SHORT RESEARCH ARTICLE

Longhorned beetle (Coleoptera: Cerambycidae) diversity in a fragmented temperate forest landscape [version 1; referees: 1 approved, 1 approved with reservations]

Daniel M Pavuk, Andrea M Wadsworth
Insect Ecology Laboratory, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403-0208, USA

Abstract

Longhorned beetles (Coleoptera: Cerambycidae) are an important component of temperate forest ecosystems. We trapped longhorned beetles in forests in northwest Ohio during 2008 to test the hypothesis that larger forests have greater species diversity than smaller forests. Large forests had a significantly greater cerambycid species richness than small forests ($t = 3.16$, $P = 0.02$), and there was a significant relationship between forest size and cerambycid species richness.

Corresponding author: Daniel M Pavuk (dmpavuk@bgsu.edu)

How to cite this article: Pavuk DM and Wadsworth AM. Longhorned beetle (Coleoptera: Cerambycidae) diversity in a fragmented temperate forest landscape [version 1; referees: 1 approved, 1 approved with reservations] F1000Research 2012, 1:25 (doi: 10.12688/f1000research.1-25.v1)

Copyright: © 2012 Pavuk DM and Wadsworth AM. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: This research was supported by funds provided by The Department of Biological Sciences, Bowling Green State University, Bowling Green Ohio.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: No competing interests were disclosed.

Introduction
Longhorned beetles, or cerambycids, are important species in temperate forest ecosystems, due to their feeding impacts on trees. Many cerambycids feed on dead wood and therefore assist in the decomposition of dead trees in forest ecosystems. Saproxylic cerambycids (dead wood dependent) and other saproxylic beetles are thought to be useful indicators of forest biodiversity. We were interested in testing the hypothesis that larger forests have greater cerambycid species diversity than smaller forests in NW Ohio, a highly fragmented landscape in terms of forest ecosystems.

Methodology
• Three types of traps (Lindgren funnel trap, Intercept Panel trap, and Window trap) were set up in each of 8 forests in northwestern Ohio. 95% ethanol was used to attract beetles (Figure 1–Figure 3).
• We started collecting beetles in early June, and we continued to collect them until early October (Figure 4).
• We put the traps into 8 different forest areas. Four forests were large (>100 hectares) and four forests were classified as small (<20 hectares).

Figure 1. Intercept Panel trap used for capturing Cerambycid beetles.

Figure 2. Lindgren Funnel trap used for capturing Cerambycid beetles.

Figure 3. Window trap used for capturing Cerambycid beetles.

Figure 4. Examples of Cerambycids species that was caught in the 8 forests sampled. Strophiona nitens (top left), Gaurotes cyanipennis (top right) Urographus fasciatus (bottom left) and Microgoes oculatus (bottom right).
Results and discussion

- The number of individual species that were collected at the 8 different forest sites can be viewed in Table 1–Table 8.
- Large forests had greater cerambycid species richness than small forests (Figure 5–Figure 6).

Future research should focus on the landscape matrix and degree of isolation of forests, especially isolation of smaller forests.
- Many other beetle species from other families were also captured (e.g., Elateridae, Curculionidae), so these data should also be examined.

Table 1. Cerambycid (Coleoptera: Cerambycidae) Species Captured in Oak Openings Preserve, 2008 (Western Lucas County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strangalepta abbreviata (Germar)</td>
<td>35</td>
</tr>
<tr>
<td>Cyrtophilus verrucosus (Olivier)</td>
<td>8</td>
</tr>
<tr>
<td>Xylothechus colonus (Fabricius)</td>
<td>8</td>
</tr>
<tr>
<td>Clytus ruricolis (Olivier)</td>
<td>5</td>
</tr>
<tr>
<td>Gaurotes cyanipennis (Fabricius)</td>
<td>3</td>
</tr>
<tr>
<td>Neoclytus acuminatus (Fabricius)</td>
<td>2</td>
</tr>
<tr>
<td>Microgoes oculatus (LeConte)</td>
<td>2</td>
</tr>
<tr>
<td>Urographis fasciatus (DeGeer)</td>
<td>2</td>
</tr>
<tr>
<td>Pidonia ruficollis (Say)</td>
<td>1</td>
</tr>
<tr>
<td>Phymatodes testaceus (Linnaeus)</td>
<td>1</td>
</tr>
<tr>
<td>Sarosethus fulminatus (Fabricius)</td>
<td>1</td>
</tr>
<tr>
<td>Strophiona nitens (Forster)</td>
<td>1</td>
</tr>
<tr>
<td>Urgleptes querci (Fitch)</td>
<td>1</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>70</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2. Cerambycid (Coleoptera: Cerambycidae) Species Captured in Secor Woods, 2008 (Northern Lucas County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clytus ruricola (Olivier)</td>
<td>7</td>
</tr>
<tr>
<td>Cyrtophilus verrucosus (Olivier)</td>
<td>3</td>
</tr>
<tr>
<td>Pidonia ruficollis (Say)</td>
<td>3</td>
</tr>
<tr>
<td>Gaurotes cyanipennis (Fabricius)</td>
<td>2</td>
</tr>
<tr>
<td>Microgoes oculatus (LeConte)</td>
<td>1</td>
</tr>
<tr>
<td>Psenocerus supernotatus (Say)</td>
<td>1</td>
</tr>
<tr>
<td>Trachysida mutabilis</td>
<td>1</td>
</tr>
<tr>
<td>Astylopsis collaris (Haldeman)</td>
<td>1</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>19</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 3. Cerambycid (Coleoptera: Cerambycidae) Species Captured in Wildwood Preserve, 2008 (Northern Lucas County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strangalepta abbreviata (Germar)</td>
<td>3</td>
</tr>
<tr>
<td>Clytus ruricola (Olivier)</td>
<td>2</td>
</tr>
<tr>
<td>Gaurotes cyanipennis (Fabricius)</td>
<td>2</td>
</tr>
<tr>
<td>Microgoes oculatus (LeConte)</td>
<td>2</td>
</tr>
<tr>
<td>Cyrtophilus verrucosus (Olivier)</td>
<td>1</td>
</tr>
<tr>
<td>Analeptura lineola (Say)</td>
<td>1</td>
</tr>
<tr>
<td>Pidonia ruficollis (Say)</td>
<td>1</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>12</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4. Cerambycid (Coleoptera: Cerambycidae) Species Captured in Pearson Park, 2008 (Eastern Lucas County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clytus ruricola (Olivier)</td>
<td>3</td>
</tr>
<tr>
<td>Astylopsis macula (Say)</td>
<td>2</td>
</tr>
<tr>
<td>Urographis despectus (LeConte)</td>
<td>1</td>
</tr>
<tr>
<td>Cyrtophilus verrucosus (Olivier)</td>
<td>1</td>
</tr>
<tr>
<td>Psenocerus supernotatus (Say)</td>
<td>1</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>8</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 5. Cerambycid (Coleoptera: Cerambycidae) Species Captured in Bradner Preserve, 2008 (Western Wood County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylothechus colonus (Fabricius)</td>
<td>2</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>2</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 6. Cerambycid (Coleoptera: Cerambycidae) Species Captured in Carter Woods, 2008 (Central Wood County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterachthes quadrimaculatus</td>
<td>4</td>
</tr>
<tr>
<td>LeConte</td>
<td>1</td>
</tr>
<tr>
<td>Xylotrechus convergens</td>
<td>1</td>
</tr>
<tr>
<td>Olivier</td>
<td>1</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>6</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 7. Cerambycid (Coleoptera: Cerambycidae) Species Captured in Fuller Preserve, 2008 (Central Wood County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterachthes quadrimaculatus</td>
<td>4</td>
</tr>
<tr>
<td>Neoclytus acuminatus (Fabricius)</td>
<td>3</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>7</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 8. Cerambycid (Coleoptera: Cerambycidae) Species Captured in BGSU-ENVS Woods, 2008 (Central Wood County, OH). Total Number of individuals of each species caught during the entire trapping period (early June to early October). Traps were positioned in the approximate center of each forest and all checked each week.

<table>
<thead>
<tr>
<th>Cerambycid species</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoclytus acuminatus (Fabricius)</td>
<td>2</td>
</tr>
<tr>
<td>Sternidius variegatus (Haldeman)</td>
<td>1</td>
</tr>
<tr>
<td>Urgleptes signatus (Fabricius)</td>
<td>1</td>
</tr>
<tr>
<td>Anelaphus villosus (Fabricius)</td>
<td>1</td>
</tr>
<tr>
<td>Total number of individuals (N)</td>
<td>5</td>
</tr>
<tr>
<td>Species richness (s)</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 5. Comparison of Cerambycid species richness between large forests and small forests. The four large forests were Oak Opening, Secor, Pearson, and Wildwood, and the four small forests were Bradner Preserve, Fuller Preserve, Carter Woods, and Environmental Studies Woods. The t-test was significant \(t = 3.16, \text{df} = 6, \text{P} = 0.02 \).

Figure 6. Total number of Cerambycid species caught in each forest during 2008. Oak Openings, Secor, Wildwood, and Pearson were the Large Forests, and Bradner Preserve, Carter Woods, Fuller Preserve, and ENVS Woods were the small forests.
Author contributions
Daniel M. Pavuk set the traps, collected the beetles, identified the beetles to species, and performed the statistical analysis. Andrea M. Wadsworth assisted with the collection of the beetles and sorting the beetles.

Competing interests
No competing interests were disclosed.

Grant information
This research was supported by funds provided by The Department of Biological Sciences, Bowling Green State University, Bowling Green Ohio.

Acknowledgements
We thank Mr. John Jaeger, Director of Natural Resources, Toledo, Metroparks, and Mr. Chris Smalley, Stewardship Director, Wood County, OH, Parks, for permission to do research in their parks and preserves. Thanks also to Dr. Jeff Holland, Purdue Univ., for his advice and suggestions on this research project.

This work was previously presented as a poster (PS 90-42) at the Ecological Society of America Annual meeting 2012.

References

Open Peer Review

Current Referee Status: ✔ ❓

Version 1

Referee Report 17 October 2012
doi:10.5256/f1000research.123.r330

Peter Silk
Insect Chemical Ecology, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Referee Report 15 October 2012
doi:10.5256/f1000research.123.r329

Patrick Tobin
Ecology and Management of Invasive Species and Forest Ecosystems Unit,, USDA Forest Service, Morgantown, WV, USA

The overall merits of the study, general aspects of the experimental design, and hypothesis tested are interesting and conceptually sound.

The incredible amount of work involved in such a study is also recognized. A primary concern is that only one year of data was collected, which limits the interpretation of the findings. Measuring populations in the field over only one year, from which species richness was estimated, can be subject to annual variation that may lead to over- or underestimates of individuals in any given year. Moreover, some species of Cerambycidae may take more than one year to undergo a generation and thus these species could be undercounted. Regardless, the finding of increased richness with increased forest size confirms prior observations in related diversity studies. Also, the methods applied in this study are sound and thus provide a protocol in future endeavors.

One modification I would like to see in a revised manuscript is that instead of examining differences in richness between two categories (large versus small forests), I would prefer to see richness examined along a continuous measurement (i.e., the size of each forest), assuming that there is variation in sizes among the forests. In looking at Figure 6, I wonder if the respective area of each forest could explain the difference in species number. It also could be insightful to consider estimating diversity using established indices (e.g., Shannon, Simpson), which could help relate your work to other similar studies.
I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.