RESEARCH ARTICLE

Electrophysiological properties of mouse and epitope-tagged human cardiac sodium channel Na\textsubscript{v}1.5 expressed in HEK293 cells [version 2; referees: 2 approved]

Katja Reinhard1,2, Jean-Sébastien Rougier1, Jakob Ogrodnik1, Hugues Abriel1

1Department of Clinical Research, University of Bern, Bern, 3010, Switzerland
2Current address: Centre for Integrative Neuroscience, University of Tübingen, Tübingen, 72076, Germany

Abstract

Background: The pore-forming subunit of the cardiac sodium channel, Na\textsubscript{v}1.5, has been previously found to be mutated in genetically determined arrhythmias. Na\textsubscript{v}1.5 associates with many proteins that regulate its function and cellular localisation. In order to identify more in situ Na\textsubscript{v}1.5 interacting proteins, genetically-modified mice with a high-affinity epitope in the sequence of Na\textsubscript{v}1.5 can be generated.

Methods: In this short study, we (1) compared the biophysical properties of the sodium current (I\textsubscript{Na}) generated by the mouse Na\textsubscript{v}1.5 (mNa\textsubscript{v}1.5) and human Na\textsubscript{v}1.5 (hNa\textsubscript{v}1.5) constructs that were expressed in HEK293 cells, and (2) investigated the possible alterations of the biophysical properties of the human Na\textsubscript{v}1.5 construct that was modified with specific epitopes.

Results: The biophysical properties of mNa\textsubscript{v}1.5 were similar to the human homolog. Addition of epitopes either up-stream of the N-terminus of hNa\textsubscript{v}1.5 or in the extracellular loop between the S5 and S6 transmembrane segments of domain 1, significantly decreased the amount of I\textsubscript{Na} and slightly altered its biophysical properties. Adding green fluorescent protein (GFP) to the N-terminus did not modify any of the measured biophysical properties of hNa\textsubscript{v}1.5.

Conclusions: These findings have to be taken into account when planning to generate genetically-modified mouse models that harbour specific epitopes in the gene encoding mNa\textsubscript{v}1.5.
Introduction
The voltage-gated cardiac sodium channel Na\textsubscript{v}1.5 is responsible for the initial phase of the cardiac action potential and plays a central role in cardiac impulse propagation1. Its role in human disorders has been underlined by the findings of several hundred mutations in its gene, SCN5A, that are linked to inherited cardiac electrical disorders such as congenital long QT syndrome and Brugada syndrome2. In recent years, it has been demonstrated that Na\textsubscript{v}1.5 interacts with and is regulated by different proteins (recently reviewed by Shy et al\textsuperscript{7}). Many of these interacting proteins were also found to be mutated in patients with genetically-determined cardiac arrhythmias3. The generation of genetically-modified mouse models, harbouring mutations in the Scn5a gene, has proven to be a very informative approach to investigate the various human phenotypes that are linked to the genetic variants of this gene4. Since Na\textsubscript{v}1.5 interacts with many proteins during its life cycle in cardiac cells, it would be of great interest to generate a mouse model that permits the biochemical purification of Na\textsubscript{v}1.5 with high efficiency, hence allowing the co-purification of interacting proteins. The identity of these co-purified proteins may then be determined by using mass spectrometry-based technologies. In order to do this, one needs to first generate a knock-in mouse model, where a high-affinity epitope would be added to the mouse Scn5a gene that codes for Na\textsubscript{v}1.5.

The goals of this short study were (1) to compare the biophysical properties of the sodium current (I\textsubscript{Na}) generated by mouse Na\textsubscript{v}1.5 and human Na\textsubscript{v}1.5 constructs expressed in HEK293 cells, and (2) to investigate the possible alterations of the biophysical properties of human Na\textsubscript{v}1.5 constructs that were modified with specific epitopes. We used the common fluorescent GFP and YFP proteins as epitopes, which provide the advantage of being detectable without the use of antibodies. However, these tags can only be added to the N- and C-termini, which are both intracellular in Na\textsubscript{v}1.5, and which are thus, not easily accessible. Therefore, we additionally chose the FLAG-epitope (Sigma-Aldrich), which consists of a short sequence that can be inserted into the extracellular loops of Na\textsubscript{v}1.5. The results of these studies will have to be taken into account when planning the generation of a mouse line bearing an epitope-tagged Na\textsubscript{v}1.5 channel.

Methods
Transfection and culture of HEK293 cells
HEK293 cells (Robert S Kass laboratory, Columbia University, New York) were transfected by Lipofectamine LTX (Invitrogen) according to the manufacturer’s instructions. The plasmids used were the 2019 amino acid isoform of the mouse voltage-gated sodium channel (pcDNA3-nNa\textsubscript{v}1.5; a gift from Thomas Zimmer, University of Jena, Germany5), human Na\textsubscript{v}1.5 (pcDNA3.1-hNa\textsubscript{v}1.56), and three differently tagged hNa\textsubscript{v}1.5 (pcDNA3.1-hNa\textsubscript{v}1.5-GFP-N-terminal, pEYFP-hNa\textsubscript{v}1.5, and pcDNA3.1-FLAG(299/300)-hNa\textsubscript{v}1.5). The FLAG-tag is an eight amino acid-long epitope (DYKDDDDK) that was inserted previously (by Robert S Kass laboratory) into the extracellular loop linking the transmembrane segments S5 to S6 of domain I, between the residues Leu-299 and Val-300; GFP and YFP were previously added by T. Zimmer to the N-terminal7. For wild-type and tagged hNa\textsubscript{v}1.5, 1 µg of one of the listed plasmids, 1 µg of empty pcDNA3.1 (Invitrogen), and 0.4 µg of DNA coding for CD8 (Robert S Kass laboratory) were used for transfection. In order to measure currents of comparable size, 0.01–1 µg of mNa\textsubscript{v}1.5 was co-transfected with 1 µg of empty pcDNA3.1, and 0.4 µg of DNA coding for CD8. Transfected HEK293 cells were then grown in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) with 10% calf serum (Gibco), 0.2% glutamine (Sigma), and 20 mg/ml gentamycin (Gibco), and incubated at 37°C with 95%O\textsubscript{2}/5%CO\textsubscript{2}.

Cellular electrophysiology
All experiments were performed in the whole-cell voltage-clamp mode. The extracellular solution contained (in mM): 50 NaCl, 80 NMDG-Cl, 5 CsCl, 2 CaCl\textsubscript{2}, 1.2 MgCl\textsubscript{2}, 10 HEPES, 5 Glucose, adjusted to pH 7.4 with CsOH, and with an osmolality of 280–290 mOsm. The internal solution consisted of (in mM): 70 CsAsp, 60 CsCl, 1 CaCl\textsubscript{2}, 1 MgCl\textsubscript{2}, 10 HEPES; 11 CsEGTA, 5 NaATP, adjusted to pH 7.2 with CsOH, and with an osmolality of 297 mOsm. Recordings were performed at room temperature (20–22°C) using a VE-2 amplifier (Alemic Instruments, Montreal, Canada). Data was acquired by Clampex 10.2 (Axon Instruments, Union City, Canada). Membrane resistance was ≥ 1 Ω and access resistance ≤ 6.1 MΩ. Transfected cells were recognized by the addition of 1 µl/ml Dynabeads CD8 (Invitrogen) into the extracellular solution. Current-voltage (I/V) curves were assessed by depolarising cells from a holding potential of -100 mV to voltages of between -80 and 40 mV during 20 ms. Steady-state inactivation properties were measured by the following protocol: the cells were kept at a holding potential of -100 mV and then hyper- and depolarised during 500 ms to voltages of between -120 and 0 mV in steps of 5 mV, followed by 20 ms at the voltage that elicited the maximal response during the I/V-protocol. Voltage-dependent activation was read either from the I/V- or the steady-state inactivation-protocol. To characterise the recovery from inactivation, the cells were depolarised from a holding potential of -100 mV for 100 ms, repolarised to -100 mV at a recovery time of 0.25–3000 ms, and depolarised again for 25 ms. By varying the time of the first depolarisation step from 3 to 3000 ms followed by 25 ms of repolarisation, the onset of slow inactivation was determined (see insets of Figure 2 and Figure 4).

Data analyses and statistics
Peak values for all protocols were detected and measured by Clampfit 10.2 and I/V-relationships were fitted using KaleidaGraph 3.5 (Synergy Software, Reading, USA). Values were normalised to membrane capacitance. The following formula was used to fit I/V-curves and to calculate reversal potentials: \(I_{rev,Na} = (G_{max}(V-V_{rev,Na}))/(1+e^{V-V_{rev,Na}}) \) with \(I_{rev,Na} \) = sodium current in pA, \(G_{max} \) = max. conductance = 60 Ω-1, \(V_{rev,Na} \) = reversal potential = 40 mV, K = (-280) / FR = equilibrium constant = -5, \(V_{0.5} \) = voltage for 50% of maximum current = -20 mV. Activation and inactivation curves were fitted with the Boltzmann equation \(I_i = I_i(1)/(1+e^{V-V_{0.5}}) \) with \(I_i \) = fraction of open...
channels/total available channels. Statistical analyses were performed using two-tailed Student’s t-tests. A p value <0.05 was considered statistically significant.

Results
Electrophysiological properties of human and mouse Na⁺,1.5 are comparable
To compare the biophysical properties of the cardiac sodium channel Na⁺,1.5 from the human (hNa⁺,1.5) or the mouse sequence (mNa⁺,1.5), we measured the electrophysiological properties of hNa⁺,1.5 and mNa⁺,1.5, transiently expressed in HEK293 cells. Representative Iₙₒ recordings are shown in Figure 1. The responses to all applied protocols revealed similar characteristics for both channels, except for the reversal potential and the slope of steady-state inactivation (Figure 2 and Table 1). The peak currents from the I/V-protocol were at -15 mV for both channels (Figure 2A). Furthermore, activation and inactivation of 50% of the channels occurred for both channels at ~-28 mV and ~-71 mV, respectively. In addition, the slopes of the activation curve were comparable for both channels (6.00 mV/e-fold in human and 6.24 mV/e-fold

![Figure 1](image-url). Representative Iₙₒ recordings following the current voltage (I/V)-protocol described in the Methods. (A) Voltage-dependent currents measured for hNa⁺,1.5 expressed in a HEK293 cell. (B) Data from the same protocol for mNa⁺,1.5.
in mouse). Significant differences could be detected in the reversal potential V_{rev} (51.0 mV and 56.6 mV, P<0.01) and in the slope of the inactivation curve (5.95 mV/e-fold and 6.67 mV/e-fold, P<0.01) (Figure 2B). In addition, mNa$_{v1.5}$ had a tendency to recover faster from inactivation (Figure 2C). The fraction of channels entering into a slow inactivation state was similar for both channel types (Figure 2D).

The second set of experiments addressed the effects of adding epitopes to Na$_{v1.5}$ on its biophysical properties. To do this, we assessed the influence of these epitopes on I_{Na} by expressing differently tagged hNa$_{v1.5}$ in HEK293 cells and performing whole-cell voltage-clamp experiments similar to those described above. YFP- and GFP-tags were added to the N-terminus; the FLAG-tag was inserted into the extracellular loop linking S5 to S6 of domain I, between residues Leu-299 and Val-300. Representative I_{Na} recordings for all transfected constructs are shown in Figure 3 and the data is summarised in Table 2. With the exception of the GFP-tagged construct, tagging of hNa$_{v1.5}$ led to a significant decrease in peak current I_{max} (Figure 4A) compared to the control WT hNa$_{v1.5}$ (FLAG: 57 pA/pF with

Figure 2. Electrophysiological properties of human and mouse Na$_{v1.5}$. The voltage-clamp protocols used are shown in the corresponding insets. For B–D, the voltage x was adjusted to the voltage that elicited maximum current during the current voltage (I/V)-protocol (-10 to -30 mV). (A) I/V-protocol for assessment of reversal potentials. Peak currents were measured for both channels at -15 mV. Calculated reversal potentials are marked with square data points. (B) Voltage-dependence of activation and steady-state inactivation (SSI). The data was fitted with the Boltzmann formula. Only the slope of the inactivation curve differs between mouse and human sodium channels (shallower in mNa$_{v1.5}$). (C) Recovery from inactivation. The duration between the depolarising steps was varied from 0.25 to 3000 ms. mNa$_{v1.5}$ had a slight tendency to recover faster than hNa$_{v1.5}$. (D) Onset of slow inactivation. The duration of the first step was varied from 0.25 to 3000 ms. The relative number of channels entering slow inactivation is similar for both types. (A–B) n(hNa$_{v1.5}$) = 22, n(mNa$_{v1.5}$) = 17. (C–D) n(hNa$_{v1.5}$) = 9, n(mNa$_{v1.5}$) = 7. **P<0.01 obtained by two-tailed Student’s t-tests; error bars indicate standard errors.

Raw data from sodium current recordings obtained from untagged human and mouse sodium channels (Na$_{v1.5}$) expressed in HEK293 cells

1 Data File

http://dx.doi.org/10.6084/m9.figshare.155795
Table 1. Summarized properties of human and mouse Na\textsubscript{v}1.5. Data was obtained with current voltage (I/V)- and steady-state inactivation protocols. Mean values and standard errors are shown. **P<0.01 obtained by two-tailed Student’s t-tests.

<table>
<thead>
<tr>
<th></th>
<th>hNa\textsubscript{1.5}</th>
<th>mNa\textsubscript{1.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/V V\textsubscript{rev} (mV)</td>
<td>51.0 ± 0.9</td>
<td>**56.6 ± 0.8</td>
</tr>
<tr>
<td>Activation V\textsubscript{1/2} (mV)</td>
<td>-27.8 ± 0.5</td>
<td>-28.2 ± 0.7</td>
</tr>
<tr>
<td>Slope (mV/e-fold)</td>
<td>6.00 ± 0.17</td>
<td>6.24 ± 0.16</td>
</tr>
<tr>
<td>Inactivation V\textsubscript{1/2} (mV)</td>
<td>-70.0 ± 1.0</td>
<td>-71.7 ± 1.1</td>
</tr>
<tr>
<td>Slope (mV/e-fold)</td>
<td>5.95 ± 0.12</td>
<td>**6.67 ± 0.19</td>
</tr>
<tr>
<td>Cell capacitance pF</td>
<td>16.0 ± 1.2</td>
<td>14.2 ± 0.7</td>
</tr>
<tr>
<td>I\textsubscript{max} pA/pF</td>
<td>-185 ± 21</td>
<td>-249 ± 22</td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>17</td>
</tr>
</tbody>
</table>

Adding GFP did not affect any of the biophysical properties of the human sodium channel, while a shallower activation slope (6.87 vs. 5.91 mV/e-fold, P<0.05, Figure 4B and Table 2) was observed for the YFP-tagged channel. The most pronounced effects were observed for the FLAG-tagged hNa\textsubscript{1.5}. The activation slope was significantly shallower (6.96 vs. 5.91 mV/e-fold, Figure 4B and Table 2), indicating that the activation of this channel is less sensitive to voltage changes. In addition, the V\textsubscript{1/2} of activation was shifted towards more positive voltages by about 5 mV, compared to -28.9 mV in untagged hNa\textsubscript{1.5}. Finally, the reversal potential was decreased in the FLAG-hNa\textsubscript{1.5} (FLAG 39.3 mV and untagged 51.8 mV, Figure 4B).

Recovery from inactivation (Figure 4C) and onset of slow inactivation (Figure 4D) were comparable for all channels.

Raw data from sodium current recordings obtained from tagged human sodium channels (Na\textsubscript{v}1.5) expressed in HEK293 cells

1 Data File
http://dx.doi.org/10.6084/m9.figshare.155796

Table 2. Summarized properties of wild-type and tagged hNa\textsubscript{1.5}. Data was obtained with current-voltage (I/V)-, and steady-state inactivation protocols. Mean values and standard errors are shown. *P<0.05, **P<0.01 obtained by two-tailed Student’s t-tests (all statistics were calculated with untagged hNa\textsubscript{1.5} channel as a reference).

<table>
<thead>
<tr>
<th></th>
<th>hNa\textsubscript{1.5}</th>
<th>FLAG-hNa\textsubscript{1.5}</th>
<th>YFP-hNa\textsubscript{1.5}</th>
<th>GFP-hNa\textsubscript{1.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/V V\textsubscript{rev} (mV)</td>
<td>51.8 ± 0.9</td>
<td>**39.3 ± 2.2</td>
<td>49.1 ± 1.5</td>
<td>53.8 ± 1.9</td>
</tr>
<tr>
<td>Activation V\textsubscript{1/2} (mV)</td>
<td>-28.9 ± 0.6</td>
<td>**-23.9 ± 0.5</td>
<td>-27.5 ± 1.1</td>
<td>-29.8 ± 1.1</td>
</tr>
<tr>
<td>Slope (mV/e-fold)</td>
<td>5.91 ± 0.17</td>
<td>**6.96 ± 0.14</td>
<td>6.87 ± 0.27</td>
<td>5.40 ± 0.36</td>
</tr>
<tr>
<td>Inactivation V\textsubscript{1/2} (mV)</td>
<td>-70.6 ± 1.2</td>
<td>-70.0 ± 1.1</td>
<td>-71.2 ± 1.4</td>
<td>-68.9 ± 1.2</td>
</tr>
<tr>
<td>Slope (mV/e-fold)</td>
<td>5.95 ± 0.24</td>
<td>5.33 ± 0.15</td>
<td>5.69 ± 0.19</td>
<td>6.37 ± 0.19</td>
</tr>
<tr>
<td>Cell capacitance pF</td>
<td>14.4 ± 1.6</td>
<td>16.3 ± 1.1</td>
<td>14.5 ± 0.9</td>
<td>14.0 ± 0.8</td>
</tr>
<tr>
<td>I\textsubscript{max} pA/pF</td>
<td>240 ± 36</td>
<td>**57 ± 11</td>
<td>*120 ± 17</td>
<td>214 ± 33</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

Discussion

The present study demonstrates (1) that the biophysical properties of mouse Na\textsubscript{v}1.5 are essentially similar to the human homolog when expressed in HEK293 cells, and (2) that adding epitopes either upstream of the N-terminus of human Na\textsubscript{v}1.5 or in one of the extracellular loops reduces the amount of I\textsubscript{Na} and alters some of its biophysical properties. Interestingly, GFP in the N-terminus was the only epitope that did not modify any of the measured biophysical properties of hNa\textsubscript{1.5}. The most pronounced effects could be observed by the insertion of the FLAG-tag in an extracellular loop. In this construct, not only was the amount of I\textsubscript{Na} drastically decreased, but also the activation properties of the sodium channel were altered. The smaller changes found in the properties of YFP-hNa\textsubscript{1.5} might be partially linked to the different vector used for this epitope, especially since no alterations could be observed for GFP-hNa\textsubscript{1.5}.

The limitations of studying mutant Na\textsubscript{v}1.5 channels in mammalian cells have been demonstrated in two recent studies. First, Mohler and colleagues observed that the Brugada syndrome causing mutant p.E1053K Na\textsubscript{v}1.5 channel did not display any trafficking...
Figure 3. Representative sodium current (I\text{\text{Na}}) recordings. (A) Voltage-dependent currents measured for hNa\textsubscript{1.5} expressed in a HEK293 cell. The same data for (B) FLAG-hNa\textsubscript{1.5} (C) YFP-hNa\textsubscript{1.5}, and (D) GFP-hNa\textsubscript{1.5}.
defect in HEK293 cells, while it failed to traffic to the intercalated
discs when expressed in rat ventricular cells. Second, the Na
$\text{v}_{1.5}$ p.D1275N variant, found in patients with dilated cardiomyopathy
and various arrhythmias and conduction disease, was also found
to display reduced expression in knocked-in mouse cardiac tissue
and defective expression at the lateral membrane of ventricular
myocytes9. However, when expressed in chinese ovary cells, the
p.D1275N variant had properties that were undistinguishable from
wt channels. These observations demonstrate that, while useful to
study their intrinsic biophysical properties, the mammalian cells
that are used as expression systems have clear limitations when
studying the trafficking properties of ion channels. Generation of
genetically-modified animal models is one of the most powerful,
albeit time-consuming, approaches.

However the findings of the present study have to be taken into ac-
count when planning to generate such mouse models that harbour
specific epitopes in the mouse Na$_{1.5}$ gene. Different combina-
tions of epitopes and insertion sites might reveal better candidates
for in-vivo approaches. Furthermore, additional studies should
be performed in HEK293 cells co-expressing other subunits and
regulating proteins, and in native cardiomyocytes in order to as-
sess the effects of added epitopes on the interactions with these
proteins.

Figure 4. Electrophysiological properties of untagged and tagged hNa$_{1.5}$. The voltage-clamp protocols used are shown in the
corresponding insets. For B–D, the voltage x was adjusted to the voltage that elicited maximum current during the current voltage (I/V)-
protocol. (A) I/V-protocol for assessment of reversal potentials. Tagging with N-terminal YFP and FLAG (L299/V300) significantly decreases
peak currents. Calculated reversal potentials are marked with square data points. (B) Voltage-dependence of activation and steady-state
inactivation. The data was fitted with the Boltzmann formula. The activation slope of FLAG- and YFP-tagged channels is shallower compared
to the untagged hNa$_{1.5}$. $V_{1/2}$ is shifted by 5 mV for FLAG-hNa$_{1.5}$. (C) Recovery from inactivation. The duration between the depolarising
steps was varied from 0.25 to 3000 ms. No differences between the different channels could be detected. (D) Onset of slow inactivation.
The duration of the first step was varied from 0.25 to 3000 ms. The relative number of channels entering slow inactivation is similar for all four
channel types. (A–B): n(untagged) = 7, n(FLAG) = 11, n(YFP) = 11, n(GFP) = 8. (C): n(untagged) = 12, n(FLAG) = 5, n(YFP) = 11, n(GFP) = 8.
(D): n(untagged) = 10, n(FLAG) = 8, n(YFP) = 10, n(GFP) = 8. **P<0.01 obtained by two-tailed Student’s t-tests; error bars indicate standard errors.
Author contributions
KR, JSR, JO, and HA designed the experiments. KR performed the experiments and analysed the data. KR and HA wrote the manuscript. JSR, JO, and HA supervised the project. All authors commented on the manuscript and approved the final manuscript for publication.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by a grant from the Swiss National Science Foundation to HA (310030B_135693).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
We would like to thank D. Shy for her helpful comments on this manuscript.

References

Open Peer Review

Current Referee Status: ✔ ✔

Version 2

Referee Report 20 January 2014
doi:10.5256/f1000research.1309.r3189

Céline Fiset
Faculty of Pharmacy, Centre de Recherche de l’Institut de Cardiologie de Montréal, Université de Montréal, Montréal, QC, Canada

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Version 1

Referee Report 25 February 2013
doi:10.5256/f1000research.1119.r798

Jamie Vandenberg
Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia

The discussion has been appropriately modified to take into account the suggestions I made after reviewing the first version of the manuscript. The authors have not however added in any more data or analysis of the trafficking phenotypes of the tagged proteins. I still believe that data comparing the forward trafficking and stability of the different epitope tagged constructs would be worth having. This could be achieved using Western blot / immunohistochemistry and/or live cell imaging.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.
This manuscript from Reinhard and colleagues describes the electrophysiology of epitope tagged sodium channels expressed in mammalian cell lines. This system is commonly used for the characterizing the electrophysiological and/or trafficking phenotypes of clinically occurring mutants. Some of the constructs described in this study have been reported before (see e.g. reference 7 in the manuscript: Zimmer T, Biskup C, Dugarmaa S, et al.: Functional expression of GFP-linked human heart sodium channel (hH1) and subcellular localization of the a subunit in HEK293 cells and dog cardiac myocytes. J Membr Biol. 2002; 186 (1): 1–12) but to my knowledge the construct with the insertion of a FLAG-tag into the extracellular loop linking S5 to S6 of domain I, between residues Leu-299 and Val-300, is novel. Whilst it is unfortunate that this construct has altered electrophysiological properties, it should be useful for live cell trafficking assays as the extracellular epitope can be recognized without having to lyse the cells. Reagents such as those described in this study have been extremely useful and will continue to be so. In this context it is useful to have proper baseline characterization of their properties, which can be used as a reference point for other users.

The manuscript however could have benefited from a more thorough analysis of the trafficking properties of the tagged channels and a broader discussion of the advantages and limitations of the use of the mammalian expression system for characterizing mutant sodium channels. One particularly pertinent recent example of the limitations of the heterologous expression system is that of the D1275N cardiac sodium channel which causes minimal perturbation to gating when expressed in vitro but has a marked loss of function when expressed in vivo in gene-targeted mice (see Watanabe H et al., Striking In Vivo Phenotype of a Disease-Associated Human SCN5A Mutation Producing Minimal Changes in Vitro, Circulation. 2011; 124:1001-1011.)

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.