The necessity for the observer to examine the system from a first-person frame of reference to trace the path of generation of inner sensations [version 2; referees: 1 approved, 1 not approved]

Kunjumon I. Vadakkan
Neuroresearch Center, 76 Henry Street, Toronto, ON, M5T 1X2, Canada

Abstract
Anyone seeking to study the first-person properties of higher brain functions faces significant difficulties. Since a third-person observer cannot access the first-person-inner sensations in a subject, the current studies are using behavioral manifestations in lieu of inner sensations of higher brain functions. It is required to cross a barrier for understanding the mechanism of formation of internal sensations. The present work explains why the system should be making a first-person search to induce sensory qualia for the internal sensations and the observer who traces along the same path must make an examination from a first-person frame of reference.

Keywords
first-person sensations, first-person frame of reference, higher brain functions, semblance hypothesis, third-person observations, artificial intelligence

This article is included in the Real-life cognition collection.
Corresponding author: Kunjumon I. Vadakkan (kunjumon.vadakkan@utoronto.ca)

Competing interests: U.S. patent (no: 9477924) pertains to an electronic circuit model of the inter-postsynaptic functional LINK.

Grant information: KIV is supported by funding from the Neurosearch Center, Toronto (Grant number: 3:24/2014). KV is a financial contributor to the Neurosearch Center, Toronto.

Copyright: © 2017 Vadakkan KI. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Vadakkan KI. The necessity for the observer to examine the system from a first-person frame of reference to trace the path of generation of inner sensations [version 2; referees: 1 approved, 1 not approved] F1000Research 2017, 4:173 (https://doi.org/10.12688/f1000research.6720.2)

Introduction
In contrast to other systems in the body, nervous system is unique in that several higher brain functions are first-person properties of the mind. These include the state of being conscious, the ability to perceive different sensory stimuli, and the ability to internally sense retrieved memories. Since only the owner of the nervous system has access to these, it has been difficult to obtain a mechanistic understanding of the generation of these first-person properties. Third-person observations have been carried out in detail at the biochemical, cellular, electrophysiological, systems, imaging and behavioral levels (Figure 1). Even though some of these findings from certain levels can find inter-connectable explanations, several others fail. This poses tremendous challenges in solving the system. Understanding the first-person property of perception can also influence other branches of science such as physics. Is there any alternate method possible to understand how first-person internal sensations are being generated?

The importance of first-person reporting for understanding the nervous system has been suggested by several investigators. First-person reports of inner sensations through motor activity such as behaviour and speech provide the third-person observers with surrogate markers about the content of internal sensations. This allows the observer to make certain judgements about the first-person inner sensations in a subject. The observer who is keen to understand the system examines the system closely at various levels. Again, the observer acquires different sets of surrogate markers of biochemical reactions, synaptic changes, cellular changes, neuronal activations, oscillating extracellular potentials, and signal changes from imaging studies. The observer then correlates these markers with the surrogate behavioural responses. These types of studies over several years have led to the implicit use of behavioral responses in lieu of the internal sensations of higher brain functions. Making conclusions about higher brain functions based on surrogate markers undermines the necessity to make scientific enquiries about the mechanism of formation of internal sensations.

Understanding how first-person inner sensations are generated has a direct impact on certain areas – memory disorders, mental disorders and usage of anesthetic agents. Some psychiatric disorders generate the first-person property of hallucinations with a compelling sense of reality. What conditions can autonomously generate a meaningful flow of sensory perception in the absence of any external sensory stimuli? Finding solutions for alleviating symptoms in these conditions requires an understanding of the normal mechanism of generation of first-person internal sensations. Anesthetic agents are being used to block the first-person property of consciousness and is being carried out in the absence of a mechanistic explanation for consciousness. This makes it difficult to understand how anaesthetic agents work and what might be leading to the neurodegenerative changes associated with their use. Different attempts to build a framework for consciousness have been carried out.

How can the mechanism be discovered?
Both the previous methods of using first-person reports and correlational studies using different third-person observations are short of providing a solution. A clear understanding of the mechanism of the generation of internal sensations should be able to guide the replication of this operation in an engineered system. The first attempt to build a framework for an empirical approach was initiated by Marvin Minsky. Since gradual changes from a simple cue stimulus to more complex ones generate corresponding

Figure 1. Frame difference between the first-person internal sensations and third-person views of the nervous system functions at different levels. Current studies are third-person examinations and the results from them are used in correlational studies between them. Since most higher brain functions generate internal sensations, understanding the structure-function mechanism for inducing first-person internal sensations is required to understand the system.
internal sensations of retrieved memories at physiological timescales, it indicates that the internal sensations are generated using unitary mechanisms. How can its mechanism be discovered? Reductionism can be used to carefully examine the system by keeping all the required constraints for making hypotheses regarding the smallest possible structure-function units for the induction of internal sensations. The operation of these units is expected to be part of a systems property. In this regard, views of emergent properties and reductionism can be seen as mutually inclusive. By using them in conjunction, the system may be approached to find a solution. The presence of a large number of diverse third-person observations at various levels indicates that the system has a unique solution. It is reasonable to expect that the solution is likely to be a simple one.

The barrier of accessing first-person inner sensations can be crossed by using theoretical approaches, which can be verified later. Selecting a higher brain function that is well-preserved across species and has been well-studied by third-person approaches is important to derive a probable mechanism. In this regard, learning and memory research offer a large number of observations at various levels – biochemical, cellular, electrophysiological, systems and behavioral. By setting up all the constraints, the theoretical approach can be carried out to examine the potential locations where learning-associated changes can take place between two stimuli. These changes are expected to be reactivated by one of the stimuli (cue stimulus) to induce the internal sensations of memory of the second item along with behavioral motor actions that would have occurred in the presence of the second stimulus alone. The constraints include operations occurring at specific frequency of oscillations of extracellular potentials and the ability to make signature changes for each associative learning event, changes that are capable of reversing (for forgetting) and that can be stabilized for different periods of time (for retaining memories for different periods of time).

At the identified specific locations and conditions, how does the cue stimulus induce a unit of internal sensation? Since the internal sensations consist of partial sensory features of the associatively learned item, how can it be sensed in the absence of the learned item? At the appropriate locations, the cue stimulus has to induce an operational mechanism that allows the system to sense the sensory qualia of the associatively learned item “from within.” This requires a search from the appropriate locations towards the sensory receptors that were activated by the learned item. This can be expected only through a retrograde extrapolation from those appropriate locations towards those sensory receptors that will identify the sensory inputs capable of activating those receptors. The net sensory content generated by the system in response to the cue stimulus constitutes the sensory content of the internal sensation for the associatively learned item. Here, the sensory qualia result from the approach of the system from a first-person frame of reference (Figure 2). An observer who traces along this path, from the identified locations to the sensory receptors, inevitably will be examining the system from a first-person frame of reference. The first-person internal sensations of other higher brain functions are also expected to share a similar principle and will require examination from a first-person frame of reference.

Verification of the mechanism
The next steps involve theoretical verification of the mechanism using different methods. These include 1) explaining and

![Figure 2. Flow chart showing the key feature of a mechanism for the generation of internal sensations at specific locations. It is expected to be located at the points of convergence of associatively learned stimuli. The mechanism is derived by keeping all the constraints and is expected to induce first-person accessible internal sensations. To characterize the qualia of the internal sensation, it is necessary to extrapolate from the location of the mechanism (named as mechanism X) towards the sensory receptors. The observer has to follow the same route towards the sensory receptors to identify them and characterize the nature of sensory stimuli that are capable of activating them. This backward extrapolation from the location of the mechanism X towards the sensory receptors constitutes examination from a first-person frame of reference.](image-url)
interconnecting findings from various levels. Examples include a) the functional role of dendritic spikes, b) the role of generation of potentials remote from the neuronal soma that degrade as they arrive at the soma14, and c) the role of postsynaptic potentials that do not directly contribute to the neuronal firing both during sub- and supra-threshold activations, 2) searching for comparable circuitries in the nervous systems of remote species of animals, 3) examining the “loss of function” states of the mechanism in neurological and psychiatric disorders, and 4) conducting computational studies to examine the nature of the algorithms for different modules of functions that can provide expected qualities for the generated internal sensations.

The gold standard
The gold standard for verifying the theoretically-derived operational mechanism requires its successful transfer to the engineered systems. Importance of developing engineered systems was explained previously15. These systems will provide the advantage of studying the nature of internal sensations by retrograde extrapolation towards the sensory receptors to find out the minimum sensory inputs capable of activating those receptors. The system can be built to provide readouts of the internal sensations and can examine whether they match with the behavioral motor outputs expected from the system (Figure 3). The nature of these sensory inputs will depend on the number of neuronal orders from the sensory receptors and the connections between them in a given engineered system. Using all the units of internal sensations, the algorithm required for computing them to obtain a partial sensory framework to identify the item whose memory is being retrieved can be obtained. In the case of lower order animals, the number, types and qualia of higher brain functions are expected to be limited since the number of sensory receptors and the locations of convergence of inputs are limited. By using regular feedback from computational studies to configure the algorithms for different higher brain functions, systems of different complexities can be built. At the advanced stages, the systems science will need to examine the systems properties from a holistic view, including its interaction with the surrounding environment and dynamic behavior through complex paths that are reinforced during certain operations. In addition, the systems science will be able to examine instabilities when the system crosses the “boundary conditions” that can mimic the disease process. Systems design, systems development, systems stability, systems analysis, systems dynamics, and systems viability will become necessary elements of this process.

Major hurdles
The predictions made by the new approach can be verified, and followed by replication in engineered systems. Since the current studies are being carried out using third-person observations at various levels, any new approach that uses a change in the frame of reference in its methodology is expected to require time for the scientific community to examine the mechanism. This delay can be reduced by a) providing explanations for currently unexplainable observations in terms of the new mechanism, and b) by the experimental confirmation of the predictions made by the proposed mechanism. The arguments used in the theoretical derivation and supporting evidences are expected to motivate replication in engineered systems. Finally, concerns about “the singularity,” a threshold point above which engineered systems will become more intelligent than humans, will need appropriate actions and reassurance.

Figure 3. Steps required to cross the barrier of frame difference between the first- and third-person sensible functions. The schematic diagram shows a path for a scientific approach to replicate theoretically-feasible hypothesized mechanism in engineered systems. It is possible to set up readouts of the internal sensations generated in response to a cue stimulus from an engineered system, which can be used to fine-tune the systems properties. This approach is expected to lead to the development of artificially intelligent systems.
Conclusion
In order to trace the path through which the nervous system generates a first-person view, it is necessary to carry out an examination from a first-person frame of reference at some point during the investigational process. The virtual nature of the first-person internal sensations indicates that the steps towards successfully solving it will have similarities to the development of complex numbers in mathematics. The natural course of events that leads to the verification of the first-person properties in engineered systems and the development of artificial intelligence can be regarded as two sides of the same coin. These first-person studies will be unique to the field of neuroscience, compared to the studies of other organs in the body and should be brought to the mainstream investigational methods in the field. A discussion on this topic among neuroscientists, computational scientists, and engineers can spark many bright ideas.

Competing interests
U.S. patent (no: 9477924) pertains to an electronic circuit model of the inter-postsynaptic functional LINK.

Grant information
KIV is supported by funding from the Neurosearch Center, Toronto (Grant number: 3:24/2014). KIV is a financial contributor to the Neurosearch Center, Toronto.

Acknowledgements
I thank Selena Beckman-Harned for reading the manuscript.

References
Open Peer Review

Current Referee Status:

Version 2

Referee Report 20 March 2017

https://doi.org/10.5256/f1000research.11511.r21134

Zoltan Nadasdy1,2,3

1 Department of Cognitive Psychology, Eötvös Loránd University, Budapest, Hungary
2 St. David's Neurosciences and Spine Institute, St. David's Medical Center, Austin, TX, USA
3 Department of Psychology, The University of Texas at Austin, Austin, TX, USA

I think removing the sentences helped to sharpen the focus of the manuscript. However, I still strongly disagree with the main point of the paper, phrased in the title as it would be "necessity for the observer to examine the system from a first-person frame of reference to trace the path of generation of inner sensations". I think the opposite. We need to step-out to understand the underlying process of perception (the closest to "inner sensation"). The history of science argues that the further we are from the egocentric point of view the better our understanding becomes (e.g. the history of astrophysics). I think the challenge is exactly the opposite of what the author states. Namely, to be able to define the set of mechanisms that explain the emergence of self and embodied cognition. We need to explain how the sensory input is learnt to be integrated during the first few years to generate a corpus of first person experience as an independent entity and able to attribute autonomy to the actions and volition during the early childhood.

I am trying to give another example. Sleep. We all sleep so we all have the first person experience. Does that provide us explanation for the mechanisms of sleep? Obviously not. Does the release of serotonin and orexin explain the first-person experience of sleep? Not directly but it may explain the brain state that transitions to dreams, which may take us one step closer to describe the visual experience during dreams. Do we need to leave the third person or a de-personalized paradigm? We don't. Nevertheless, step by step we are getting closer to understand our subjective experience of sleep in simple causal terms. The point is: \textit{If we agree that the language of science should be a causal logic, and causality is agnostic to the point of view, then it does not matter which perspective we are taking.} The description of the process in terms of causes and effects would not be affected by the observer's position. The data is, but not the process.

Secondly, the author is trying to sell \textit{two ideas in the one package}. One is the "necessity" of the first-person point of view, which is insufficiently supported (see above). The second is that subthreshold dendritic spikes would represent the undisclosed source of the first-person experience. Proposing that there is a separate neuronal signal processing stream, i.e. the subthreshold activity, which conveys a different quality of senses raises more questions than provides answers. What evidence do we have for subthreshold activity is being decoded as a separate quality? What evidence do we have in support of special neural signals generating subjective fist-person sensation as opposed to simply communicating viewpoint independent sensations? In what sense the model of embodied cognition based on the multiple somatotopic representations of the body is insufficient to explain first-person experience of sensory input?
These are the questions one need to answer before proposing an idea orthogonal to the current paradigms.

Lastly, another example: binocular vision. The first person experience from visual input does not occur until the optic radiation reaches the visual cortex. Only after combining information from the two eyes does the first-person perspective (depth is added) become complete. Hence, the first person experience is computed in the brain. Not given from the source. Was the source of that information different and separated from the known tracts of visual pathway starting from the retina? I doubt. Neither did we have to leave the realm of third-person electrophysiology and anatomy to track down the emergence of first person aspect from information combined across the eyes. There are many questions left unanswered, of course, but we do not need to give up striving for objectivity.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Version 1

Referee Report 29 December 2016

https://doi.org/10.5256/f1000research.7218.r18244

Zoltan Nadasdy

1 Department of Cognitive Psychology, Eötvös Loránd University, Budapest, Hungary
2 St. David's Neurosciences and Spine Institute, St. David's Medical Center, Austin, TX, USA
3 Department of Psychology, The University of Texas at Austin, Austin, TX, USA

Illposed answers to illposed questions

The manuscript raises a seemingly intriguing and provocative question about perspective taking in experimental Neuroscience. It argues that many daunting problems would benefit from a first-person frame of reference, both as a method as well as a subject at the same time. More specifically, the question has two main aspects: (A) One concerns with the method of studying neuronal functions from first-person versus a neutral (third-person) point of view, and (B) the other aspect concerns with the first-person ontology of consciousness. Unfortunately the confusion of these two aspects creates an ill-posed contradiction between third-person methods and first-person subject leading the author to questioning the adequacy of standard scientific method. Since the manuscript fails to disentangle the two aspects above, it necessarily fails to provide a tangible solution.

Main concerns:

A) Starting with the first-person methods:

1. Regarding the adequacy of third-person scientific method (aspect A): The third-person point of view is typically not a matter of choice. (Actually, the term “third-person” is imprecise, as it should be a depersonalized point of view.) The concept of “impartiality” is central in the philosophy of science. It has a huge literature and long history from Plato to Karl Popper. There are a number of
1. Good reasons why scientific investigations consistently attempted to dissolve the role of observer in scientific paradigms until physicists, including Einstein, Heisenberg, Schrödinger, Planck to name a few, showed that observations necessarily interfere with the observed system. Einstein in general relativity, inspired by Ernst Mach's conjecture (Von Baeyer 2001), approaches the limitation of "objectivity" as the dependency of measurements on the position and speed of the observer relative to the speed of light and the time of observation. Acknowledging that there is no observation without interference, objectivity is asymptotic. Nevertheless, the independence of data from the observation should be maximized as a general principle. The "third-person" perspective in science as being the most "impartial" perspective became standard, because it minimizes bias while allowing for replication of results. I don't see any controversy about that. Nonetheless, none of these philosophical historical contexts were mentioned in the manuscript.

2. "In contrast to other systems in the body, nervous system functions are unique in that all the higher brain functions are first-person properties of the mind." Not true. There is a whole group of allocentric systems in the brain, the hippocampus and a number of temporal lobe areas.

3. Extract from Introduction: "First-person reports of these sensations through motor activity such as behaviour and speech provide surrogate markers to the third-person observers. Currently, clinical evaluation of neurological and psychiatric diseases is based on assessing the first-person reporting and third-person observed findings. This severely limits our understanding of a) internal sensations in non-responsive patients, b) defects in the mechanism of formation of the internal sensation of memory, and c) the compelling sense of reality of hallucinations in psychiatric disorders." These are not factors that inherently limit our understanding. We all know what hallucinations mean. Mentally healthy people are able to communicate with a certain degree of clarity their internal states and the listeners are able to relate to them. The locked-in syndrome is a different issue, which requires special methods to establish communication. We are also able to communicate our introspection by descriptions. For example, pain scales, memory tests, and tests of awareness are widely used in clinical practice. In contrast there is a much bigger communication barrier between animal species and humans preventing from obtaining first-person accounts that is an inherent limitation of interpreting data from animal models, such as "fear" and "anxiety" for example. Because the motivation of the whole paper hinges on the quoted arguments and they are weak, they are unable to support the rest of the paper.

4. Notably, first-person reports are not at all alien to science. Sigmund Freud's legacy and specifically the psychoanalytic method are fundamentally based on first-person reporting and reference for interpretation. A method, which is often criticized (see for instance by Karl Popper) as lacking of scientific rigor, and more so because of the psychoanalytic reasoning is theoretically unfalsifiable. Other methods of self reports and introspection were always part of scientific resources, from the ancient Greek thinkers to contemporary psychophysics and still are important components of clinical case studies. Nevertheless, consolidation of first-person ontology with third-person objectivity have been initiated by a number of scholars, for example Francisco Varela (Shear and Jonathan 1999), Josephson (Josephson 1996), and Daniel Dennett in his Heterophenomenology (D. C. Dennett 2001). Dennett noted: "heterophenomenology is nothing new; it is nothing other than the method that has been used by psychophysicists, cognitive psychologists, clinical neuropsychologists, and just about everybody who has ever purported to study human consciousness in a serious, scientific way." (D. C. (. C. Dennett 1991). Moreover, Dennett writes in Consciousness Explained, "I described a method, heterophenomenology, which was explicitly designed to be the neutral path leading from objective physical science and its insistence on the third-person point of view, to a method of phenomenological description that can (in principle) do
justice to the most private and ineffable subjective experiences, while never abandoning the
methodological principles of science.” (CE, p72.)

5. Still in Introduction: “... almost all the current approaches use third-person observed findings at
various levels4 in correlational studies with surrogate makers of biochemical changes, neuronal
activations, oscillating potentials, signal changes in imaging studies, and behavioural responses to
connect with the first-person properties.” Not at all. A number of those changes (biochemical
changes, neuronal activation, oscillating potentials) never reach first-person quality and remain
unconscious to the agent. Nobody feels the activity of a place cell firing in his/her hippocampus.
Nevertheless, we know where we are at in an environment. The electrophysiological and
neurochemical processes underlying the creation of representations and their readouts that may
generate a first-person ontology are different entities, which are confused here.

6. “Emergence can be adopted as a framework to study properties that cannot be explained using the
third-person-observed features of the system.” Again, “emergence”, a subject of a number of
scientific investigations, one for instance in nonlinear dynamics, provided numerous insights and
rigorous formalism, which comply well with third-person (“agent agnostic”) observations.

7. In “Converting first-person sensations to third-person features”. Quoting: “Recent research work is
attempting to overcome this barrier by approaching higher brain functions from a first-person frame
of reference” is a misrepresentation. A number of disciplines with long established history are
devoted to study first-person frame of references. Classical psychophysics, research on episodic
memories, consciousness, neuroeconomics, studies of decision-making and consumer behavior
are all rely on first-person perspectives and first-person reporting.

After I argued that there is nothing new about first-person methods, I turn to the second aspect, the
ontology of first-person reference.

B) First-person ontology

1. The separation and integration of first-person and third-person experience in a single brain derives
from the duality of two systems: an allocentric (hippocampus) and egocentric system
(parietal/occipital lobe/basal ganglia). The integration of information deriving from these two
systems inside the brain is an intriguing question and a subject of active research. Nevertheless,
according to a common working hypothesis, the third-person (allocentric reference) derives from
the first-person (egocentric reference) experience. Hence the challenge is not how to explain the
first-person experience, since sensory input is genuinely addressed in a first-person coordinates,
but rather how does the brain arrive to the third-person (allocentric) representations from the
first-person data. To bring an even more banal example, autonomous cars today use a navigation
system, which converts first-person referenced information through cameras and the car’s radar
system to third-person information (map, distances of objects, movement of other objects on the
map) and then converts it back to first-person instructions to change the speed and direction of the
vehicle. No magic, no emergence, no need to change strategy in science just straightforward yet
brilliant engineering.

2. "Focal points of emergence" this chapter is eluding to the idea that dendritic spikes are utilized to
form sources of first-person ontology. The assumption that subthreshold postsynaptic activity does
not have a contribution to the neuronal signal processing is incorrect. Although these subthreshold
events may fail to elicit action potentials (by definition), their contribution to the membrane potential
oscillation that affects the integration of subsequent EPSPs in the same neuron is undeniable.
Therefore, these subthreshold events are not merely a waste of energy waiting for a function to
support. Even if their role is still elusive, nothing implies that they play a specific role in conveying "first-person" modality of information. Hence the answer to the question "At what focal points in the nervous system do the units of internal sensations emerge?" does not make sense, because "internal sensations" are unlikely to be caused by mechanisms different from external sensations, but instead they are pathway dependent.

3. Moreover, the same question "At what focal points in the nervous system do the units of internal sensations emerge?" implies yet another confusion. "Internal sensations" and first-person ontology are not the same. "Internal sensation" is not a term, introduced by the author's earlier paper ("The nature of “internal sensations” of higher brain functions may be derived from the design rules for artificial machines that can produce them" (Vadakkan 2012)). The closest interpretation of it is "interoception", which are sensations deriving from inside the body. However, based on the context the author uses "internal sensation" as a sensory stimulus with a first-person quality. Most sensory, except interoception, are reporting third-person qualities. A color of an object in my visual field is rarely interpreted as first-person experience, it is a feature attributed to an object, regardless I am looking at the abject or I am not. When the first-person quality of sensory input is concerned, arguably, conscious perception emerges at the level between the primary and secondary sensory cortical areas in the mammalian brain. The exact location and mechanism of the "conscious quality" are still argued (Koch 2004).

4. Even though our consciousness has a first-person ontology, not all higher brain functions are first-person experiences. To give a few examples, declarative memory is lacking first-person ontology. Also, hippocampus-dependent spatial memory transforms egocentric sensory information into allocentric or object-centered coordinate systems. Following up on the dorsal visual stream, we see the sensory information progressively being transformed to an allocentric coordinate system as information become increasingly independent of the sensory data source and also invariant of the position of sensory data acquisition. Hence, higher brain functions do not require first-person perspective.

5. Because first person experiences are phenomenologically inaccessible without making them third-person experiences, they can only be simulated by another person. Simulation, however, does not equal understanding. Conveying first-person experiences is not necessarily the function of science. It is more suitable to Art. The systematic studying of the origin of first-person experience is the subject of consciousness research and it is referred as the "hard-problem" of consciousness (Chalmers 1995) or "Qualia". The history of psychology and neuroscience provides great examples such as the Weber-Fechner's law (and related Stevens' power law) how physical magnitude of the stimulus translates to sensation. The law will never reproduce the sensation but describes the phenomenon. Next is "The first step is the theoretical derivation of the basic functional units of the system at the correct level that is also connected to the motor system, which can explain all the higher brain functions along with behavioral motor activity." This is also called modeling. Indeed, since Turing, our proof of understanding relies on conceptual or quantitative or physical realization of models. Again, nothing new is here. In summary, the description of first-person experience in Neuroscience is only relevant when addressing consciousness and methodology follows the same as any other subject, modeling and reverse engineering (see next).

6. "The Gold Standard": I don't see any innovative approach here. We neuroscientists consciously or by intuition follow Allan Turing's legacy and method of understanding brain functions in terms of modeling them by machines that are able to reproduce those functions and essentially capable of learning from experience. Such an autonomous systems at certain point may generate internal
representations that may have a first-person quality as it achieves the capacity of detaching itself from the observed world (have a concept of 'self') and also able to correctly reference (localize) those representations as its own (the Cartesian criterion of consciousness).

7. "Major Hurdles": The statements "Since the mechanism of the nervous system functions has not discovered yet, it is understandable that a novel approach is required" is overly general and meaningless. It does not imply the next sentence: "Changing the frame of reference from which to examine the higher brain functions suits such an anticipation." Why would changing of the reference suddenly explain the function of the nervous system, if that was not obvious from an objective (third-person) point of reference?

8. The "fear of discovering the operations of the mind" and the "growing concern about 'the Singularity'" are popular concepts that are fun to entertain, but lacking substance. If I can afford a "first-person" comment, in light of recent political events, we seem to way overestimate the collective human intelligence, which is unable to cope with burning issues such as social injustice and terrorism, religious fanaticism, global environmental catastrophe, etc., relative to which the fear of AI turning against humanity is irrelevant. Humanity needs to defend itself from itself.

9. In the "In Conclusions" section the author lists a bunch of disconnected ideas such as "low-level species produce intentionality to carry out survival and reproductive instincts" and "[first-person intelligent systems will] provide methods to prevent climate change" and "first-person properties will have similarities to the development of complex numbers in mathematics". These predictions are overly ambitious and unsubstantiated while also lacking any references.

10. First-person view is also an interpreted view as much as third-person referenced information. Every measurement is affected by the imprecision of the measuring device. Take for an example sensory transmission. The brain has to compensate for the delay of the information transfer, such as conduction delays relative to the onset of events. Libet showed that this indeed the case and introduced the term of "subjective referral" (Libet et al. 1979). Hence, not even the first-person point of view is reliable. We needed a third-person point of view (the observer reading the clock in Libet's experiment) to show its imprecision. The notion raises a question, isn't the first-person point of view just a construct? If it is, then how is it different from a third-person reference?

11. I return to the question again: How would it help to have first-person point of view? What problem would it solve that could not be solved by third-person point of view?

12. Lastly, the author fails to give us an example for what information may first-person reference provide that the third-person reference cannot. I do not see any symmetry breaking between first-person vs. third-person reference frames. Since we are sharing the same universe instead of each of us encompassing his/her own private universe, using an outside reference is more parsimonious than taking only a first-person perspectives.

While the question of how the brain acquires first-person view remains to be a challenging one (not the subject of this manuscript), the author failed to convince the reader that methods of studying the underlying mechanisms need a fundamental revision. If I seriously misunderstood the author's position, I am open to follow up on a discussion and revise my opinion.

In summary, the first-person frame of reference is not novel, and the article fails to provide examples of new insights deriving from this approach. Last remark: If the author claims that both point of views are useful for grasping the complexity and
multifaceted human mind I must agree, however it is not clear whether the author suggests to switch completely to the first-person reference frame.

References
8. Vadakkan K.I.: The nature of “internal sensations” of higher brain functions may be derived from the design rules for artificial machines that can produce them. *Journal of biological engineering*. 2012; 6 (1): 1 Publisher Full Text

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Author Response 11 Jan 2017

Kunjumon Vadakkan, Physiology, University of Toronto, Canada

I thank Dr. Zoltan Nadasdy for his comments.

I understand that I didn't provide the logical arguments well in the initial manuscript. Explaining the need for a frame change made it difficult. I have rewritten the article to explain the necessity for examining the system from a first-person frame of reference. I have provided additional references to the first-person methods of previous investigators.

I find that there was a confusion between a) the work by previous investigators who used first-person reporting of the inner sensations and b) the subject of the present work that explains the need for making a first-person approach to understand the mechanism of generation of first-person inner sensations. The first-person methods used in the past relied on behavioral expression of the contents of the inner sensations in the form of language. The results of those approaches have not helped us to derive a cellular level mechanism that generates the first-person inner sensations for solving the system. I have explained why the observer has to undertake an examination from the first-person frame of reference at the cellular-level to derive the qualia of the sensory content of the internal sensations.

The first-person inner sensations of different higher brain functions such as perception and memory are not accessible by third-person approaches, making it difficult to understand the
operations of the nervous system. The seriousness of this will become very clear when we keep a
gold standard of replication of the mechanism in an engineered system as the criteria for
understanding the system. It can be initiated by asking the question “What properties should be
present in a synaptically-connected nervous system to generate internal sensations when
replicated in an engineered system?” This immediately provokes one to examine the system
operations for the locations, systems conditions and mechanism for the generation of internal
sensations.

It is expected that learning induces signature changes from which internal sensations are
generated. By keeping all the constraints, a search for the locations and the conditions where the
cue stimulus can induce internal sensations can be carried out. Under appropriate conditions, the
mechanism at an optimal location is expected to make an approach “from within” the system to
sense the qualia of the retrieved memories. This is expected to involve a retrograde search from
the optimal locations towards the sensory receptors for sensing the sensory stimuli that can
activate those receptors. In other words, the cue stimulus reaches at the locations where learning
has made changes and reactivates the system to make a first-person approach towards the
sensory receptor level to sense the sensory qualities of the stimuli required to activate those
receptors. The observer who would like to trace the above path has to follow the same path, which
will constitute the examination from a first-person frame of reference. No previous first-person
studies have undertaken this novel approach.

I have kept strict criteria for the verification of the above mechanism by adhering to the acceptable
scientific standards. The derived mechanism should be able to make predictions that can be
verified. Different nervous systems can be examined for comparable circuitries. By keeping the
gold standard of replicating the mechanism in engineered systems, the investigations can focus
directly on the problem.

As the reviewer pointed out, current measurements in physics are being carried out without taking
into account the observing subject. Both Ervin Schrödinger and Niels Bohr knew about it very well
and they have mentioned it in their papers (1, 2). Recent attempts to incorporate the subject in the
measurements (3) is a clear example of the need for understanding perception. In this context,
knowing how the nervous system is making subjective assessment through the formation of
first-person inner sensations is of great importance.

The division of the human brain functions into allocentric and egocentric was made at a time when
only one option of third-person observations was available. The current work introduces the option
to make a first-person examination of the system for its operations. In this context, we need to take
a fresh look at the system. Once the basic principle is discovered, the reasons for differences in the
function at different locations can be determined. For example, the hippocampus has new granule
neuron formation, which will continuously alter the circuitry at the higher neuronal orders above the
level of the granule neurons. The effect of this on the first-person qualia generated at specific
locations in the brain circuitry can be examined for details.

Reviewer has pointed out that my opinion article has concluded that the current methods of
studying the underlying mechanisms need a fundamental revision. Even though, I want to remain
modest, I would like to face the reality. The severe difficulties for discovering how first-person
properties are generated within the system indicates that some major revision will be required at
some level to find the solution. Large amount of data has already been collected by examining
different nervous systems from different levels. This will allow for rigorous testing of any newly
derived operational mechanism.

I have to admit that both the third-person observations and examination from the first-person frame of reference are required for grasping the human mind. For instance, this opinion article has used third-person observations made by investigators from a large number of laboratories to derive a feasible mechanism for the generation of first-person inner sensations. However, examination of the system from a first-person frame of reference will be a necessary step at some point during the investigation.

References

Competing Interests: U.S. patent number 9477924 pertains to an electronic circuit model of the inter-postsynaptic functional LINK.

Referee Report 18 February 2016

https://doi.org/10.5256/f1000research.7218.r12536

Xiao Shifu
Alzheimer’s Diagnosis and Treatment Centre, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China

This article impressed me. I personally respect the thinking of the author on researches. Referring to mathematics, neuroscience, the systems science, biological systems, evolutionary biology, comparative physiology and artificial intelligence, the author has an open mind and provides us a possible direction and approach to study higher brain functions. Meanwhile I have some different ideas, and I hope the author could consider these:

1. In the introduction section, you have introduced a lot for us, but could you tell us more clearly what’s ‘the necessity of studying higher brain functions from a first-person frame of reference’?

2. About the clinical approach we use now, the limitation you described in this article does not only exist in this approach, it exists on every approach because researchers haven’t found out the mechanism of formation of internal sensations.

3. I can’t understand these sentences you said in this article: ‘It is found that a) locations from which memories can be retrieved gradually shift from the hippocampus to the cortices over several years, and b) patients recover completely after suffering from small strokes at certain locations’
of the brain. These suggest that the basic structure-function units are spatially defiable and transferable, and that emergent functions can be integrated from multiple locations’, please tell us how you draw your conclusion from this.

4. Could you tell us further information about the relationship between ‘structure-function units’ and ‘views of emergent properties and reductionism’, so we can get a clearer impression, even it’s just an assumption.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 11 Jan 2017

Kunjumon Vadakkan, Physiology, University of Toronto, Canada

I thank Dr. Xiao Shifu for his comments and helpful suggestions.

I have removed sentences that were causing confusion. I have re-written the article to explain clearly why it is necessary to study the higher brain functions from a first-person frame of reference. I sincerely hope that this revised manuscript provides necessary explanations.

Competing Interests: U.S. patent number 9477924 pertains to an electronic circuit model of the inter-postsynaptic functional LINK.