Dopamine synergizes with caffeine to increase the heart rate of Daphnia

Abstract
Dopamine is a key neurotransmitter, and is widely used as a central nervous system (CNS) agent. Dopamine plays an important role in humans, including a major role in reward and motivation behavior. Several addictive drugs are well known to increase neuronal dopamine activity. We selected Daphnia, an important model organism, to investigate the effect(s) of selected CNS agents on heart rate. Dopamine's effects on Daphnia's heart has not been previously reported. Caffeine is a well-known and widely consumed stimulant. Ethanol is well known for its effects on both neurological and physiological processes in mammals. We tested the effect of dopamine on the heart rate of Daphnia, and compared its effect with caffeine and ethanol alone and in combination. Both caffeine and dopamine were found to instantly increase the heart rate of Daphnia in a dose-dependent manner. Interestingly, caffeine synergized with dopamine to increase Daphnia's heart rate. As ethanol decreased the heart rate of Daphnia and dopamine increased the heart rate of Daphnia, we wanted to test the effect of these molecules in combination. Indeed, Dopamine was able to restore the ethanol-induced decrease in the heart rate of Daphnia. Effects of these CNS agents on Daphnia can possibly be correlated with similar effects in the case of mammals.

Keywords
Dopamine, heart, neurotransmitter, cardiac, central nervous system
Corresponding author: Gyanesh Singh (appliedbiotechnologist@gmail.com)

Author roles: Kundu A: Methodology, Validation, Writing – Original Draft Preparation; Singh G: Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2018 Kundu A and Singh G. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Kundu A and Singh G. Dopamine synergizes with caffeine to increase the heart rate of Daphnia [version 1; peer review: 1 approved, 2 approved with reservations] F1000Research 2018, 7:254 (https://doi.org/10.12688/f1000research.12180.1)

First published: 01 Mar 2018, 7:254 (https://doi.org/10.12688/f1000research.12180.1)
Introduction

Neurotransmitters are the key mediators of communication between nerve cells. Because of their effect on brain and spinal cord, central nervous system (CNS) agents can be used to control or treat variety of medical conditions. Stimulation of the hypothalamus can lead to cardiovascular disturbances, indicating a direct connection between the heart and the CNS. Different types of rewards are known to increase the level of dopamine in the brain. Daphnia are small crustaceans commonly known as “water fleas”, and are found in water bodies. Daphnia is an ideal organism for research, as it has short life span, and can easily be cultured. These organisms can feed on algae, yeast and bacteria. More importantly, Daphnia are transparent, thus allowing clear visualization of different organs, including the heart. The organs are protected by a thin membrane that allows the penetration of different compounds; therefore assisting with heart rate monitoring in real time. Using a microscope that has computer-aided real-time imaging capabilities, the effect of various compounds can be observed on Daphnia’s heart in real time. Daphnia’s life span is 40–50 days, which varies in different species and also changed with environmental conditions, especially temperature. Male and female Daphnia can easily be differentiated, as female Daphnia have brood pouch that holds eggs. These eggs develop into embryos, leading to the production of juveniles that attain sexual maturity within ten days.

Dopamine is important for normal cardiopulmonary response to exercise and is necessary for optimal high-intensity exercise performance. Blocking dopamine receptors appears to be detrimental to exercise performance. Caffeine, by antagonizing adenosine A2A receptors, is known to augment dopamine signalling in the brain. Even at routine doses, caffeine can enhance dopamine receptor accessibility in the mammalian CNS. Caffeine has also been reported to normalize the heart rate of Daphnia, which is decreased by atropine and atenolol. Ethanol is known to cause progressive weakness, difficulty in walking, and lowered heart rate. Ethanol also inhibits calcium dependent neurotransmitter release, and, excitatory and inhibitory postsynaptic potentials in cultured spinal cord neurons.

The aim of the present study was to investigate the effect of Dopamine on Daphnia’s heart rate, alone and in combination of caffeine and ethanol. The rationale behind this research was that both caffeine and ethanol are known to affect nervous system functions, and dopamine is a major neurotransmitter.

Methods

Daphnia culture

Daphnia were isolated from Chitti Vai river of Punjab. For the isolation of Daphnia, 0.5–2.0 litres of river water was collected and transported to laboratory. Adult Daphnia were manually identified as per the standard identification features, and filtered out using muslin cloth. These adults were cultured in 300 ml glass jars containing river water that was filtered with muslin cloth. Daphnia culture was supplemented with 0.5% yeast culture, added every third day. Yeast culture, in this case, was used as a food for Daphnia. Algae, yeast or bacteria are preferred food for Daphnia. Although, many workers use river water for Daphnia culture presuming that it would have better mineral composition, in our case, we were also able to culture Daphnia in aged tap water in the similar manner. Cultures were routinely monitored to ensure production of healthy Daphnia.

Counting of Daphnia’s heart rate

To investigate the effect of certain agents on the heart rate of Daphnia, real-time monitoring of changes in the heart rate of Daphnia is required. We used a microscope equipped with computer-aided real-time imaging capability (Magnus Live USB camera viewer, version 2.0). Using a microscope that has computer-aided real-time imaging capabilities, the effect of various compounds can be observed on Daphnia’s heart in real time. Daphnia’s life span is 40–50 days, which varies in different species and also changed with environmental conditions, especially temperature. Male and female Daphnia can easily be differentiated, as female Daphnia have brood pouch that holds eggs. These eggs develop into embryos, leading to the production of juveniles that attain sexual maturity within ten days.

<table>
<thead>
<tr>
<th>Name (source)</th>
<th>Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine (Loba Chemie Pvt Ltd, Mumbai, India)</td>
<td>0.08 to 0.32 mg/ml</td>
</tr>
<tr>
<td>Dopamine (Amrit Pharmaceuticals, Aurangabad, India)</td>
<td>0.4 to 3.2 mg/ml</td>
</tr>
<tr>
<td>Ethanol (Himedia Laboratories, Mumbai, India)</td>
<td>2–8%</td>
</tr>
</tbody>
</table>

Table 1. Central nervous system agents used.
effect on *Daphnia*’s heart rate at a 10-times lower concentration than dopamine (28.5% increase at 0.08 mg/ml, Figure 2). Dopamine is the precursor of norepinephrine, and has been shown to augment heart activity by affecting beta-adrenergic receptors, in the case of a canine model16. Furthermore, dopamine can cause both relaxation and contraction of vascular smooth muscle. Dopamine is also known to augment heart activity, pulmonary pressure, and cardiac index in the case of normal and hypertensive individuals17.

Dopamine synergizes with caffeine to increase the heart rate of *Daphnia*

Caffeine, in combination with dopamine, increased *Daphnia*’s heart rate more than when the agents were administered...
alone, which suggests a synergistic activity (Figure 3). Dopamine has also been previously reported to play a role in the responses of Drosophila to cocaine, nicotine or ethanol18.

Dopamine overcomes an ethanol-induced decrease of the heart rate of Daphnia
To see the effect on the heart rate of Daphnia, ethanol was used at a concentration ranging from 2–8%, and was found to decrease the heart rate of Daphnia in a dose-dependent manner (Figure 4).

We observed that dopamine was able to rescue the ethanol-induced decrease in the heart rate of Daphnia, even at a concentration of 0.4 mg/ml (Figure 5).

Dataset 1. Effect of dopamine, caffeine and ethanol on the heart rate of Daphnia
http://dx.doi.org/10.5256/f1000research.12180.d19418
Heart rates (beats per minute) was initially counted without any treatment (controls). Subsequently, changes in the heart rate was monitored after the addition of selected agents.

Figure 3. Dopamine synergizes with caffeine to increase the heart rate of Daphnia. Daphnia's heart rate was measured upon treatment with dopamine alone (red) or a combination of dopamine and caffeine (green). The concentration of caffeine (in combination with dopamine) was (A) 40 ug/ml and (B) 120 ug/ml. This experiment was performed two times, and a paired t test analysis vs control indicated the following P values: 0.0374 (0.8 mg/ml dopamine) and 0.0230 (1.6 mg/ml dopamine). These values are statistically significant.

Figure 4. Effect of ethanol on the heart rate of Daphnia. This experiment was done two times, and a paired t test analysis vs control indicate the following P values: 0.0152 (2% ethanol), 0.0059 (4% ethanol), 0.0130 (6% ethanol), and 0.0280 (8% ethanol). These values are statistically significant.
Conclusion
This fundamental investigation can be of enormous importance, as caffeine and ethanol are the most widely consumed psychoactive drugs, and dopamine is a master neurotransmitter that is known to be involved in variety of diseases\(^{19,20}\). It is possible that these psychoactive agents can have similar or more drastic effects in humans. It is, therefore, very important to urgently investigate the effect of these psychoactive agents, alone or in combination, in humans. Such studies can provide crucial information that can be used in a variety of clinical settings. For example, cases of alcohol or caffeine intoxication can be managed by dopamine therapy, treatment(s) of cardiac disorders may be different for alcoholics or coffeeholics, and patients undergoing dopamine therapy need to be regularly monitored for cardiothoracic status, and alcohol/caffeine consumption.

Data availability
Dataset 1: Effect of dopamine, caffeine and ethanol on the heart rate of Daphnia. Heart rates (beats per minute) was initially counted without any treatment (controls). Subsequently, changes in the heart rate was monitored after the addition of selected agents. DOI, 10.5256/f1000research.12180.d19418\(^9\)21

Competing interests
No competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting this work.

Acknowledgments
The authors are thankful to Devika Chanu Khaidem of Zoological Survey of India (Kolkata, India) for her help while doing experiments.

References
7. Harris KD, Bartlett NJ, Lloyd VK: Daphnia as an emerging epigenetic model
Open Peer Review

Current Peer Review Status: ✔️ ? ?

Version 1

Reviewer Report 27 June 2018

https://doi.org/10.5256/f1000research.13184.r35079

© 2018 Scorza C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cecilia Scorza
Department of Experimental Neuropharmacology, Clemente Estable Institute of Biological Research (IIBCE), Montevideo, Uruguay

The study “Dopamine synergizes with caffeine to increase the heart rate of Daphnia” done by Aman Kundu and Gyanesh Singh, investigates the effect of dopamine, caffeine and alcohol on Daphnia’s heart rate. Also the combination of caffeine and ethanol was tested. The rationale of the paper was to use the Daphnia’s heart rate to test treatment(s) of cardiac disorders in high consumers of coffee or alcohol. The importance and objectives of the study are well explained and methods are well described, although some aspects of this manuscript should be really improved and corrected.

The statistical Analysis applied is not correct; consequently I have some doubts if the results would be the same applying a correct statistical analysis. Authors used t-paired test to evaluate a dose-dependence curve in which more than two concentrations are compared. I suggest to authors apply One-Way ANOVA followed by a post hoc test (for example, Newman-Keuls). Additionally, authors indicated that the experiments were done two times. I understand that this means that a duplicate of each experiment were performed, is it correct?. If this is the case, a mean ± SD should be used to compare data. Please, correct.

Another important issue is about the synergism. Author concluded that dopamine synergizes with caffeine to increase the heart rate of Daphnia. But, synergism should be declared if a sub-threshold concentrations of DA and Caff is used. If not, only a potentiation is achieved. Please, correct the terminology of synergism or other experiments should be done using the combination of sub-threshold doses of DA and Caff.

It would be very important to add positive controls to test Daphnia’s heart rate, for example, noradrenaline or atropine, both are prototypical substances that increase heart rate in vertebrate animals.

In the conclusion: in addition to the purpose of this kind of assay, I wondering if Daphnia’s heart rate assay could be more suitable as a biomarker of toxicity instead of serve as a screening test of different drugs to alter Daphnia’s heart rate?
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
No

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 13 April 2018

https://doi.org/10.5256/f1000research.13184.r31349

© 2018 Poddar M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mrinal K. Poddar
Department of Biochemistry, University of Calcutta, Kolkata, India

The original article written by Kundu and Singh focuses on the study of the effects of cardiovascular drugs of the heart rate of Daphnia. In this study the authors have used an interesting heart model of Daphnia.

The article represents the synergistic effect of dopamine and caffeine to increase the heart rate in Daphnia, the tiny water fleas. Though, neither this model can be compare with mammals nor their organ function. The authors have tried to show some effects without mentioning the mechanism of effects. I think they should clarify the followings points:

1. Authors have analyzed the data with a simple t test. Why they didn’t they approach with ANOVA test? Moreover, statistical analysis with only two observations is not sufficient. Observations should be made of at least four times for significance test.
2. In Figures, the vertical line given on top of each bar represents what? - SEM or SD?
3. Table 1 shows the lowest concentration of dopamine as 0.4mg/ml which is missing in the entire
manuscript. Where is the result of 0.4 mg/ml?
4. Why did the authors choose 40µg or 120µg/ml instead of mg/ml that they have tested and represented in Figure 1. What is the reason of this sudden switch over? Nothing is clear to me!
5. In Figure 3 Why the authors have used the combination of lower concentration of caffeine (40µg/ml) with higher concentration of dopamine (1.6mg/ml) and higher concentration of caffeine (120 µg/ml) with lower concentration of dopamine (0.8mg/ml)? This needs clarification.
6. Figure 5 have the same queries like Figure 3 and it should be better in both the cases of combinations, keep one constant and vary the other one.
7. The Daphnia model does not directly resemble the mammalian system. The conclusion they have made in the manuscript requires rethinking and should be presented accordingly.
8. In the manuscript the authors didn’t mention about the treatment procedure. How have they administered the dopamine, caffeine or alcohol? What is the route of administration of these compounds? Are those administered or given in the culture medium? Depending on the route of administration for this particular model, the author should discuss about the mechanism of action of these agents on Daphnia heart rate or cardiovascular system.

Suggestions:

I think for indexing following works are needed to improve the manuscript:
1. Redesign the experiments as I suggested.
2. More observations (at least 4) for each experiment are needed.
3. Proper statistical analysis is essential. Simple t test is not enough as the experiment are in combination of different agents.

References

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
No

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
No

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 09 March 2018

https://doi.org/10.5256/f1000research.13184.r31347

© 2018 Vargas R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Rafael Antonio Vargas
Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia

The original article by Kundu and Singh focuses on the study the effects of cardiovascular drugs on the heart rate of Daphnia. The authors have used an interesting heart model: Daphnia. This model has some advantages in comparison with classical animal models such as rats, mice, dogs, cats, and others. This model could be interesting for researchers from undeveloped countries.

The study shows the effect of dopamine, caffeine, and alcohol on Daphnia heart rate (HR), which has been studied in other animal models. In this case, it is shown that dopamine and caffeine increase HR, and alcohol reduces HR. Interestingly, dopamine restores the low HR ethanol-induced. The authors claim that it's probably similar effects of this agents in humans, however, the Daphnia heart does not represent a direct analog of mammalian cardiac function, so the interpretation of the results of the present study in terms of mammals is problematic.

I have two comments/questions:

1. It is mentioned in the introduction, that atropine and atenolol decrease HR and this is not true in humans: Atenolol, a beta blocker reduces HR, but atropine, a cholinolytic agent, increase HR, so this statement must be revised.
2. It could be useful if the authors add the how HR was performed.

In general, after reading this submission, I consider that this is a short and interesting article about a simple model which will be useful for students, young researchers interested in alternatives to study cardiovascular function. After clarifying the comments the paper can be indexed.

References

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes
Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Cardiovascular physiology, neurophysiology, animal models

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Comments on this article

Version 1

Author Response 21 Sep 2018

Gyanesh Singh, Lovely Professional University, Phagwara, India

Many thanks for your valuable suggestions. After looking at the datasets, I believe that dopamine increases heart rate. I also have few unpublished datasets including 2 more for figure 5, where dopamine clearly overcomes the effect of ethanol on the heart rate. These experiments were part of a study, where 18 different molecules were tested for their effect on heart rate, however, only caffeine, dopamine and ethanol showed drastic changes. Penalva, et al’s report (Hydrobiologia, 2007) that you mentioned probably did not see the effect of dopamine on the heart rate of daphnia because they treated Daphnia for 1 hour, as they have mentioned in the beginning of their result that “This indicates that dopamine does not significantly alter Daphnia heart rate at concentrations below 10 mM after 1 h”.

I will write more after looking at this in more detail.

Competing Interests: none

Reader Comment 06 Sep 2018

Matthew Beckman, Augsburg University, USA
This paper is interesting to me but there are some major issues with the manuscript. First, the assertion that the effect of dopamine on heart-rate has never been studied in *Daphnia* is not true. Here is a citation for a published report: Studying *Daphnia* feeding behavior as a black box: a novel electrochemical approach Hydrobiologia, 2007, Volume 594, Number 1, Page 153 D. C. Peñalva-Arana, P. A. Moore, B. A. Feinberg. In this study Penalva, et al. show a dose response for dopamine on heart-rate in *Daphnia*. Also, it would be more convincing with the following: 1) report the total number of animals studied in each condition. We assume that more than two animals were studied per condition because error bars are shown. 2) report whether the error bars are SD or SEM. 3) Perform the correct statistical test (1-way ANOVAs). 3) provide some assurance that the effects are really due to the drugs added. For instance, could you demonstrate "wash-out" or "recovery" from the drug effect? How were drug solutions prepared? If the dopamine was in tap water how did you insure it wasn't oxidized? If fresh stocks of dopamine were made and used soon it may not have been an issue.4) address what you mean by a pharmacological effect occurring "instantly". Most biological phenomena can best be described as occurring over time and having a "time-constant" even if it is rapid with a very small time-constant. 5) How does dopamine instantly get into the *Daphnia* heart given that the heart isn't exposed to the media--it is inside the carapace? It would take time for the drug to penetrate the animal and affect heart-rate. 6) a discussion of ethanol effects at the high concentrations you are using. We have shown that much lower concentrations of ethanol kill *Daphnia* in a rather short period of time. See: Pharmacol Biochem Behav. 2015 Oct;137:101-9. doi: 10.1016/j.pbb.2015.08.010. Epub 2015 Aug 19. Exposure to D2-like dopamine receptor agonists inhibits swimming in *Daphnia magna*. Barrozo ER¹, Fowler DA², Beckman ML³. At 8% are *Daphnia* simply dying or is the ethanol affecting their physiology. Again, a washout experiment would be instructive in this case.

Competing Interests: Daphnia biologist.