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Abstract

The recount2 resource is composed of over 70,000 uniformly processed
human RNA-seq samples spanning TCGA and SRA, including GTEx. The
processed data can be accessed via the recount2 website and the recount
Bioconductor package. This workflow explains in detail how to use the
recount package and how to integrate it with other Bioconductor packages
for several analyses that can be carried out with the recount2 resource. In
particular, we describe how the coverage count matrices were computed in
recount2 as well as different ways of obtaining public metadata, which can
facilitate downstream analyses. Step-by-step directions show how to do a
gene-level differential expression analysis, visualize base-level genome
coverage data, and perform an analyses at multiple feature levels. This
workflow thus provides further information to understand the data in
recount2 and a compendium of R code to use the data.
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Introduction

RNA sequencing (RNA-seq) is now the most widely used high-throughput assay for measuring gene expression. In a
typical RNA-seq experiment, several million reads are sequenced per sample. The reads are often aligned to the refer-
ence genome using a splice-aware aligner to identify where reads originated. Resulting alignment files are then used
to compute count matrices for several analyses such as identifying differentially expressed genes. The Bioconductor
project’ has many contributed packages that specialize in analyzing this type of data and previous workflows have
explained how to use them’™. Initial steps are typically focused on generating the count matrices. Some pre-computed
matrices have been made available via the ReCount project’ or Bioconductor Experiment data packages such as the
airway dataset’. The pre-computed count matrices in ReCount have been useful to RNA-seq methods developers
and to researchers seeking to avoid the computationally intensive process of creating these matrices. In the years since
ReCount was published, hundreds of new RNA-seq projects have been carried out, and researchers have shared the
data publicly.

We recently uniformly processed over 70,000 publicly available human RNA-seq samples, and made the data available
via the recount2 resource at jhubiostatistics.shinyapps.io/recount/ ’. Samples in recount2 are grouped by project (over
2,000) originating from the Sequence Read Archive, the Genotype-Tissue Expression study (GTEx) and the Cancer
Genome Atlas (TCGA). The processed data can be accessed via the recount Bioconductor package available at
bioconductor.org/packages/recount. Together, recount2 and the recount Bioconductor package should be considered
a successor to ReCount.

Due to space constraints, the recount2 publication’ did not cover how to use the recount package and other useful
information for carrying out analyses with recount2 data. We describe how the count matrices in recount2 were gener-
ated. We also review the R code necessary for using the recount2 data, whose details are important because some of
this code involves multiple Bioconductor packages and changing default options. We further show: a) how to augment
metadata that comes with datasets with metadata learned from natural language processing of associated papers as
well as expression data b) how to perform differential expression analyses, and c¢) how to visualize the base-pair data
available from recount?2.

Analysis of RNA-seq data available at recount2

recount2 overview

The recount2 resource provides expression data summarized at different feature levels to enable novel cross-study
analyses. Generally when investigators use the term expression, they think about gene expression. But more informa-
tion can be extracted from RNA-seq data. Once RNA-seq reads have been aligned to the reference genome it is possible
to determine the number of aligned reads overlapping each base-pair resulting in the genome base-pair coverage curve
as shown in Figure 1. In the example shown in Figure 1, most of the reads overlap known exons from a gene. Those
reads can be used to compute a count matrix at the exon or gene feature levels. Some reads span exon-exon junctions
(jx) and while most match the annotation, some do not (jx 3 and 4). An exon-exon junction count matrix can be used
to identify differentially expressed junctions, which can show which isoforms are differentially expressed given suf-
ficient coverage. For example, junctions 2 and 5 are unique to isoform 2, while junction 6 is unique to isoform 1. The
genome base-pair coverage data can be used with derfinder”® to identify expressed regions; some of these could be
unannotated exons, which together with the exon-exon junction data could help establish new isoforms.

recount2 provides gene, exon, and exon-exon junction count matrices both in text format and
RangedSummarizedExperiment objects (rse)’ as shown in Figure 2. These rse objects provide information about the
expression features (for example gene IDs) and the samples. In this workflow we will explain how to add metadata
to the rse objects in recount2 in order to ask biological questions. recount2 also provides coverage data in the form
of bigWig files. All four features can be accessed with the recount Bioconductor package’. recount also allows
sending queries to snaptron'’ to search for specific exon-exon junctions.
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Figure 1. Overview of the data available in recount2. Reads (pink boxes) aligned to the reference genome can be used
to compute a base-pair coverage curve and identify exon-exon junctions (split reads). Gene and exon count matrices are
generated using annotation information providing the gene (green boxes) and exon (blue boxes) coordinates together
with the base-level coverage curve. The reads spanning exon-exon junctions (jx) are used to compute a third count
matrix that might include unannotated junctions (jx 3 and 4). Without using annotation information, expressed regions
(orange box) can be determined from the base-level coverage curve to then construct data-driven count matrices.

Packages used in the workflow

In this workflow we will use several Bioconductor packages. To reproduce the entirety of this workflow, install the
packages using the following code after installing R 3.4.x from CRAN in order to use Bioconductor version 3.5 or
newer.

## Install packages from Bioconductor

source ("https://bioconductor.org/biocLite.R")

biocLite(c ("recount", "GenomicRanges", "limma", "edgeR", "DESeqg2",
"regionReport", "clusterProfiler", "org.Hs.eg.db", "gplots", "derfinder",
"rtracklayer", "GenomicFeatures", "bumphunter", "derfinderPlot",
"devtools"))

Once they are installed, load all the packages with the following code.

library ("recount")
library ("GenomicRanges")
library("limma")

library ("edgeR")

library ("DESeqg2")
library("regionReport")
library("clusterProfiler")
library("org.Hs.eg.db")
library("gplots")

library ("derfinder")
library("rtracklayer")
library ("GenomicFeatures")
library ("bumphunter")
library("derfinderPlot")
library("devtools")
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Figure 2. recount2 provides coverage count matrices in RangedSummarizedExperiment (rse) objects. Once the
rse object has been downloaded and loaded into R, the feature information is accessed with rowRanges(rse) (blue box),
the counts with assays(rse)$counts (pink box) and the sample metadata with colData(rse) (green box). The sample
metadata can be expanded using add_predictions(rse) (orange box) or with custom code (brown box) matching by
a unique sample identifier such as the SRA Run ID. The rse object is inside the purple box and matching data is
highlighted in each box.

Coverage counts provided by recount2
The most accessible features are the gene, exon and exon-exon junction count matrices. This section explains them in
greater detail. Figure 3 shows 16 RNA-seq reads, each 3 base-pairs long, and a reference genome.

Reads in the recount2 resource were aligned with the splice-aware Rail-RNA aligner''. Figure 4 shows the reads
aligned to the reference genome. Some of the reads are split as they span an exon-exon junction. Two of the reads were
soft clipped meaning that just a portion of the reads aligned (top left in purple).

In order to compute the gene and exon count matrices we first have to process the annotation, which for recount2 is
Gencode v25 (CHR regions) with hg38 coordinates. Although recount can generate count matrices for other annota-
tions using hg38 coordinates. Figure 5 shows two isoforms for a gene composed of 3 different exons.

The coverage curve is at base-pair resolution so if we are interested in gene counts we have to be careful not to dou-
ble count base-pairs 1 through 5 that are shared by exons 1 and 3 (Figure 5). Using the function disjoin () from
GenomicRanges'” we identified the distinct exonic sequences (disjoint exons). The following code defines the exon
coordinates that match Figure 5 and the resulting disjoint exons for our example gene. The resulting disjoint exons are
shown in Figure 6.
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Figure 3. RNA-seq starting data. 16 RNA-seq un-aligned RNA-seq reads 3 base-pairs long are shown (pink boxes)
alongside a reference genome that is 16 base-pairs long (white box).
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Figure 4. Aligned RNA-seq reads. Spice-aware RNA-seq aligners such as Rail-RNA are able to find the coordinates to
which the reads map, even if they span exon-exon junctions (connected boxes). Rail-RNA soft clips some reads (purple
boxes with rough edges) such that a portion of these reads align to the reference genome.

exon 1 exon 2
exon 3

Figure 5. Gene annotation. A single gene with two isoforms composed by three distinct exons (blue boxes) is illustrated.

Exons 1 and 3 share the first five base-pairs while exon 2 is common to both isoforms.

disjoint exon 2 disjoint exon 3

disjoint exon 1

Figure 6. Disjoint exons. Windows of distinct exonic sequence for the example gene. Disjoint exons 1 and 2 form exon 1.

library ("GenomicRanges")
exons <- GRanges ("seq", IRanges(start = c(1, 1, 13), end = c(5, 8, 15)))
exons

## GRanges object with 3 ranges and 0 metadata columns:

#4 segnames ranges strand

#4 <Rle> <IRanges> <Rle>

#4# [1] seq [ 1, 5] *

#4# [2] seq [ 1, 8] *

#4# [3] seq [13, 15] *

## -

#4 seginfo: 1 sequence from an unspecified genome; no seglengths
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disjoin (exons)

## GRanges object with 3 ranges and 0 metadata columns:

#+# segnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] seq [ 1, 5] *

## [2] seq [ 1, 8] *

#H# [3] seq [13, 15] *

## o -

## seqginfo: 1 sequence from an unspecified genome; no seglengths

Now that we have disjoint exons, we can compute the base-pair coverage for each of them as shown in Figure 7. That is,
for each base-pair that corresponds to exonic sequence, we compute the number of reads overlapping that given base-
pair. For example, the first base-pair is covered by 3 different reads and it does not matter whether the reads themselves
were soft clipped. Not all reads or bases of a read contribute information to this step, as some do not overlap known
exonic sequence (light pink in Figure 7).

With base-pair coverage for the exonic sequences computed, the coverage count for each distinct exon is simply the
sum of the base-pair coverage for each base in a given distinct exon. For example, the coverage count for disjoint exon
2is 2+ 2+ 3 =7 as shown in Figure 8. The gene coverage count is then ,; coverage, where n is the number of exonic
base-pairs for the gene and is equal to the sum of the coverage counts for its disjoint exons as shown in Figure 8.
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Figure 7. Base-pair coverage counting for exonic base-pairs. At each exonic base-pair we compute the number of
reads overlapping that given base-pair. The first base (orange arrow) has 3 reads overlapping that base-pair. Base-pair
11 has a coverage of 3 but does not overlap known exonic sequence, so that information is not used for the gene and
exon count matrices (grey arrow). If a read partially overlaps exonic sequence, only the portion that overlaps is used in
the computation (see right most read).
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Figure 8. Exon and gene coverage counts. The coverage counts for each disjoint exon are the sum of the base-pair
coverage. The gene coverage count is the sum of the disjoint exons coverage counts.
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For the exons, recount2 provides the disjoint exons coverage count matrix. It is possible to reconstruct the exon cov-
erage count matrix by summing the coverage count for the disjoint exons that compose each exon. For example, the
coverage count for exon 1 would be the sum of the coverage counts for disjoint exons 1 and 2, that is 19 + 7 = 26. Some
methods might assume that double counting of the shared base-pairs was performed while others assume or recom-
mend the opposite.

Scaling coverage counts

The coverage counts described previously are the ones actually included in the rse objects in recount2 instead of typical
read count matrices. This is an important difference to keep in mind as most methods were developed for read count
matrices. Part of the sample metadata available from recount2 includes the read length and number of mapped reads.
Given a target library size (40 million reads by default), the coverage counts in recount2 can be scaled to read counts
for a given library size as shown in Equation (1). Note that the resulting scaled read counts are not necessarily integers
so it might be necessary to round them if a differential expression (DE) method assumes integer data.

"coverage, target
E’ £% wIECE scaled read counts (D)
ReadLength mapped

From Figure 4 we know that Rail-RNA soft clipped some reads, so a more precise measure than the denominator of
Equation (1) is the area under coverage (AUC) which is the sum of the coverage for all base-pairs of the genome,
regardless of the annotation as shown in Figure 9. Without soft clipping reads, the AUC would be equal to the number
of reads mapped multiplied by the read length. So for our example gene, the scaled counts for a library size of 20 reads
would be 2%420=16 and in general calculated with Equation (2). The following code shows how to compute the AUC
given a set of aligned reads and reproduce a portion of Figure 9.

n
>’ coverage,

* target = scaled read counts
AUC g ()

T
e

13[3[5[44(2[2[3[1[3[3]1[4]4[2]1]

Coverage
1 2 3 4 ]

0

5 10 15
Genome

AUC = area under coverage = 45

Figure 9. Area under coverage (AUC). The area under coverage is the sum of the base-pair coverage for all positions
in the genome regardless of the annotation. It is the area under the base-level coverage curve shown as the light blue
area under the pink curve.
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## Take the example and translate it to R code
library ("GenomicRanges")

reads <- GRanges ("seqg", IRanges (
start = rep(
c(, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14),
c(3, 1, 2, 1, 2, 1, 2, 1, 2, 4, 1)
), width = rep(
c(, 3, 2, 3, 1, 2, 1, 3, 2, 3, 2, 1, 3),
c(, 4, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1)

## Get the base-level genome coverage curve
cov <- as.integer (coverage (reads) $seq)

## AUC
sum (cov)
#4# [1]1 45

## Code for reproducing the bottom portion of Figure 8.
pdf ("base pair coverage.pdf", width = 20)
par (mar = c(5, 6, 4, 2) + 0.1)

plot(cov, type = "o", col = "violetredl", 1lwd = 10, ylim = c(0, 5),
xlab = "Genome", ylab = "Coverage", cex.axis = 2, cex.lab = 3,
bty = "n")
polygon(c(l, seq len(length(cov)), length(cov)), c(0, cov, 0),
border = NA, density = -1, col = "light blue")
points(seq len(length(cov)), cov, col = "violetredl", type = "o",
lwd = 10)
dev.off ()
The recount function scale counts () computes the scaled read counts for a target library size of

40 million reads and we highly recommend using it before doing other analyses. The following code shows how to
use scale counts () and that the resulting read counts per sample can be lower than the target size (40 million).
This happens when not all mapped reads overlap known exonic base-pairs of the genome. In our example, the gene has
a scaled count of 16 reads for a library size of 20 reads, meaning that 4 reads did not overlap exonic sequences.

## Check that the number of reads is less than or equal to 40 million
## after scaling.

library ("recount")

rse scaled <- scale counts(rse gene SRP009615, round = FALSE)

summary (colSums (assays (rse_scaled) Scounts)) / le6

## Min. 1lst Qu. Median Mean 3rd Qu. Max.
#4# 22.62 29.97 34.00 31.96 34.86 36.78

Enriching the annotation

Data in recount2 can be used for annotation-agnostic analyses and enriching the known annotation. Just like exon and
gene coverage count matrices, recount2 provides exon-exon junction count matrices. These matrices can be used to
identify new isoforms (Figure 10) or identify differentially expressed isoforms. For example, exon-exon junctions 2, 5
and 6 in Figure | are only present in one annotated isoform. Snaptron'® allows programatic and high-level queries of
the exon-exon junction information and its graphical user interface is specially useful for visualizing this data. Inside R,
the recount function snaptron_query () can be used for searching specific exon-exon junctions in recount2.

The base-pair coverage data from recount2 can be used together with derfinder® to identify expressed
regions of the genome, providing another annotation-agnostic analysis of the expression data. Using the function
expressed regions () we can identify regions of expression based on a given data set in recount2. These
regions might overlap known exons but can also provide information about intron retention events (Figure 11),
improve detection of exon boundaries (Figure 12), and help identify new exons (Figure 1) or expressed sequences in
intergenic regions. Using coverage matrix () wecancompute a coverage matrix based on the expressed regions or
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Figure 10. Exon-exon junctions go beyond the annotation. Reads spanning exon-exon junctions are highlighted and
compared against the annotation. Three of them match the annotated junctions, but one (blue and orange read) spans
an unannotated exon-exon junction with the left end matching the annotation and the right end hinting at a possible new
isoform for this gene (blue and orange isoform).
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Figure 11. Intron retention events. Some reads might align with known intronic segments of the genome and provide
information for exploring intron retention events (pink read). Some might support an intron retention event or a new
isoform when coupled with exon-exon junction data (orange read).
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Figure 12. Exon boundaries. Reads that go beyond the known exon boundaries can inform us of whether the annotated
boundaries are correct or if there was a run-off transcription event.

another set of genomic intervals. The resulting matrix can then be used for a DE analysis, just like the exon, gene and
exon-exon junction matrices.

Gene level analysis

Having reviewed how the coverage counts in recount2 were produced, we can now do a DE analysis. We will
use data from 72 individuals spanning the human lifespan, split into 6 age groups with SRA accession SRP045638"°.
The function download_ study () requires a SRA accession which can be found using abstract search().
download study () can then be used to download the gene coverage count data as well as other expression
features. The files are saved in a directory named after the SRA accession, in this case SRP045638.
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library ("recount")

## Find the project ID by searching abstracts of studies
abstract_search ("human brain development by age")

## number samples species

## 1296 72 human

#4 abstract
## 1296 RNAseq data of 36 samples across human brain development by age group from LIBD
## project

## 1296 SRP045638

## Download the data if it is not there
if(!file.exists(file.path ("SRP045638", "rse gene.Rdata"))) {
download study ("SRP045638", type = "rse-gene")

## 2017-07-30 10:11:16 downloading file rse gene.Rdata to SRP045638

## Check that the file was downloaded
file.exists (file.path ("SRP045638", "rse gene.Rdata"))

## [1] TRUE

## Load the data
load(file.path ("SRP045638", "rse gene.Rdata"))

The coverage count matrices are provided as RangedSummarizedExperiment objects (rse)’. These objects store
information at the feature level, the samples and the actual count matrix as shown in Figure | of Love et al., 2016°.
Figure 2 shows the actual rse objects provided by recount2 and how to access the different portions of the data. Using
a unique sample ID such as the SRA Run ID it is possible to expand the sample metadata. This can be done using
the predicted phenotype provided by add predictions ()", pulling information from GEO via find geo ()
and geo_characteristics (), or with custom code.

Metadata

Using the colData () function we can access sample metadata. More information on these metadata is provided
in the Supplementary material of the recount2 paper’, and we provide a brief review here. The rse objects for SRA
data sets include 21 columns with mostly technical information. The GTEx and TCGA rse objects include additional
metadata as available from the raw sources. In particular, we compiled metadata for GTEx using the v6 phenotype
information available at gtexportal.org, and we put together a large table of TCGA case and sample information
by combining information accumulated across Seven Bridges’ Cancer Genomics Cloud and TCGAbiolinks'.

## One row per sample, one column per phenotype variable
dim(colData (rse gene))

## [11 72 21

## Mostly technical variables are included
colnames (colData (rse_gene))

## [1] "project"

## [2] "sample"

## [3] "experiment"

## [4] "run"

## [5] "read count_as_reported by sra"
## [6] "reads downloaded"

## [7] "proportion of reads_reported by sra downloaded"
## [8] "paired end"

## [9] "sra misreported paired end"

## [10] "mapped read count"

## [11] "auc"

## [12] "sharg beta tissue"

## [13] "sharqg beta cell type"

## [14] "biosample submission date"
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##
##
##
##
##
##
##

[15] "biosample publication date

[16] "biosample update date"
[17] "avg read length"

[18] "geo accession"

[19] "bigwig file"

[20] "title"

[21] "characteristics"

F1000Research 2017, 6:1558 Last updated: 02 AUG 2019

Technical variables Several of these technical variables include the number of reads as reported by SRA, the actual
number of reads Rail-RNA was able to download (which might be lower in some cases), the number of reads mapped
by Rail-RNA, whether the sample is paired-end or not, the coverage AUC and the average read length (times 2 for
paired-end samples). Note that the sample with SRA Run ID SRR2071341 has about 240.8 million reads as reported
by SRA, while it has 120.4 million spots reported in https://trace.ncbi.nlm.nih.gov/Traces/sra/
?run=SRR2071341;thatis because it is a paired-end sample (2 reads per spot). These details are important for those
interested in writing alternative scaling functions to scale counts ().

## Input reads:

## of reads Rail-RNA downloaded

colData(rse_gene) [,

##
##
##
##
##
##
##
##
##
##
##
##
##
##

summary (colData (rse_gene) Sproportion_of reads_reported by sra_ downloaded)

##
##

c("read count as reported by sra",

DataFrame with 72 rows and 2 columns

SRR2071341
SRR2071345
SRR2071346
SRR2071347
SRR2071348

SRR1554541
SRR1554554
SRR1554535
SRR1554558
SRR1554553

Min. 1st

number reported by SRA might be larger than number

read count as reported by sra reads downloaded

Qu. Median Mean 3rd Qu.

0.5719 0.9165 0.9788 0.9532

<integer>
240797206
82266652
132911310
74051302
250259914

186250218
140038024
106244496
200687480

90579486

1.0000 1.0000

Max.

<integer>
240797206
82266652
132911310
74051302
250259914

162403466
121793680
91185969
170754145
51803404

## AUC information used by scale counts() by default
head(colData (rse_gene) Sauc)

##

## Alternatively,

[1] 22950214241

## and other information

colData(rse_gene) [,

##
##
##
##
##
##
##
##
##
##
##
##
##
##

scale scounts()

7553726235 12018044330
can use the number of mapped reads

c ("mapped read count",

DataFrame with 72 rows and 3 columns
mapped read count paired end avg_read length

SRR2071341
SRR2071345
SRR2071346
SRR2071347
SRR2071348

SRR1554541
SRR1554554
SRR1554535
SRR1554558
SRR1554553

<integer>
232970536
78431778
124493632
71742875
242992735

162329325
121738246
91120421
170648458
51684462

<logical>
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

"paired end",

7041243857 24062460144 45169026301

<integer>
200
200
200
200
200
174
173
171
170
114

"reads downloaded")]

"avg read length")]
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Biological information Other metadata variables included provide more biological information, such as the SHARQ
beta tissue and cell type predictions, which are based on processing the abstract of papers. This information is available
for some of the SRA projects.

## SHARQ tissue predictions: not present for all studies
head (colData (rse_gene) Ssharqg beta tissue)

## [1] NA NA NA NA NA NA
head(colData (rse _gene SRP009615) $sharg beta tissue)

## [1] "blood" "blood" "blood" "blood" "blood" "blood"

For some data sets we were able to find the GEO accession IDs, which we then used to create the title and
characteristics variables. If present, the characteristics information can be used to create additional
metadata variables by parsing the CharacterList in which it is stored. Since the input is free text, sometimes
more than one type of wording is used to describe the same information, meaning that we might have to process that
information in order to build a more convenient variable, such as a factor vector.

## GEO information was absent for the SRP045638 data set
colData(rse gene) [, c("geo accession", "title", "characteristics")]

## DataFrame with 72 rows and 3 columns

## geo_accession title characteristics
#4# <character> <character> <CharacterList>
#4# SRR2071341 NA NA NA
## SRR2071345 NA NA NA
## SRR2071346 NA NA NA
#4# SRR2071347 NA NA NA
## SRR2071348 NA NA NA
#H ... ... ... -
## SRR1554541 NA NA NA
## SRR1554554 NA NA NA
## SRR1554535 NA NA NA
## SRR1554558 NA NA NA
## SRR1554553 NA NA NA

## GEO information for the SRP009615 data set
head(colData (rse_gene SRP009615) $geo_accession)

## [1] "GSM836270" "GSM836271" "GSM836272" "GSM836273" "GSM847561" "GSM847562"
head (colData (rse_gene SRP009615)Stitle, 2)

## [1] "K562 cells with shRNA targeting SRF gene cultured with no
## doxycycline (uninduced - UI), repl."

## [2] "K562 cells with shRNA targeting SRF gene cultured with

## doxycycline for 48 hours (48 hr), repl."

head (colData (rse _gene SRP009615) Scharacteristics, 2)

## CharacterList of length 2
## [[1]] cells: K562 shRNA expression: no treatment: Puromycin
## [[2]] cells: K562 shRNA expression: yes, targeting SRF treatment: Puromycin, doxycycline

## Similar but not exactly the same wording used for two different samples
colData (rse gene SRP009615) Scharacteristics[[1]]

## [1] "cells: K562" "shRNA expression: no" "treatment: Puromycin"

colData (rse_gene SRP009615) Scharacteristics([[11]]

## [1] "cell line: K562"
## [2] "shRNA expression: no shRNA expression"
## [3] "treatment: Puromycin"
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## Extract the target information

target <- sapply(colData(rse_gene SRP009615) Scharacteristics, "[", 2)
target

## [1] "shRNA expression: no"

## [2] "shRNA expression: yes, targeting SRE"

## [3] "shRNA expression: no"

## [4] "shRNA expression: yes targeting SREF"

## [5] "shRNA expression: no shRNA expression"

## [6] "ShRNA expression: expressing shRNA targeting EGR1"

## [7] "shRNA expression: no shRNA expression"
## [8] "sShRNA expression: expressing shRNA targeting EGR1"
## [9] "sShRNA expression: no shRNA expression"

## [10] "sShRNA expression: expressing shRNA targeting ATF3"
## [11] "shRNA expression: no shRNA expression"
## [12] "shRNA expression: expressing shRNA targeting ATEF3"

## Build a useful factor vector, set the reference level and append the result
## to the colData() slot

target factor <- sapply(strsplit(target, "targeting "), "[", 2)

target factor[is.na(target factor)] <- "none"

target factor <- factor(target factor)

target factor <- relevel (target factor, "none'")

target factor

## [1] none SRF none SRF none EGR1 none EGR1 none ATF3 none ATF3
## Levels: none ATF3 EGR1 SRF

colData (rse_gene SRP009615) Starget factor <- target factor

As shown in Figure 2, we can expand the biological metadata information by adding predictions based on RNA-seq
data'’. The predictions include information about sex, sample source (cell line vs tissue), tissue and the sequencing
strategy used. To add the predictions, simply use the function add_predictions () to expand the colData ()

slot.

## Before adding predictions
dim(colData (rse gene))

## [1] 72 21

## Add the predictions
rse_gene <- add predictions(rse_gene)

## 2017-07-30 10:11:20 downloading the predictions to

## /var/folders/cx/n9s558kx6fb7jf5z pgszgb80000gn/T//RtmpLufhkr/PredictedPhenotypes v0.0.03.rda

## After adding the predictions
dim(colData (rse_gene))

## [11 72 33

## Explore the variables
colData(rse gene) [, 22:ncol(colData(rse gene))]

## DataFrame with 72 rows and 12 columns

#4# reported sex predicted sex accuracy sex reported samplesource
#4 <factor> <factor> <numeric> <factor>
## SRR2071341 female female 0.8428571 NA
## SRR2071345 male male 0.8428571 NA
## SRR2071346 male male 0.8428571 NA
## SRR2071347 female female 0.8428571 NA
## SRR2071348 female female 0.8428571 NA
## ... . . c. c.
## SRR1554541 male female 0.8428571 NA
## SRR1554554 female female 0.8428571 NA
## SRR1554535 male male 0.8428571 NA
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SRR2071345
SRR2071346
SRR2071347
SRR2071348

SRR1554541
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female female 0.8428571 NA
male male 0.8428571 NA
predicted samplesource accuracy samplesource reported tissue
<factor> <numeric> <factor>
tissue NA NA
tissue 0.8923497 NA
tissue NA NA
tissue NA NA
tissue NA NA
tissue NA NA
tissue NA NA
tissue NA NA
tissue NA NA
tissue 0.8923497 NA
predicted tissue accuracy tissue reported sequencingstrategy
<factor> <numeric> <factor>
Brain 0.4707854 PAIRED
Brain 0.4707854 PAIRED
Brain 0.4707854 PATRED
Brain 0.4707854 PAIRED
Brain 0.4707854 PAIRED
Brain 0.4707854 PAIRED
Brain 0.4707854 PAIRED
Brain 0.4707854 PATRED
Brain 0.4707854 PAIRED
Brain 0.4707854 PAIRED
predicted sequencingstrategy accuracy sequencingstrategy
<factor> <numeric>
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381
PAIRED 0.8915381

Adding more information Ultimately, more sample metadata information could be available elsewhere, which
can be useful for analyses. This information might be provided in the paper describing the data, the SRA Run
Selector or other sources. As shown in Figure 2, it is possible to append information to the colData () slot as long
as there is a unique sample identifier such as the SRA Run ID.

For our example use case, project SRP045638 has a few extra biologically relevant variables via the SRA Run selector
https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP045638. We can download that infor-
mation into text file named SraRunTable. txt by default, then load it into R, sort it appropriately and then append
itto the colData () slot. Below we do so for the SRP045638 project.

## Save the information from
## https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP045638

## to a table.

We saved the file as SRP045638/SraRunTable.txt.

file.exists (file.path ("SRP045638", "SraRunTable.txt"))

##

[1] TRUE

## Read the table

sra <- read.table(file.path("SRP045638", "SraRunTable.txt"),
header = TRUE, sep = "\t")
## Explore it

head (sra)
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## AssemblyName s AvgSpotLen 1 BioSample s Experiment s

## 1 GRCh37 179 SAMN02731372 SRX683791

## 2 GRCh37 179 SAMN02731373 SRX683792

## 3 GRCh37 171 SAMN02999518 SRX683793

## 4 GRCh37 184 SAMN02999519 SRX683794

## 5 GRCh37 182 SAMN02999520 SRX683795

## 6 GRCh37 185 SAMN02999521 SRX683796

## Library Name s LoadDate s MBases 1 MBytes 1 RIN s

## 1 R2835 DLPFC polyA RNAseq total 2014-08-21 6452 3571 8.3

## 2 R2857 DLPFC polyA RNAseq total 2014-08-21 6062 2879 8.4

## 3 R2869 DLPFC _polyA RNAseq total 2014-08-21 8696 4963 8.7

## 4 R3098_DLPFC_polyA RNAseq total 2014-08-21 4479 2643 5.3

## 5 R3452 DLPFC polyA RNAseq total 2014-08-21 11634 6185 9.6

## 6 R3462 DLPFC _polyA RNAseq total 2014-08-21 14050 7157 6.4

## ReleaseDate s Run_s SRA Sample s Sample Name s age s disease_ s

#4# 1 2014-11-13 SRR1554533 SRS686961 R2835 DLPFC 67.7800 Control

#H* 2 2014-11-13 SRR1554534 SRS686962 R2857 DLPFC 40.4200 Control

## 3 2014-11-13 SRR1554535 SRS686963 R2869 DLPFC 41.5800 control

#4+ 4 2014-11-13 SRR1554536 SRS686964 R3098 DLPFC 44.1700 control

## 5 2014-11-13 SRR1554537 SRS686965 R3452 DLPFC -0.3836 control

## 6 2014-11-13 SRR1554538 SRS686966 R3462 DLPFC -0.4027 control

## isolate_s race_s sex_s Assay Type_s BioProject_ s BioSampleModel s

## 1 DLPFC AA female RNA-Seq PRJINA245228 Human

## 2 DLPFC AR male RNA-Seq PRJNA245228 Human

## 3 R2869 AR male RNA-Seq PRJINA245228 Human

## 4 R3098 AA female RNA-Seq PRJINA245228 Human

## 5 R3452 AA female RNA-Seq PRJINA245228 Human

#+ 6 R3462 AA female RNA-Seq PRJINA245228 Human

## Consent s Fraction s InsertSize 1 Instrument_ s LibraryLayout_ s

## 1 public total 0 Illumina HiSeqg 2000 PAIRED
## 2 public total 0 Illumina HiSeqg 2000 PAIRED
## 3 public total 0 Illumina HiSeqg 2000 PAIRED
##+ 4 public total 0 Illumina HiSeqg 2000 PAIRED
## 5 public total 0 Illumina HiSeqg 2000 PAIRED
## 6 public total 0 Illumina HiSeqg 2000 PAIRED
## LibrarySelection s LibrarySource s Organism s Platform s SRA Study s
#4# 1 cDNA TRANSCRIPTOMIC Homo sapiens ILLUMINA SRP045638
## 2 cDNA TRANSCRIPTOMIC Homo sapiens ILLUMINA SRP045638
## 3 cDNA TRANSCRIPTOMIC Homo sapiens ILLUMINA  SRP045638
#4+ 4 cDNA TRANSCRIPTOMIC Homo sapiens ILLUMINA SRP045638
## 5 cDNA TRANSCRIPTOMIC Homo sapiens ILLUMINA  SRP045638
## 6 cDNA TRANSCRIPTOMIC Homo sapiens ILLUMINA  SRP045638
##  biomaterial provider s tissue_s

## 01 LIBD DLPFC

## 2 LIBD DLPFC

## 3 LIBD DLPFC

## 4 LIBD DLPFC

## 5 LIBD DLPFC

## 6 LIBD DLPFC

## We will remove some trailing ’ s’ from the variable names

colnames (sra) <- gsub(" s$", "", colnames(sra))

## Choose some variables we want to add

sra_vars <- c("sex", "race", "RIN", "age", "isolate", "disease", "tissue")

## Re-organize the SRA table based on the SRA Run IDs we have
sra <- sra[match(colData(rse_gene)Srun, sra$Run), ]

## Double check the order

identical (colData (rse_gene) Srun, as.character (sraS$Run))
## [1] TRUE
## Append the variables of interest

colData(rse gene) <- cbind(colData(rse gene), sral, sra vars])
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## Final dimensions
dim(colData (rse gene))
## [11 72 40

## Explore result

colData(rse_gene) [, 34:ncol(colData(rse_gene))]

## DataFrame with 72 rows and 7 columns

i sex race RIN age
## <factor> <factor> <numeric> <numeric>
## SRR2071341 female AA 8.3 67.7800
## SRR2071345 male AA 8.4 40.4200
## SRR2071346 male AA 8.7 41.5800
## SRR2071347 female AA 5.3 44.1700
## SRR2071348 female AA 9.6 -0.3836
#Ho... .. .. .. -
## SRR1554541 male AA 5.7 -0.3836
## SRR1554554 female AA 8.1 0.3041
## SRR1554535 male AA 8.7 41.5800
## SRR1554558 female CAUC 9.1 16.7000
## SRR1554553 male CAUC 8.4 0.3918
## tissue

#4 <factor>

#4# SRR2071341 DLPFC

## SRR2071345 DLPFC

## SRR2071346 DLPFC

#4# SRR2071347 DLPFC

## SRR2071348 DLPFC

#Ho. .. A

## SRR1554541 DLPFC

## SRR1554554 DLPFC

## SRR1554535 DLPFC

## SRR1554558 DLPFC

## SRR1554553 DLPFC

F1000Research 2017, 6:1558 Last updated: 02 AUG 2019

isolate disease
<factor> <factor>
DLPFC Control
DLPFC Control
R2869 control
R3098 control
R3452 control
R3485 control
R3669 control
R2869 control
R4028 control
R3652 control

Since we have the predicted sex as well as the reported sex via the SRA Run Selector, we can check whether they

match.

table ("Predicted" = colData(rse_gene) Spredicted_ sex,

"Observed" = colData (rse_gene) $sex)
## Observed
## Predicted female male
#+ female 24 8
#4# male 0 40
## Unassigned 0 0
DE setup

Now that we have all the metadata available we can perform a DE analysis. The original study for project SRP045638"*
looked at differences between 6 age groups: prenatal, infant, child, teen, adult and late life. The following code creates

these six age groups.

## Create the original 6 age groups
colData (rse_gene) Sage group <- factor(

ifelse(colData(rse_gene)Sage < 0, "prenatal",

ifelse(colData(rse _gene)Sage >= 0 & colData(rse gene)Sage < 1, "infant",

ifelse(colData(rse_gene)Sage >= 1 & colData(rse gene)Sage < 10, "child",

ifelse(colData(rse_gene)Sage>= 10 & colData(rse_gene) Sage < 20, "teen",

ifelse(colData(rse gene)Sage>= 20 & colData(rse gene)Sage < 50, "adult",
"late life" ))))),

levels = c("prenatal”, "infant", "child", "teen", "adult", "late life")
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Most of the DE signal from the original study was between the prenatal and postnatal samples. To simplify the analysis,
we will focus on this comparison.

## Create prenatal factor

colData (rse_gene) Sprenatal <- factor(
ifelse(colData(rse _gene)Sage group == "prenatal", "prenatal", "postnatal"),
levels = c("prenatal", "postnatal"))

As we saw earlier in Figure 9, it is important to scale the coverage counts to read counts. To highlight the fact that we
scaled the counts, we will use a new object name and delete the previous one. However, in practice we would simply
overwrite the rse object with the output of scale counts (rse).

## Scale counts
rse_gene scaled <- scale counts(rse_gene)

## To highlight that we scaled the counts
rm(rse_gene)

Having scaled the counts, we then filter out genes that are lowly expressed and extract the count matrix.

## Extract counts and filter out lowly expressed geens
counts <- assays(rse gene scaled) Scounts
filter <- rowMeans (counts) > 0.5

DE analysis

Now that we have scaled the counts, there are multiple DE packages we could use, as described elsewhere™. Since we
have 12 samples per group, which is a moderate number, we will use 1 imma-voom'® due to its speed. The model we
use tests for DE between prenatal and postnatal samples adjusting for sex and RIN, which is a measure of quality of the
input sample. We check the data with multi-dimensional scaling plots (Figure 13 and Figure 14) as well as the mean-
variance plot (Figure 15). In a real use case we might have to explore the results with different models and perform
sensitivity analyses.
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Figure 13. Multi-dimensional scaling plot of the gene level data by age group.
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Figure 14. Multi-dimensional scaling plot of the gene level data by sex.

voom: Mean-variance trend
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Figure 15. voom mean-variance plot of the gene level data.

library ("limma™)

library("e

#4# Build DGEList object
dge <- DGEList (counts = counts/|[filter, ])

## Calculate normalization factors
dge <- calcNormFactors (dge)

## Explore the data

plotMDS (dge, labels = substr(colData(rse gene scaled)Sprenatal, 1, 2) )
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plotMDS (dge, labels = substr(colData(rseigeneiscaled)$sex, 1, 1))
tapply (colData (rse_gene scaled) SRIN, colData(rse gene scaled)$prenatal, summary)

## Sprenatal

#H Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.700 6.400 8.150 7.767 8.600 9.600
##

## Spostnatal

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.300 8.100 8.300 8.197 8.700 9.100

## Specify our design matrix
design <- with(colData(rse _gene scaled), model.matrix(~ sex + RIN + prenatal))

## Run voom
v <- voom(dge, design, plot = TRUE)

## Run remaining parts of the DE analysis
fit <- ImFit (v, design)

fit <- eBayes(fit)

Having run the DE analysis, we can explore some of the top results either with an MA plot (Figure 16) and a volcano
plot Figure (17). Both reveal very strong and widespread DE signal.

## Visually explore DE results
limma: :plotMA (fit, coef = 4)

limma::volcanoplot (fit, coef = 4)

prenatalpostnatal

10

log-fold—change
0
l

I I I I I
-5 0 5 10 15

Average log—expression

Figure 16. MA plot of the gene level data. Testing for prenatal and postnatal DE adjusting for sex and RIN.
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Figure 17. Volcano plot of the gene level data. Testing for prenatal and postnatal DE adjusting for sex and RIN.

DE report

Now that we have the DE results, we can use some of the tools with the biocView ReportWriting to create a report.
One of them is regionReport'’, which can create reports from DESeqg2'® and edgeR' results. It can also handle
limma-voom'® results by making them look like DESeqg2 results. To do so, we need to extract the relevant informa-
tion from the 1imma-voom objects using topTable () and build DESeqDataSet and DESeqResults objects as
shown below. A similar conversion is needed to use 1deal”, which is another package in the ReportWriting biocView
category.

## Extract data from limma-voom results
top <- topTable (fit, number = Inf, sort.by = "none", coef = "prenatalpostnatal'")

## Build a DESegDataSet with the count data and model we used
library ("DESeqg2")
dds <- DESegDataSet (rse gene scaled[filter, ], ~ sex + RIN + prenatal)

## converting counts to integer mode

## Add gene names keeping only the Ensembl part of the Gencode IDs
rownames (dds) <- gsub("\\..*", "", rownames (dds))

## Build a DESeqResults object with the relevant information
## Note that we are transforming the baseMean so it will look ok
## with DESeg2’s plotting functions.

limma res <- DESeqgResults (DataFrame (pvalue = top[, "P.Value"],
log2FoldChange = top[, "logFC"],
baseMean = exp(topl[, "AveExpr"]),

padj = topl[, "adj.P.Val"l))
rownames (limma res) <- rownames (dds)

## Specify FDR cutoff to use
metadata (limma res) [["alpha"]] <- 0.001

## Add gene symbols so they will be displayed in the report
limma res$symbol <- rowRanges (rse_gene scaled) Ssymbol [filter]

## Some extra information used by the report function
mcols(dds) <- limma res
mcols (mcols (dds)) <- DataFrame (type = "results",
description = "manual incomplete conversion from limma-voom to DESeqg2")
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Having converted our 1imma-voom results to DESeq?2 results, we can now create the report, which should open
automatically in a browser.

library ("regionReport")
## This takes about 20 minutes to run

report <- DESeg2Report (dds, project = "SRP045638 gene results with limma-voom",
output = "gene report", outdir = "SRP045638",
intgroup = c("prenatal", "sex"), res = limma res, software = "limma")

If the report doesn’t open automatically, we can open it with browseURL () . A pre-computed version is available as
Supplementary File 1.

browseURL (file.path ("SRP045638", "gene report.html"))

GO enrichment
Using clusterProfiler’’ we can then perform several enrichment analyses using the Ensembl gene IDs. Here we

show how to perform an enrichment analysis using the biological process ontology (Figure 18).

mRNA processing - d

RNA splicing - ‘ p adjust
chromosome segregation - ‘ 0.004
0.003
RNA splicing, via transesterification reactions = ‘
0.002
mRNA splicing, via spliceosome = . 0.001
RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 5 .
Count
DNA replication - [ )
® 100
cell cycle checkpoint - @ @ 200

@ 300

oxidative phosphorylation - ®

DNA-templated transcription, termination < @

T T
0.01 0.02 0.03
GeneRatio

Figure 18. Biological processes enriched in the DE genes.
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library ("clusterProfiler™)
library("org.Hs.eg.db")

## Remember that limma res had ENSEMBL IDs for the genes
head (rownames (limma_res))

## [1] "ENSG00000000003"™ "ENSG0O0000000005" "ENSG0O0000000419" "ENSG00000000457"
## [5] "ENSG00000000460" "ENSG0O0000000938"

## Perform enrichment analysis for Biological Process (BP)
## Note that the argument is keytype instead of keyType in Bioconductor 3.5

enrich go <- enrichGO(gene = rownames (limma res) [limma resSpadj < 0.001],
Orgbb = org.Hs.eg.db, keyType = "ENSEMBL", ont = "BP",
pAdjustMethod = "BH", pvalueCutoff = 0.01, gvalueCutoff = 0.05,
universe = rownames (limma res))

## Visualize enrichment results
dotplot (enrich go, font.size = 7)

Several other analyses can be performed with the resulting list of differentially expressed genes as described
previously”’, although that is beyond the scope of this workflow.

Other features
As described in Figure 1, recount2 provides data for expression features beyond genes. In this section we perform a DE
analysis using exon data as well as the base-pair resolution information.

Exon and exon-exon junctions

The exon and exon-exon junction coverage count matrices are similar to the gene level one and can also be downloaded
with download study (). However, these coverage count matrices are much larger than the gene one. Aggressive
filtering of lowly expressed exons or exon-exon junctions can reduce the matrix dimensions if this impacts the perform-
ance of the DE software used.

Below we repeat the gene level analysis for the disjoint exon data. We first download the exon data, add the expanded

metadata we constructed for the gene analysis, explore the data (Figure 19), and then perform the DE analysis using
limma-voom.

voom: Mean-variance trend
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Figure 19. voom mean-variance plot of the exon level data.
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## Download the data if it is not there
if(!file.exists(file.path ("SRP045638", "rse exon.Rdata"))) {
download study ("SRP045638", type = "rse-exon")

## 2017-07-30 10:37:11 downloading file rse exon.Rdata to SRP045638

## Load the data
load(file.path("SRP045638", "rse exon.Rdata"))

## Scale and add the metadata (it is in the same order)
identical (colData (rse exon) Srun, colData(rse gene scaled) Srun)

## [1] TRUE

colData (rse_exon) <- colData(rse gene scaled)
rse_exon_scaled <- scale counts(rse_exon)

## To highlight that we scaled the counts
m(rse_exon)

## Filter lowly expressed exons
filter exon <- rowMeans (assays (rse_exon scaled)$counts) > 0.5
round (table (filter exon) / length(filter exon) * 100, 2)

## filter exon
## FALSE TRUE
## 29.08 70.92

## Build DGEList object
dge _exon <- DGEList (counts = assays(rse exon scaled)$Scounts[filter exon, ])

## Calculate normalization factors
dge_exon <- calcNormFactors (dge_exon)

## Run voom
v_exon <- voom(dge exon, design, plot = TRUE)

## Run remaining parts of the DE analysis
fit exon <- ImFit (v_exon, design)
fit exon <- eBayes (fit exon)

## Visualize inspect results
limma: :volcanoplot (fit exon, coef = 4)

## Get p-values and other statistics

top exon <- topTable (fit exon, number = Inf, sort.by = "none",
coef = "prenatalpostnatal")

table (top_exon$adj.P.Val < 0.001)

##
## FALSE TRUE
## 107303 126075

Just like at the gene level, we see many exons differentially expressed between prenatal and postnatal samples
(Figure 20). As a first step to integrate the results from the two features, we can compare the list of genes that are
differentially expressed versus the genes that have at least one exon differentially expressed.

## Get the gene IDs for genes that are DE at the gene level or that have at

## least one exon with DE signal.

genes_w_de exon <- unique (rownames (rse_exon_scaled) [top_exon$Sadj.P.vVal < 0.001])
genes_de <- rownames (rse_gene scaled) [which(filter) [topSadj.P.Val < 0.001]]
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## Make a venn diagram

library("gplots"

vinfo <- venn(list("genes" = genes de, "exons" = genes w_de exon),
names = c("genes", "exons"), show.plot = FALSE)

plot (vinfo) +
title ("Gene

exons with DE signal')

Not all differentially expressed genes have differentially expressed exons. Moreover, genes with at least one differen-
tially expressed exon are not necessarily differentially expressed (Figure 21). This is in line with what was described
in Figure 2B of Soneson et al., 2015,

This was just a quick example of how we can perform DE analyses at the gene and exon feature levels. We envision
that more involved pipelines could be developed that leverage both feature levels, such as in Jaffe et al., 2017*. For
instance, we could focus on the differentially expressed genes with at least one differentially expressed exon, and com-
pare the direction of the DE signal versus the gene level signal as shown in Figure 22.
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Figure 20. Volcano plot of the exon level data. Testing for prenatal and postnatal DE adjusting for sex and RIN.
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Figure 21. Venn diagram of the overlap between DE genes and genes with at least one exon DE.
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Figure 22. Log fold change (FC) for DE genes compared against the most extreme exon log FC among exons that
are DE for the given gene.

## Keep only the DE exons that are from a gene that is also DE
top exon de <- top exon[top exon$adj.P.Val < 0.001 &
top_exon$ID %in% attr(vinfo, "intersections") [["genes:exons"]], ]

## Find the fold change that is the most extreme among the DE exons of a gene
exon_max_fc <- tapply(top_exon_deSlogFC, top_exon deS$ID, function(x) {
x[which.max (abs(x))] })

## Keep only the DE genes that match the previous selection
top gene _de <- top[match (names (exon max fc), rownames (top)), ]

## Make the plot
plot (top_gene de$logFC, exon max fc, pch = 20, col = adjustcolor("black", 1/5),

ylab = "Most extreme exon log FC",

xlab = "Gene log FC",

main = "DE genes with at least one DE exon")
abline(a = 0, b = 1, col = "red")
abline(h = 0, col = "grey80"
abline(v = 0, col = "grey80"

The fold change for most exons shown in Figure 22 agrees with the gene level fold change. However, some of them
have opposite directions and could be interesting to study further.

Base-pair resolution

recount2 provides bigWig coverage files (unscaled) for all samples, as well as a mean bigWig coverage file
per project where each sample was scaled to 40 million 100 base-pair reads. The mean bigWig files are exactly
what is needed to start an expressed regions analysis with derfinder®. recount provides two related
functions: expressed regions () which is used to define a set of regions based on the mean bigWig file for
a given project, and coverage matrix () which based on a set of regions builds a count coverage matrix in a
RangedSummarizedExperiment object just like the ones that are provided for genes and exons. Both functions
ultimately use import.bw () from rtracklayer® which currently is not supported on Windows machines.
While this presents a portability disadvantage, on the other side it allows reading portions of bigWig files from the web
without having to fully download them. download study () with type = "mean" or type = "samples"
can be used to download the bigWig files, which we recommend doing when working with them extensively.
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For illustrative purposes, we will use the data from chromosome 21 for the SRP045638 project. First, we obtain the
expressed regions using a relatively high mean cutoff of 5. We then filter the regions to keep only the ones longer than
100 base-pairs to shorten the time needed for running coverage matrix ().

## Define expressed regions for study SRP045638, only for chromosome 21
regions <- expressed regions ("SRP045638", "chr2l", cutoff = 5L,
maxClusterGap = 3000L)

## 2017-07-30 10:39:06 loadCoverage: loading bigWig file
## http://duffel.rail.bio/recount/SRP045638/bw/mean SRP045638.bw

## 2017-07-30 10:39:16 loadCoverage: applying the cutoff to the merged data

## 2017-07-30 10:39:16 filterData: originally there were 46709983 rows,
## now there are 46709983 rows. Meaning that 0 percent was filtered.

## 2017-07-30 10:39:16 findRegions: identifying potential segments
## 2017-07-30 10:39:16 findRegions: segmenting information

## 2017-07-30 10:39:16 .getSegmentsRle: segmenting with cutoff(s) 5
## 2017-07-30 10:39:17 findRegions: identifying candidate regions
## 2017-07-30 10:39:17 findRegions: identifying region clusters

## Explore the resulting expressed regions
regions

## GRanges object with 3853 ranges and 6 metadata columns:

## segnames ranges strand | value
#4# <Rle> <IRanges> <Rle> | <numeric>
## 1 chr21l [5026549, 50266301 * | 6.48181250037217
#4 2 chr2l [5027935, 5027961] * | 6.19690331706294
#4# 3 chr2l [5028108, 5028225] * | 8.99329216197386
4 4 chr21l [5032053, 5032117] * | 7.06828071887676
#4 5 chr2l [5032148, 5032217] * | 6.48832686969212
## R R R ce.
#4 3849 chr2l [46695774, 46695774] * | 5.0290150642395
#4 3850 chr2l [46695784, 46695843] * | 5.38047295411428
#4# 3851 chr2l [46695865, 46695869] * | 5.1128270149231
## 3852 chr2l [46696463, 46696486] * | 5.25689166784286
#4 3853 chr2l [46696508, 46696534] * | 5.22988386507387
## area indexStart indexEnd cluster clusterL

## <numeric> <integer> <integer> <Rle> <Rle>

#4 1 531.508625030518 5026549 5026630 1 1677

#4# 2 167.316389560699 5027935 5027961 1 1677

#4 3 1061.20847511292 5028108 5028225 1 1677

#4 4  459.43824672699 5032053 5032117 2 8283

#4# 5 454.182880878448 5032148 5032217 2 8283

#4 R R R R R R

#4 3849 5.0290150642395 46695774 46695774 708 5708

#4# 3850 322.828377246857 46695784 46695843 708 5708

#4 3851 25.5641350746155 46695865 46695869 708 5708

#4 3852 126.165400028229 46696463 46696486 708 5708

#4# 3853 141.206864356995 46696508 46696534 708 5708

## -

#4 seginfo: 1 sequence from an unspecified genome

summary (width (regions))

## Min. 1lst Qu. Median Mean 3rd Qu. Max.
## 1.0 6.0 68.0 186.2 151.0 11709.0
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table (width (regions) >= 100)

##
## FALSE TRUE
## 2284 1569

## Keep only the ones that are at least 100 bp long
regions <- regions|[width (regions) >= 100]
length (regions)

## [1] 1569

Now that we have a set of regions to work with, we proceed to build a RangedSummarizedExperiment object
with the coverage counts, add the expanded metadata we built for the gene level, and scale the counts. Note that
coverage matrix () scales the base-pair coverage counts by default, which we turn off in order to use use
scale counts().

## Compute coverage matrix for study SRP045638, only for chromosome 21

## Takes about 4 minutes

rse_er <- coverage matrix("SRP045638", "chr2l", regions, chunksize = 2000,
verboselLoad = FALSE, scale = FALSE)

## 2017-07-30 10:39:19 railMatrix: processing regions 1 to 1569

## Use the expanded metadata we built for the gene model
colData(rse_er) <- colData(rse gene scaled)

## Scale the coverage matrix
rse er scaled <- scale counts(rse_er)

## To highlight that we scaled the counts
rm(rse_er)

Now that we have a scaled count matrix for the expressed regions, we can proceed with the DE analysis just like we did
at the gene and exon feature levels (Figure 23, Figure 24, Figure 25, and Figure 26).
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Figure 23. Multi-dimensional scaling plot of the expressed regions level data by age group.
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Figure 24. Multi-dimensional scaling plot of the expressed regions level data by sex.
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Figure 25. voom mean-variance plot of the expressed regions level data.
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Figure 26. Volcano plot of the expressed regions level data. Testing for prenatal and postnatal DE adjusting for sex
and RIN.

## Build DGEList object
dge_er <- DGEList (counts = assays(rse_er scaled)Scounts)

## Calculate normalization factors
dge_er <- calcNormFactors (dge_er)

## Explore the data
plotMDS (dge_er, labels = substr(colData(rse er scaled)Sprenatal, 1, 2) )

plotMDS (dge er, labels = substr(colData(rse er scaled)Ssex, 1, 1) )

## Run voom
v_er <- voom(dge_er, design, plot = TRUE)

## Run remaining parts of the DE analysis
fit er <- ImFit(v_er, design)
fit_er <- eBayes(fit_er)

## Visually explore the results
limma: :volcanoplot (fit_er, coef = 4)

## Number of DERs

top_er <- topTable(fit_er, number = Inf, sort.by = "none",
coef = "prenatalpostnatal")

table (top_erSadj.P.Val < 0.001)

##

## FALSE TRUE
## 609 960

Having identified the differentially expressed regions (DERs), we can sort all regions by their adjusted p-value.

## Sort regions by g-value
regions_by padj <- regions[order (top_erSadj.P.Val, decreasing = FALSE)]

## Look at the top 10
regions by padj[1:10]
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## GRanges object with 10 ranges and 6 metadata columns:

## segnames ranges strand | value
#4# <Rle> <IRanges> <Rle> | <numeric>
## 2998 chr2l [44441692, 44442678] * | 34.7397774041243
## 2144 chr2l [38822674, 38824916] * | 85.5637880753472
#4 3033 chr2l [44458772, 44459070] * | 8.44090369872026
#4 3029 chr2l [44458526, 44458644] * | 5.80783885667304
#4# 3505 chr2l [46250498, 46250780] * | 5.68433203882548
#4 3045 chr2l [44461331, 44461480] * | 5.82021920522054
#4 1356 chr2l [33070821, 33072413] * | 190.209820540836
## 1714 chr2l [36225565, 36225667] * | 11.5645264560737
#4 3773 chr2l [46598568, 46599629] * | 301.859495409015
4 2254 chr2l [39928983, 39929390] * | 233.013994795435
## area indexStart indexEnd cluster clusterL

## <numeric> <integer> <integer> <Rle> <Rle>

## 2998 34288.1602978706 44441692 44442678 607 14072

#4# 2144 191919.576653004 38822674 38824916 435 14882

#4 3033 2523.83020591736 44458772 44459070 608 4968

## 3029 691.132823944092 44458526 44458644 608 4968

#4# 3505 1608.66596698761 46250498 46250780 678 30649

#4 3045 873.032880783081 44461331 44461480 608 4968

## 1356 303004.244121552 33070821 33072413 292 2261

#4# 1714 1191.14622497559 36225565 36225667 375 9845

#4 3773 320574.784124374 46598568 46599629 704 6544

#4 2254 95069.7098765373 39928983 39929390 464 3344

## -

#4 segqinfo: 1 sequence from an unspecified genome

width (regions by padj[1:10])

## [1] 987 2243 299 119 283 150 1593 103 1062 408

Visualize regions

Since the DERs do not necessarily match the annotation, it is important to visualize them. The code for visualizing
DERs can easily be adapted to visualize other regions. Although, the width and number of the regions will influence
the computing resources needed to make the plots.

Because the unscaled bigWig files are available in recount2, several visualization packages can be used such as
epivizr®, wiggleplotr® and derfinderPlot®. With all of them it is important to remember to scale the data
except when visualizing the mean bigWig file for a given project.

First, we need to get the list of URLSs for the bigWig files. We can either manually construct them or search them inside
the recount url table.

## Construct the list of bigWig URLs

## They have the following form:

## http://duffel.rail.bio/recount/

## project id

## /bw/

## sample run id

## .bw

bws <- pastel("http://duffel.rail.bio/recount/SRP045638/bw/",
colData(rse_er scaled)Sbigwig file)

## Note that they are also present in the recount url data.frame
bws <- recount urlSurl[match(colData(rse er scaled)Sbigwig file,

recount_urlSfile name) ]

## Use the sample run IDs as the sample names
names (bws) <- colData(rse_er scaled)Srun

We visualize the DERs using derfinderPlot, similar to what was done in the original publication'’. However, we
first add a little padding to the regions: 100 base-pairs on each side.
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## Add 100 bp padding on each side
regions_resized <- resize(regions_by padj[1:10],
width(regions_by padj[1:10]) + 200, fix = "center")

Next, we obtain the base-pair coverage data for each DER and scale the data to a library size of 40 million 100 base-pair

reads, using the coverage AUC information we have in the metadata.

## Get the bp coverage data for the plots
library ("derfinder")
regionCov <- getRegionCoverage (regions = regions resized, files = bws,

targetSize = 40 * le6 * 100, totalMapped = colData(rse_er scaled)Sauc,

verbose = FALSE)

The function plotRegionCoverage () requires several pieces of annotation information for the plots that use a
TxDb object. For recount2 we used Gencode v25 hg38’s annotation, which means that we need to process it manually

instead of using a pre-computed TxDb package.

To create a TxDb object for Gencode v25, first we need to import the data. Since we are working only with chromo-
some 21 for this example, we can subset it. Next we need to add the relevant chromosome information. Some of the
annotation functions we use can handle Entrez or Ensembl IDs, but not Gencode IDs. So we will make sure that we are

working with Ensembl IDs before finally creating the Gencode v25 TxDb object.

## Import the Gencode v25 hg38 gene annotation

library("rtracklayer")

gencode v25 hg38 <- import (pasteO (
"ftp://ftp.sanger.ac.uk/pub/gencode/Gencode human/release 25/",
"gencode.v25.annotation.gtf.gz"))

## Keep only the chr2l info
gencode v25 hg38 <- keepSeqglevels (gencode v25 hg38, "chr2l",
pruning.mode="coarse")

## Get the chromosome information for hg38
library ("GenomicFeatures")
chrInfo <- getChromInfoFromUCSC ("hg38"

## Download and preprocess the ’chrominfo’ data frame
## OK

chrInfoSchrom <- as.character (chrInfoSchrom)
chrInfo <- chrInfol[chrInfoSchrom %$in% seglevels(regions), 1]
chrInfoS$SisCircular <- FALSE

## Assign the chromosome information to the object we will use to

## create the txdb object

si <- with(chrInfo, Seginfo(as.character (chrom), length, isCircular,
genome = "hg38"))

seqginfo (gencode v25 hg38) <- si

## Switch from Gencode gene IDs to Ensembl gene IDs
gencode v25 hg38Sgene id <- gsub("\\..*", "", gencode v25 hg38Sgene id)

## Create the TxDb object
gencode v25 hg38 txdb <- makeTxDbFromGRanges (gencode v25 hg38)

## Explore the TxDb object
gencode v25 hg38 txdb

## TxDb object:

## # Db type: TxDb

## # Supporting package: GenomicFeatures
## # Genome: hg38

## # transcript nrow: 2413

## # exon nrow: 7670
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## # cds_nrow: 2623

## # Db created by: GenomicFeatures package from Bioconductor
## # Creation time: 2017-07-30 10:50:06 -0400 (Sun, 30 Jul 2017)
## # GenomicFeatures version at creation time: 1.29.8

## # RSQLite version at creation time: 2.0

## # DBSCHEMAVERSION: 1.1

Now that we have a TxDb object for Gencode v25 on hg38 coordinates, we can use bumphunter’s’ annotation
functions for annotating the original 10 regions we were working with. Since we are using Ensembl instead of Entrez
gene IDs, we need to pass this information to annotateTranscripts (). Otherwise, the function will fail to
retrieve the gene symbols.

library ("bumphunter™)

## Annotate all transcripts for gencode v25 based on the TxDb object
## we built previously.

ann_gencode v25 hg38 <- annotateTranscripts (gencode v25 hg38 txdb,

annotationPackage = "org.Hs.eg.db",
mappingInfo = list("column" = "ENTREZID", "keytype" = "ENSEMBL",
"multivals" = "first"))

## Getting TSS and TSE.

## Getting CSS and CSE.

## Getting exons.

## Annotating genes.

## ’select ()’ returned l:many mapping between keys and columns
## Annotate the regions of interest

## Note that we are using the original regions, not the resized ones
nearest ann <- matchGenes (regions by padj[1:10], ann gencode v25 hg38)

The final piece we need torun plotRegionCoverage () isinformation about which base-pairs are exonic, intronic,
etc. This is done via the annotateRegions () function in derfinder, which itself requires prior processing of the
TxDb information by makeGenomicState ().

## Create the genomic state object using the gencode TxDb object

gs_gencode v25 hg38 <- makeGenomicState (gencode v25 hg38 txdb,
chrs = seqglevels (regions))

## ’select ()’ returned 1:1 mapping between keys and columns

## Annotate the original regions

regions_ann <- annotateRegions(regions resized,
gs_gencode v25 hg385fullGenome)

## 2017-07-30 10:50:35 annotateRegions: counting

## 2017-07-30 10:50:35 annotateRegions: annotating

We can finally use plotRegionCoverage () to visualize the top 10 regions coloring by whether they are prenatal
or postnatal samples. Known exons are shown in dark blue, introns in light blue.

library("derfinderPlot")

plotRegionCoverage (regions = regions_resized, regionCoverage = regionCov,
groupInfo = colData(rse er scaled)$prenatal,
nearestAnnotation = nearest_ann,
annotatedRegions = regions_ann,
txdb = gencode v25 hg38 txdb,
scalefac = 1, ylab = "Coverage (RP40M, 100bp)",

ask = FALSE, verbose = FALSE)
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In these plots we can see that some DERs match known exons (Figure 28, Figure 34, Figure 36), some are longer than
known exons (Figure 27, Figure 33, Figure 35), and others are exon fragments (Figure 29-Figure 32) which could be
due to the cutoff used. Note that Figure 33 could be shorter than a known exon due to a coverage dip.
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Figure 27. Base-pair resolution plot of differentially expressed region 1.
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Figure 28. Base-pair resolution plot of differentially expressed region 2.
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Figure 29. Base-pair resolution plot of differentially expressed region 3.
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Figure 30. Base-pair resolution plot of differentially expressed region 4.
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Figure 31. Base-pair resolution plot of differentially expressed region 5.
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Figure 32. Base-pair resolution plot of differentially expressed region 6.
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Figure 33. Base-pair resolution plot of differentially expressed region 7.
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Figure 34. Base-pair resolution plot of differentially expressed region 8.
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Figure 35. Base-pair resolution plot of differentially expressed region 9.
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Figure 36. Base-pair resolution plot of differentially expressed region 10.

Summary

In this workflow we described in detail the available data in recount2, how the coverage count matrices were computed,
the metadata included in recount2 and how to get new phenotypic information from other sources. We showed how to
perform a DE analysis at the gene and exon levels as well as use an annotation-agnostic approach. Finally, we explained
how to visualize the base-pair information for a given set of regions. This workflow constitutes a strong basis to
leverage the recount2 data for human RNA-seq analyses.
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Nick Schurch
Division of Computational Biology, College of Life Sciences, University of Dundee, Dundee, UK

The authors present a workflow for working with the 70,000 processed RNA-seq datasets that form the
recount2 project, using R, and seek to expand on the details presented in the original recount2 publication
by describing how coverage count matrices were computed in recount2.

I'm always slightly confused about the point of these workflow papers - this kind of example workflow
information seems better suited to the R package vignettes, and for this reason | sometimes find them
awkward to review. In addition, a considerably similar set of example workflow information (albeit
somewhat less well described) has already been published in the supplementary information for the
original recount2 publication from the same authors (doi:10.1038/nbt.3838, specifically see Supp. Text &
Figures, and Supp. Notes 3 & 4)". Indeed, the supplementary info there goes further than this workflow in
describing how to compare results from recount2 across several studies (Supp. Note 5). Personally |
found the workflow example here somewhat convoluted and difficult to follow in places but | am sure the
community will find it useful in helping to use the recount2 resource and perhaps the nature of such an
example workflow presented on real data for a package such as this.

Happily, however, the authors also present substantially new and more detailed information in a few key
areas. In particular the description of how the recount2 read coverage matrices are computed is useful
and interesting and the example showing how to supplement the project metadata with additional
information is useful.

Specific Comments:

1. I don't really like the use of pseudo-maths equations for Eq1 & 2 - I'd like to see the words replaced with
algebraic variables with meanings explained in the text.

2. The scaled read counts are not the same as the actual mapping read counts that are typically required
by downstream DE tools (which then typically apply their own appropriate normalization to these
numbers). I'd like to see recount2 provide the actual mapping read count for features in addition to the
scaled read counts. That said (and if 'm understanding things correctly) the manuscript here is a
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description of what the format of the recount2 data is and that has already been published - so I'm not
expecting this to be changed.

3. I really don't understand the sentence: "Not all differentially expressed genes have differentially
expressed exons." Surely this is the definition of a DE gene?? | absolutely agree that "Moreover, genes
with at least one differentially expressed exon are not necessarily differentially expressed" - differential
transcript usage is a prime example of where this can happen - but if a gene is DE I'm pretty sure that it
must have a DE exon.

4.1 don't see the need for figs 28-36 - a single example of the plot type should be sufficient | think for an
example workflow.

5. It would be nice if recount2 could also provide information at the transcript level. Have the authors
considered augmenting recount2 with salmon quantifications for all the data? (big job and more of a
'feature request' really).

References

1. Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek
JT: Reproducible RNA-seq analysis using recount2.Nat Biotechnol. 2017; 35 (4): 319-321 PubMed
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reproducibility?
Yes
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Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
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Alejandro Reyes
Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA

The manuscript by Collado-Torres et al. provides a workflow to analyze public RNA-seq data using
‘recount?2’. Recount?2 is a resource that provides whole-genome coverage tracks for more than 70,000
RNA-seq experiments. The accompanying R/Bioconductor package ‘recount’ gives programmatic access
to download read counts per gene and to estimate read counts for genomic regions of interest. In an
RNA-seq pipeline, processing raw data into the formats available through recount2 involves the most
time-consuming steps. Thus, recount2 will save many researchers a lot of time.

The workflow describes how to programmatically access data from recount2 and describes different
analyses that can be done using these data. However, | think the authors needs improve and clarify some
aspects of the workflow, which | summarize below.

Major comments:

1. The authors use the formula in equation 1 to scale read counts. While | agree that the read counts
will be approximately equal to the sum of the coverage divided by the read length, it was not clear
why the additional rescaling is needed. | recommend that the authors include a more extensive
justification. Also, if the experiments were paired-end, wouldn’t this formula be counting reads
instead of sequenced RNA fragments (i.e. double counting)?

2. The section “Enriching annotation” describes several functions and analyses but does not provide
any code or examples. Currently, since it is incomplete, it is more distracting than informative. |
suggest that the authors either expand this section and add code or drop it.

3. I don’t understand the biological question behind a differential expression analysis at the exon
level. Could the authors clarify what the biological question is? If the aim is to find differential exon
usage, wouldn't it be better to use either DEXSeq, DRIMseq, or similar packages that are
specifically designed for this analysis?

Minor comments:

1. The first three sentences of the introduction need references.

2. The sentence “generally, when investigators use the term expression, they refer to gene
expression” is not entirely true. For example, developmental or cell biologists often interpret
“expression” as protein expression.

3. For full reproducibility, it would be useful to download the data within R using the SRAdb package
instead of downloading it manually.

4. The code that creates the age groups is too complicated (4 embedded ‘ifelse’ statements). | have
submitted a pull request with a simplified version of it (
https://github.com/LieberInstitute/recountWorkflow/pull/1).

5. Figures 13 and 14 could be merged into a single plot, using shapes and colors to distinguish the
different annotations. The same holds for figures 23 and 24.
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.
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© 2017 Risso D. This is an open access peer review report distributed under the terms of the Creative Commons
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Davide Risso
Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York City, NY, USA

The authors present a workflow that describes how to analyze the datasets available through the
Recount2 project with Bioconductor. Since many of the state-of-the-art methods for the analysis of
RNA-seq data are implemented in R and available through the Bioconductor project, this contribution is
an important resource for researchers interested in reanalyzing the impressive amount of data that the
authors have processed in the Recount2 project.

| have a few comments that hopefully will help improve the workflow.

1. I was a bit confused by the rationale of the scaled coverage counts. And especially on the need for a
target library size and the use of scaled counts. Wouldn't it be simpler to divide the coverage by read
length (without rescaling)? Wouldn't that result in the actual reads mapped to each region (exon, gene,
...)? lunderstand that for the derfinder analysis, some rescaling is needed for normalization purposes, but
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for more "classic" analysis (such as gene- or exon-level differential expression) where the counts are
normalized later in the workflow, wouldn't starting from ‘coverage/readlength' be a more sensible choice?

2. Sex prediction. This is a really interesting part of the analysis, even though it's not the focus of this
workflow. It would be interesting to get the authors' opinion of how to best use this feature on real
analyses. For instance, are the 8 misclassified samples likely to be false positives from the classifiers or
are they mislabeled samples? What is the recommendation of the authors in such cases? Should these
samples be discarded or is there any diagnostics that can be run to make sure that the quality of these
samples is not compromised?

3. I think that the authors should give more details on the design matrix. For instance, why did they decide
to include RIN and sex? Why is it important to include these variables in the model? More generally, the
workflow lacks details on the limma pipeline. | understand that this is not the focus of the authors' work,
but it may be confusing for beginners that don't have a direct experience with limma or voom. The authors
could for instance refer the reader to the limma workflow for details.

4. Similarly, there is a lack of details on the GO enrichment analysis. Since there are many types of
gene-set enrichment analysis, a paragraph could be added with more details and perhaps some
references to explain what enrichment analysis is and what types of hypotheses are tested.

5. One important advantage of exon-level differential expression is that it can be used to infer alternative
splicing. This can be done with the functions 'diffSplice()' and 'topSplice()' in limma or with the DEXSeq
package. It would be nice to showcase these functions or at least to mention that they exist.

6. Is the annotation in Recount?2 stable? Or is it constantly updated when a new version of Gencode is
released? If the former, it might make sense to package the 'gencode_v25_hg38_txdb' object that the
authors create in the workflow so that each user does not have to create it from scratch every time.

Minor comments:

- The authors use throughout the paper 'assays(rse)$counts' to access the counts of the 'rse' object.
Although this is correct, a clearer and more concise way is 'assay(rse)' (or 'assay(rse, "counts")' if the
authors want to explicitly state the name of the assay).

- Section "Coverage counts provided by recount2". The authors say "Although recount can generate
count matrices for other annota- tions using hg38 coordinates. " But they never say how this can be done.
It would be good to add a paragraph on how to do that (which | presume involves creating an alternative
txdb object).
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