in the team work.

The data you submit for Part A will be used to create the class data that you need for Part B.

Your first task will be to submit the data onto the files available on Google Drive.

For Part B, you will analyzing the data from the different habitats i.e. you will use all the class data so it important you take care over collecting your group & sub-group data.

Supplementary materials 7: Generic Feedback

Feedback for MODULE NUMBER: BS111 Pracs 2 & 3 Part A
For Correlation of species richness to soil properties from different habitats

OBJECTIVES ASSESSED
1) Team work
2) Familiar with quadrat sampling in vegetation.
3) Description of habitats using variety of formats
4) Provision of quantitative data obtained from with quadrat sampling in vegetation
5) Information suitable for other scientists to use for statistical analysis and evaluation.

Feedback on Objectives tests:
1. Many of you have demonstrated excellent teamwork, during the practical session, creating Gmail accounts and setting up Google drive to work collaboratively on providing description and figures of the different habitats. In sub-groups you also collected data based on your quadrat sampling that other scientist were able to use for evaluation.
2. It is evident from the data sheets that you are now familiar with quadrat sampling and obtained quantiative data from the quadrat analysis.

3. You have provided excellent written descriptions of the 4 different habitats & figures (photos) of habitats and plant species of the four sites. Generally excellent identification of species included in both written work and figures, and use of genus and species name. You have demonstrated, especially with the descriptions and Figures that you have provided data that is suitable for other scientists to understand about the different habitats.

 You understand and applying Minimum Undergraduate Standards to Figures i.e. Figure number and descriptive title below text, using italicized binomial names. You have provided a good resource for members of the other groups to know the general features of a particular habitat sampled.

 The Sub - group data from quadrats, cores that included vegetation, soil, invertebrate analysis was variable, ranging from excellent to absent.

 Areas to develop:

 a. Figures: add labeling lines and label to side of photos. Add scales.

 b. For descriptive text refer to the figures in the text. Avoid explanation, reasons, opinions for ‘Describe’ or ‘Description’ gave good gain excellent information about the

 c. Sub - group data from quadrats, Area to Improve: How you record you data to enable other scientist to access the information. Put units in headings not in body of the tables; some of the data was difficult to access because you put the units in the body of the table rather than in the headings.

Generic Feedback for Part A.

| Best aspect with reasons why: | Depth of knowledge presented, much greater than I anticipated. The group work enables the whole class to see standard expected. |
| Area that needs most improvement and why | To make sure describe/descriptions have no explanations. Units present, using SI conventions but in body of table rather than within heading section |

Feedback for calculations:

Root to shoot ratio (F.W.)

\[
\text{Root to shoot ratio (F.W.)} = \frac{\text{root (1)}}{\text{shoot (2.77)}} \cdot \left(\frac{\text{fresh weight of shoot}}{\text{fresh weight of root}}\right) = \frac{0.45}{6.03} = 0.08 \text{ g shoot to } 1 \text{ gram of root on a fresh weight basis.}
\]

If you have done it the other way: fresh weight of root (6.03) ÷ fresh weight of shoot = 2.17g root to 1 gram of root

Root to shoot ratio (D.W) use the same principle but with dry weights.

Dry weight of whole soil sample (give details of calculation elsewhere on sheet 1)

\[
\text{Dry weight of whole soil sample} = \frac{\text{fresh weight of soil}}{\text{dry weight of sub sample}} \times \text{dry weight of sub sample}
\]

Fresh weight of soil e.g. 269.56g

Fresh weight sample = 5g

Dry weight of 5 g sample = 4.35

i.e. (269.56 ÷ 5) × 4.35 = 234.51 g dry weight soil for total sample

Porosity of soil (give details of calculation elsewhere on sheet 1)

Porosity = volume of water to pass through soil (cm³) ÷ time taken (min) =(rate cm³ min⁻¹)

End of generic feedback.
Supplementary materials 8
PDF of Google slides produced by one of the groups.
Click here to access the data.

References

Doolan MA: Setting up online collaborative learning groups using Wiki technology - a tutors' guide. SEDA (Staff and educational development association) Educational Developments 8.2. 2007; 12–13. Field Study Guides: Fold out charts. Reference Source
Hosseini D: Using Google Docs as a tool for collaborative learning at the University of St Andrews. JISC Scotland, Showcase. 2014. Reference Source
Mello LV: The use of technology promoting student engagement and self-directed learning in a PGT cohort. (University of Liverpool). Researchers – Teachers – We’re all in this together Society For Experimental Biology Education and Public Affairs Section Symposium EPA1.15. 2012. Reference Source
Scott G: Learner autonomy as a means to promote engagement. (University of Hull) Researchers – Teachers – We’re all in this together Society For Experimental Biology Education and Public Affairs Section Symposium EPA1.6. 2012. Reference Source
Slee NJ, Jacobs MH: Dataset 1 in: Trialling the use of google apps together with online marking to enhance collaborative learning and provide effective feedback. F1000Research. 2016. Data Source
Open Peer Review

Current Peer Review Status: ? ?

Version 1

Reviewer Report 20 July 2015

https://doi.org/10.5256/f1000research.6998.r9314

© 2015 Link-Perez M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Melanie Link-Perez
Department of Biology, Armstrong State University, Savannah, GA, USA

This article describes a multiple-week ecological exercise that has both field and laboratory components and combines opportunities for collaborative learning, peer assessment, and individual work, with instructor feedback included at several stages. An important component of the three-stage assignment is the pivotal role of technology, in the form of free Google online tools, in order to facilitate the collaboration between students and the delivery of feedback from the instructor. The introduction does a nice job of providing context and articulating the rationale behind the design of the method described. The assignment is well-conceived, and there is a natural progression from group work and collaboration toward individual demonstration of learning outcomes. Especially valuable is the opportunity for the students to engage in assessment of their peers, a high-impact activity that the authors noted led to higher achievement in the final stage of the assignment for those students who fully participated in the peer-review. This method should be easy to implement for instructors willing to do so.

General comments to consider during revision:
- Change “peer assignment” to “peer assessment”; better reflects the nature of the activity, less confusing.
- Make the abstract a bit more explicit; for example, in the third paragraph it states that the assignment “was a success.” Based on? How so? The answers are there, but the reader has to wait for them and is not certain if she has correctly identified them. Go all the way when making a statement; don’t lead the reader part of the way there, and expect him to complete the thought the way you intended. Be explicit. This comment goes for the article in general.
- In the introduction, the authors refer to the “Challenger Philosophy”; the hyperlink requires additional log-in information and is not generally accessible. Please summarize the key points and remove the hyperlink.
- The authors repeatedly reference the “Minimum Undergraduate Standards,” which appear on pages 27-32 of a 79-page PDF that is hosted elsewhere online. These standards should at a minimum be summarized (so that the reader doesn’t have to find them in the aforementioned...
document in order to know what type of criteria are included). Since the PDF that contains them is likely to be updated regularly by School of Biological Sciences at University of Essex, therefore causing the page reference to change, the authors may wish to create a static, free-standing document containing this information.

- Under Methods, Stage 1: What kind of information was disseminated via Moodle to prepare students for the habitat visits? What background information did the students have? I was often distracted by the lack of information provided about the field and laboratory portion of this assignment (although I could clearly follow the collaborative and individual written work). What size quadrats did the students use? How did they go about species identification? When the soil samples were collected, the authors state that “the vegetation was put in one labeled sample bag and the soil in a second.” Was that the upper, vegetative layer of the soil sample, and for what purpose? How were the insects collected? By Berlese funnel from the soil samples? Were they just the invertebrates that were observed while the students were in the field?

- Add more information about Instructor Feedback in the Methods section; what kind of feedback was provided at each stage? Were students assessed primarily based upon the presentation criteria (following guidelines regarding Tables and Figures, etc.) or were they also assessed to some degree on accuracy/correctness of information presented (for example, in Figure 2, the student notes state that Plantago major is a monocotyledon, which is erroneous; it is a Eudicot)? Based on the article title, a reader will expect more information about this aspect of the research.

- I like the examples of student generated work. It might be nice to include a few more examples under “Supplemental Materials” for those who would like to view them.

- I was a bit surprised by the amount of students who didn’t participate in stage 2 (26%). Any suggestions for how to resolve this issue? Why the low “buy in” by these students?

- I think it would be nice to include a little more information about the lecturer’s experience. Could some of this be added to the Results and/or Discussion?

- The final paragraph of the paper ends oddly. It seems to reference a future event (having students use Google Apps for their third year project) but talks about it in the past tense (“but this time they took ownership”); consider revising. It is not a good idea to end an article with a parenthetical comment (weakens it).

Quick fixes:

- Data are plural (see 5th paragraph under Results)

- Second to last paragraph under Results, Stage 1: “The large number of data sheets generated (21) meant…” I think the number in parentheses should be 28.

Overall, a nice teaching module that I would encourage instructors to try; I can envision several standard laboratory or field exercises that could be modified and expanded to include the collaborative group work, peer assessment, and individual analyses presented here. It is a really nice model. The article itself can be strengthened by providing more details, where relevant, and by being more explicit.

Competing Interests: No competing interests were disclosed.
I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 17 Aug 2015

Nicky Slee, University of Essex, Essex, UK

We thank the reviewer for her helpful comments. We will address these, along with others, in a revision of our paper once the other reviews have come in.

Nicky Slee

Competing Interests: N/A

Author Response 25 Nov 2016

Nicky Slee, University of Essex, Essex, UK

The authors would like to thank Melanie Link-Perez for her review and helpful comments to improve the paper. We have addressed the comments raised and incorporated them into the updated version of the paper e.g. terminology has been changed from peer assignment to peer assessment. The hyperlinks have been updated (Challenger Philosophy) or changed e.g. Minimum Undergraduate Standards is now in Supplementary Materials. Information has been added about the Lecturer's background and experience. The methods section has been expanded to give more details about the ecological sampling. Information on feedback has been included. The new version Numerical data been added to make information more explicit together with definitions about success criteria (performance related to average for stage 1 and success related to degree class marks). Abstract and paper has been updated to include specific details on success at each stage, looking at different success criteria that have been defined; statistical analysis has been carried out and reported; results are the final results assigned to the students for this work. An example of one student's group work, Google slide document, is added in the supplementary materials.

Competing Interests: None.
tools, namely Google Docs and Google Slides to help with the ecology field work of first year students. I think it would be good to alter the use of the terminology, and refer to first year students as ‘Level 4’. I would also like to know the range of degree programmes which these students are enrolled on, and what the gender ratio is. The first link in the introduction ‘Challenger Philosophy’ requires the use of a password to enter the content. I think it would be good in the introduction to say something about what the challenger philosophy is, as readers will not be able to access this information via the link. In the development of this idea, it would be good to know what had been done in previous years, and what promoted the change to this new approach, or was this a new module? The introduction gives a good rationale for this choice of technology intervention, e.g. enhanced group work, opportunity for peer assessment, and a greater opportunity for cohorts to get to know each other and to discuss data generated. Other educational literature is cited to support the rationale. In the results, the authors stated that the students ‘mainly succeeded’ in setting up Google Accounts. This suggests that some did not? If they did not, what were the barriers? (This was actually subsequently looked at in the discussion). The authors indicate that after the group work the students showed a greater awareness of ecology techniques and the campus, how was this information gathered? Was it through informal discussion, or was it through comparison to previous experiences of work produced in this module? This needs some clarification. There were interesting reflective comments from the authors, but I would like to see some information on the student evaluation, it would be particularly interesting to see if any themes were emerging from student free text comments on the skills which they considered they had developed. If this module has run before, without this technology intervention, is there a difference in the marks obtained for the module? The authors mentioned ‘ownership’ of the information several times during the paper. I think some referral to the wealth of literature surrounding research-led teaching where ownership is a key outcome of this type of learning, would enhance the paper.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 17 Aug 2015

Nicky Slee, University of Essex, Essex, UK

We thank the reviewer for her helpful comments. We will address these, along with others, in a revision of our paper once the other reviews have come in.

Nicky Slee

Competing Interests: N/A.

Author Response 25 Nov 2016

Nicky Slee, University of Essex, Essex, UK

The authors would like to thank Kay Yeoman for reviewing the paper and giving comments to improve it. We have addressed the comments raised and incorporated them into the updated version of the paper.

The terminology has been updated, first year students are referred to as Level 4 students. Details have been added about the degree programmes studies and gender ratio. An updated link has
been provided for the Challenger Philosophy which provides information needed. The rationale for the new approach and reasons for changing the previous practical have been given and information about the lecturer’s experience has been added. Greater awareness of ecology and campus was based on work submitted rather than from informal discussions with students or comparison to other years. Literature has been added about student centered learning and proposed benefits of the approach. Student evaluation was not included in this work but would be an important addition in the future.

Competing Interests: None.