Interactive visualization of spatial omics neighborhoods
[version 1; peer review: awaiting peer review]

Tinghui Xu, Kris Sankaran
Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA

Abstract
Dimensionality reduction of spatial omic data can reveal shared, spatially structured patterns of expression across a collection of genomic features. We studied strategies for discovering and interactively visualizing low-dimensional structure in spatial omic data based on the construction of neighborhood features. We designed quantile and network-based spatial features that result in spatially consistent embeddings. A simulation compares embeddings made with and without neighborhood-based featurization, and a re-analysis of Keren et al., 2019 illustrates the overall workflow. We provide an R package, NBFvis, to support computation and interactive visualization for the proposed dimensionality reduction approach. Code and data for reproducing experiments and analysis are available on GitHub.

Keywords
Spatial Omics, Interactive Visualization, Dimensionality Reduction, Networks
Introduction

Spatially resolved omics technologies provide a view into the landscape of complex biological processes (Burgess, 2019; Navy, 2018). For example, they have revealed novel aspects of tissue differentiation and the structure of certain cancers (Rao et al., 2021; Yoosuf et al., 2020). A spatial transcriptomic or proteomic dataset can be viewed as a spatially indexed collection of high-dimensional vectors (Dries et al., 2021a). The coordinates of each vector correspond to different genomic features (genes expression and protein measurements for spatial transcriptomics and proteomics, respectively) while the spatial index locates each measurement at some location in a tissue or cell.

Two challenges in the analysis of spatial omics data are:

- **Microenvironment dimensionality reduction**: considering the large number of simultaneously measured genomic features, some form of dimensionality reduction is essential for effective exploratory analysis. However, for spatially resolved data, a dimensionality reduction should describe microenvironments and their relationships with one another. It is more useful to embed the genomics signature of a cell’s local neighborhood than simply the cell in isolation.

- **Streamlined navigation**: low-dimensional representations of microenvironments may not be interpretable on their own. To this end, it is helpful to relate the representations to their original spatial and genomic contexts. Ensuring that these correspondences can be explored efficiently is a challenge in itself.

This paper discusses methods to address these challenges and releases a new R package that implements them. For the first challenge, our approach was to featurize spatial neighborhoods and pass this representation to downstream dimensionality reduction techniques. We explored in-depth features based on (1) histograms of expression levels and (2) local cell network properties. For the second challenge, we designed an interactive visualization that links learned representations with contextual descriptors.

We evaluated these methods using simulation and a qualitative data analysis. The simulation clarifies the difference between learning representations on individual cells and local cellular neighborhoods. The data analysis recapitulates the findings of (Chen et al., 2020; Keren et al., 2019). We believe that the main advantages of the proposed approach are:

- **Modularity**: the approach can be made use of existing dimensionality-reduction methods while ensuring that results reflect meaningful spatial structure.

- **Flexibility**: spatial featurizations can be tailored to specific problem contexts with little changes to the overall workflow.

Our methods are implemented in the R package NBFvis, available on GitHub.

The remainder of the paper is organized as follows. The Background subsection reviews relevant literature on analysis of spatial omic data. The Methods section describes the proposed method. The Visualisation subsection introduces what kinds of visualization and interactivity are provided in our package. The Simulation subsection and the Results section illustrate the method in simulation and real data analysis, respectively. The Package subsection gives an overview of NBFVis’s functionality. We conclude with a summary and directions for future work in the Discussion.

Background

The proliferation of spatial omic data has attracted attention from the modeling and visualization communities. Important themes that have emerged include the selection of spatially varying genes, derivation of spatial summary measures, and discovery of spatially consistent microenvironments. The resulting software packages allow analysts to generate overviews of spatial variation as well as focus on specific genomic features of interest.

Several studies propose feature-level models of spatial variation to select those with notable spatial expression patterns. SPARK fits a collection of random effects models with diverse sets of kernels to capture variation at several spatial scales (Sun et al., 2020). Alternatively (Zhu and Sabatti, 2020), computed a measure of spatial variation based on a spatially induced graph laplacian; genes exhibiting similar patterns of spatial expression are then clustered. Alternatively (Hsu and Culhane, 2020), proposed an adaptation of Moran’s I-statistic to measure the extent of spatial clustering across cell types, highlighting the potential for the classical spatial statistics methods to support modern spatial omics analysis. Like NBFvis, these methods compute spatial statistics to summarize spatial omics datasets. However, they tend not to provide localized measures of spatial structure, focusing instead on tissue-level properties.
The Giotto package includes approaches to dimensionality reduction and interactive visualization of spatial omics data Dries et al. (2021b). Of particular interest, the package supports interactive visualization that dynamically links embeddings of expression measurements with corresponding cell locations. Note however that these embeddings are derived without reference to spatial features.

Similar to our approach, Spatial-LDA proposes a variation of the topic models that learns spatially consistent patterns of cell type mixing (Chen et al., 2020). This is achieved by tying together mixed memberships of neighboring cells in a structured prior, and the model is fitted using a custom optimization scheme. Regions with similar topic memberships can be interpreted as microenvironments. Our proposal has a similar data analytic goal; however, we aim to support more generic spatial features while preserving simplicity in implementation.

Simulation

We provided a toy simulation to clarify the differences in embeddings when neighborhood information is and is not used. We found that if only cell-level information is considered, the embeddings will be dominated by cell types and fail to reflect microenvironment structure.

Dataset construction

Assume that there is one tissue section with three cell types. For each cell, five proteins are measured. Different cell types have different protein profiles, which means the average measurements of proteins differ according to cell type. We assume that cell types are clustered spatially, but that these clusters are close enough so that some areas overlap. These overlapping areas can be considered different microenvironments since the local mixture of protein profiles is different from regions of pure cell types.

Figure 1 is the spatial plot for the simulated dataset. Two thousand “cells” are generated and divided into three different cell types according to a multinomial distribution with the probability (0.2, 0.3, 0.5) for Cell Type 1, 2, and 3.

Figure 1. Simulation of a tissue section with three different, partially overlapping cell types. Overlapping regions can be thought of as their distinct microenvironments. The goal is to construct embeddings that reflect different mixing patterns.
\[c_i \sim \text{Mult}(1,(0.2,0.3,0.5)), i = 1, \ldots, 2000, \]

where \(c_i\) is the cell type of the \(i^{th}\) cell.

For this demonstration, we imagined that protein abundances are drawn from a mixture of multivariate normals. The average of each mixture component represents the typical cell profile for each cell type. That is, for each cell, the measurements for each of the five proteins have the form,

\[p_i|\mu_j \sim \mathcal{N}(\mu_j, 5I_5), i = 1, \ldots, 2000 \]
\[\mu_j \sim \mathcal{N}(0, 8I_5), j = 1, 2, 3, \]

where \(\mu_j\) is the average protein profile for the \(j^{th}\) cell type and \(p_i\) is a five-dimensional measurement for the \(i^{th}\) cell.

Next, we simulated cell locations to get mixed spatial patterns. We used a different mixture of (now two-dimensional) multivariate normals. As before, component means center\(_1\), center\(_2\), and center\(_3\) were drawn from a multivariate normal. Denoting the coordinates of cell \(i\) by \((x_i, y_i)\) and the spatial mean of cell type \(j\) by center\(_j\), we drew,

\[(x_i, y_i)|\text{center}_i \sim \mathcal{N}(\text{center}_i, 2I_2) \]
\[\text{center}_j \sim \mathcal{N}(0, 10I_2). \]

After simulation, we obtained a \(2000 \times 5\) expression matrix, each row of which corresponds to the simulated observation of one cell. We called this matrix the “single cell matrix”.

To extract neighborhood information for each cell, we first found neighborhoods with a given radius (here we used 0.2 units in length). We then calculated statistics within each neighborhood. We chose quantiles of protein content as neighborhood-based statistics, which are simple but effective. For every cell and protein, we derived 21 quantiles \(q_0, q_{0.05}, \ldots, q_{1}\) in the neighborhood. After calculation, an extended \(2000 \times 105\) matrix was obtained. We called this the “neighborhood matrix”.

Comparison

We next applied dimensionality reduction methods to both the single cell and the neighborhood matrices, in order to clarify the difference in the resulting embeddings.

First, we applied uniform manifold approximation and projection (UMAP) \cite{McInnes2018} to the single cell matrix, whose low-dimensional embeddings are shown in Figure 2. Only three separate clusters are visible in the embedding plot.

![Figure 2. A UMAP embedding plot on the single cell matrix. Cell types clustered with one another, but different mixture patterns were not observed. The embeddings were dominated by the cell types, obscuring the presence of microenvironments.](image-url)
each corresponding to a cell type. These UMAP embeddings ignore the microenvironments of mixed cell types along
cluster borders in the spatial plot. This result indicates that, when spatial information is not directly incorporated, the low-
dimensional embeddings are dominated by cell types and fail to distinguish microenvironments.

In contrast, the embedding plot of the neighborhood matrix detects microenvironment structures; see Figure 3. We
noticed that there were still three clusters consisting of pure cell types. However, there were additional clusters of mixed
cell types. Between the three pure clusters is a region corresponding to microenvironments with mixed cell types in the
spatial plot. Furthermore, we noticed that this region can be further divided into spatially consistent “subclusters”. For
instance, one region with only blue and green cells was related to the blue-green spatial boundary. This can be treated as a
unique microenvironment. Similar red-blue and red-green regions were also visible.

In summary, UMAP embeddings using the single cell matrix were dominated by cell types and failed to detect
microenvironments with mixed cell types. However, by simply applying UMAP to the neighborhood matrix, we were
able to detect these spatially meaningful microenvironments.

Methods

First, we established notation and an overview of the general approach. Let $X \in \mathbb{R}^{N \times D}$ contain expression measurements
for D gene or protein expression features across N cells. We call X the expression matrix. Let $S \in \mathbb{R}^{N \times 2}$ contain the spatial
locations of the N cells. We first applied a preliminary dimensionality reduction, like principal component analysis
(PCA), to the expression matrix X before the following neighborhood-based featurization. We called the reduced matrix
$B_X \in \mathbb{R}^{N \times P}$, where P is the number of dimensions after dimensionality reduction.

Before we can embed properties of cell neighborhoods, we need to define and derive features for each neighborhood. For
each cell x_i, we defined its neighborhood using distances induced by S, either containing all cells within a certain radius or
simply the K-nearest neighbors. Denote the neighborhood for the cell x_i by $m(i) = (x_{i,1}, \ldots, x_{i,n_i})$, where $x_{i,1}, \ldots, x_{i,n_i}$
are the n_i neighbors in the neighborhood and n_i is the number of neighbors surrounding x_i. We featurized the neighbor-
hoods $m(i)$ using neighborhood-based featurization functions $T_j, j = 1, \ldots, J$. We then rescaled all the derived featuriza-
tion matrices $T_1(\bar{X}), T_2(\bar{X}), \ldots, T_J(\bar{X})$ and concatenated them to obtain an extended neighborhood-based featurization
$T(X)$. The neighborhood matrix from the Simulation subsection is a special case of $T(X)$ using quantile features.

In more detail, let $T_j : \mathbb{R}^P \rightarrow \mathbb{R}^{p_j}, j = 1, 2, \ldots, J$ be a set of featurization functions. By applying every $T_j(m(i))$ to each
neighborhood $m(i)$, we can construct $\bar{X}_j \in \mathbb{R}^{N \times P}$. The matrix \bar{X}_j can be rescaled and then combined into a widened
neighborhood matrix $\bar{X} \in \mathbb{R}^{N \times \sum_{j=1}^{J} p_j}$. This neighborhood matrix \bar{X} was input to a dimensionality reduction method to

Figure 3. A UMAP embedding plot on the neighborhood matrix. Though simple, the neighborhood quantile
statistics make it possible to detect mixture microenvironments. We could further find subclusters like the red-green
mixture in the central cluster.
recover a set of embeddings. Our final set of microenvironments was found by clustering these embeddings. Below, we applied \(K \)-means to the set of neighborhood-level embeddings.

Example

We next discuss a specific instantiation of this general procedure, describing the neighborhood and featurization choices used in the Results section and implemented in NBFvis. There, \(N \) gives the number of cells in one tissue section, \(D \) is the number of proteins measured, and \(s \) is the spatial location matrix of the segmented cells. We applied a PCA to the expression matrix \(X \in \mathbb{R}^{N \times P} \) and then derived the reduced expression matrix \(bX \in \mathbb{R}^{N \times PZ} \). Neighborhoods were constructed by keeping the \(K \) nearest neighbors that are also within a given radius.

We used two types of featurization functions \(T_j \) – quantile features and network features. For the \(i \)th cell’s neighborhood, \(Z \) quantiles \(\{q_{1,k}^i, q_{2,k}^i, \ldots, q_{P,k}^i\} \) were calculated for the \(k \)th protein, where \(k = 1, 2, \ldots, P \). It means that we derived a \(PZ \)-dimensional vector \(\{q_{1,1}^i, q_{2,1}^i, \ldots, q_{P,1}^i\} \) for each neighborhood. Thus, \(T_{\text{quantile}}(X) : \mathbb{R}^{N \times P} \rightarrow \mathbb{R}^{N \times PZ} \). After featurization, we obtained an \(N \times PZ \) matrix, which we called the “quantile matrix”. Next, consider the construction of network features. Let \(G_i \) denote the geometric graph associated with \(m_i \), using the metric induced by \(s \). Based on \(G_i \), we can calculate a variety of node or edge features. The associated network featurization here is \(T_{\text{network}}(X) : \mathbb{R}^{N \times P} \rightarrow \mathbb{R}^{N \times M} \), where \(M \) is the number of network statistics. For example, in the experiments below, we used the number of edges \(\deg(G_i) \) and a variety of centrality measures. We used an ensemble of 29 network-based statistics in our example, detailed in Table 1 and the Extended Data (XTH1114 and Sankaran (2022)).

Table 1. Centrality Table. We use implementations of these centrality measures from the R packages igraph (Csardi and Nepusz, 2006), centiserve (Jalili, 2017) and sna (Butts, 2020). Network statistics implemented in NBFvis. These functions could be found in centiserve and sna package.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>The number of nodes in the neighborhoods.</td>
</tr>
<tr>
<td>Degree</td>
<td>The number of edges the node has.</td>
</tr>
<tr>
<td>Betweenness</td>
<td>The number of shortest paths that pass through the node.</td>
</tr>
<tr>
<td>Closeness</td>
<td>The reciprocal of the sum of the length of the shortest paths between the node and all other nodes.</td>
</tr>
<tr>
<td>Eigencentrality</td>
<td>It measures the influence of a node in the network. If a node is linked by many nodes with high eigenvector centrality, then that node itself will have high eigenvector centrality.</td>
</tr>
<tr>
<td>The reciprocal of eccentricity</td>
<td>The reciprocal of the longest shortest paths from the node to other ones.</td>
</tr>
<tr>
<td>Subgraph centrality</td>
<td>It measures the number of subgraphs a node participates in, weighting them according to their size.</td>
</tr>
<tr>
<td>Load centrality</td>
<td>The fraction of all shortest paths that pass through that node.</td>
</tr>
<tr>
<td>Gil-Schmidt power centrality index</td>
<td>It takes a value of 1 when the node is adjacent to all reachable nodes, and approaches 0 as the distance from the node to each node approaches infinity.</td>
</tr>
<tr>
<td>Information centrality scores</td>
<td>It measures the harmonic mean length of paths ending at the node, which is smaller if the node has many short paths connecting it to other nodes.</td>
</tr>
<tr>
<td>Stress centrality</td>
<td>If the node has a high stress centrality, it is traversed by a high number of shortest paths.</td>
</tr>
<tr>
<td>The reciprocal of average distance</td>
<td>The reciprocal of the average of the shortest paths.</td>
</tr>
<tr>
<td>Barycenter centrality</td>
<td>The reciprocal of the total distance from the node to all other nodes.</td>
</tr>
<tr>
<td>Variant closeness centrality</td>
<td>The sum of inversed distances to all other nodes.</td>
</tr>
<tr>
<td>Residual closeness centrality</td>
<td>The minimum of the closeness centrality of the node when one node is deleted.</td>
</tr>
<tr>
<td>Communicability betweenness centrality</td>
<td>If a node (v) has a low communicability betweenness centrality, there are few shortest paths pass through (v) among the pairs of nodes.</td>
</tr>
<tr>
<td>Cross-clique connectivity</td>
<td>The number of cliques to which belongs.</td>
</tr>
<tr>
<td>Decay centrality</td>
<td>The sum of distances between a chosen node and every other node weighted by the decay.</td>
</tr>
</tbody>
</table>
The final featurization combined both quantile and network features,

\[T(X) = \left[T_{\text{quantile}}(X), T_{\text{network}}(X) \right]. \]

\(T(X) \) is a \(N \times (PZ + M) \) neighborhood matrix. Rescaling was applied to this neighborhood matrix so that every column was on a similar scale. This rescaled neighborhood matrix was passed to UMAP to obtain low-dimensional embeddings. These embeddings could then be clustered to identify distinct microenvironments. The whole workflow is shown in Figure 4.

Implementation details

Several subtle but important details are worth noting. Before we calculate a featurization matrix, a preliminary dimensionality reduction method is needed. First, applying dimensionality reduction decreases the computational burden of downstream analysis. Computing quantiles for each feature in a high-dimensional dataset further increases the dimensionality. For example, computing 10 quantiles for each of 100 variables results in 1000 columns, which significantly increases the computational burden of embedding. Second, a statistical reason for dimensionality reduction is to reduce the noise in the original high-dimensional dataset. If the original data are effectively low-rank, then dimensionality reduction method will reduce unnecessary noise while preserving most statistical information, which is beneficial for the following embedding.

Another detail is the rescaling of the neighborhood matrix. Although the neighborhood matrix could have hundreds or even thousands of columns, there is no need to apply a preliminary dimensionality reduction to it, since all values are approximately comparable. However, it is necessary to rescale the neighborhood matrix because the ranges of different statistics vary dramatically, causing one or two variables with large variance to dominate the whole UMAP embedding. For instance, the entries in the quantile matrix were between -1.5 and 1.5 in the TNBC dataset, but for the network matrix, it is common to have some network statistics larger than 10. These network statistics would dominate the UMAP embedding if no rescaling is applied.

Visualization design

We devised an interactive Shiny app (Chang et al., 2015) to analyze outputs from the neighborhood-based analysis, supporting visualization of microenvironment differences. In this subsection, we discuss the design and visual queries supported by the interface.
Figure 4. The general workflow of the neighborhood-based featurization. A) The spatial omics datasets are composed of two parts: spatial coordinates and expressions of each cell. We applied dimensionality reduction to the expression matrix to derive a reduced one on which features are derived. B) We treat each cell x_i as a center and build a neighborhood for it. There are two general ways to construct a neighborhood: using distance between spatial coordinates and using the K-nearest neighbors. In our example, we combined these methods in the following way. First, we included cells whose distance from the central cell was less than a given length. Then we only kept the nearest K cells as its neighbors. C) To derive the quantile featurization for a gene, the quantiles of the distribution of each neighborhood’s expression for that gene are calculated. D) For the centrality featurization, we built a network within the neighborhood. Edges exist between two cells that are close enough. Then, we calculated centralities with respect to the center cell x_i. E) We concatenated and rescaled these derived features into what we call a neighborhood matrix. F) We applied uniform manifold approximation and projection (UMAP) to the neighborhood matrix to obtain embeddings for each cell, where we directly applied clustering algorithms. See the Example subsection below for details of the implementation.

Figure 5 shows the first component of the Shiny app, the UMAP embedding and linked spatial plot. This is used to relate the low-dimensional embeddings of each cell’s neighborhood features to its overall spatial context. Figure 5a is the two-dimensional UMAP embedding plot derived from the neighborhood matrix. Each point corresponds to one cell. The closer these points are, the more similar their neighborhood feature vectors are. To clearly visualize the distribution of cell types, the points in Figure 5a are colored according to cell types.

Figure 5b is the spatial plot. Each point here represents a cell center, derived from the original cell polygon in the tissue section. As before, different cell types are distinguished by colors. Furthermore, the two panels in Figure 5 are dynamically linked. When points are selected in one plot through a mouse brush, the corresponding points will also be highlighted in the other plot. Figure 6 shows the highlighted points in these two plots after one such selection. We can

Figure 5. The first component: the UMAP embedding and spatial plots. Part (a) is the two-dimensional embedding of the neighborhood matrix, and (b) is the original spatial layout of cell types.
click on the legend on the sidebar to deselect these cell types so that they do not appear. Figure 7 shows the embedding plot and scatter plot after deselecting the immune cells.

The second component of the Shiny app shows the same embeddings but colored by K-means cluster rather than cell type. For example, in Figure 8, the positions of points are still the same as in Figure 5, but they are clustered into five K-means
clusters. A slider is provided at the top of the second component in Figure 8, which is used for changing the value of K in the K-means clustering.

The third component of this Shiny app supports the comparison of expression levels across K-means clusters using a heatmap, structure plot, and histogram; see Figure 9. There are three tab panels with which we can switch between these three plots. Before making a further comparison, we can filter to cells of interest using the checkboxes at the top of Figure 9. Two groups of checkboxes are offered to select the cell types and K-means clusters to focus on. Based on the filtered cells, an expression heatmap of K-means clusters is provided in Figure 9. By default, it shows the top 10 most differentially expressed features across the selected clusters, based on the median of expression value in each cluster. A numeric input is offered above the heatmap – this controls the number of features appearing in the heatmap. The structure plot of the selected K-means clusters is provided in Figure 10, with which we can see the proportion of each cell type across every cluster. The histogram of expression is available to compare the selected feature’s expression across clusters. For example, Figure 11 is the histogram of the HLA Class 1 content in Clusters 1 and 4. Note that a selection input box is offered above the histogram to change the selected feature easily.

To show the spatial distribution of a specific feature’s expression, another combination of the embedding and spatial plot is provided in Figure 12. The colors of the points in Figure 12 reflect Human Leukocyte Antigen (HLA) Class 1 content.

Figure 9. The third component: Heatmap, structure plot, and histogram. These views help describe clusters identified by K-means.

Figure 10. Structure plot of K-means clusters. The dominant cell types in each clusters are shown clearly.
This expression plot highlights spatial characteristics of the expression content. In this case, expression is elevated in immune cells, especially those closest to the tumor-immune boundary.

Results

To illustrate our approach and package, we re-analyzed the Triple Negative Breast Cancer (TNBC) dataset of Keren et al. (2019) ([Underlying data](#)). To study this data, Chen et al. (2020) proposed Spatial-LDA, which was found to reveal novel microenvironments. Spatial-LDA models the distribution of cell types within neighborhoods but does not model protein expression directly. In contrast, our proposal considers quantitative protein measurements and network statistics within spatial neighborhoods. Here, we choose the tissue section of Patient 4, which had 6643 cells belonging to six cell types: immune cells (62.6%), keratin-positive tumor cells (25.2%), tumor cells (6.4%), mesenchymal-like cells (3.2%), endothelial cells (1.9%), and unidentified cells (0.5%). We used 41 expression variables, two-dimensional coordinates of cell centers, and cell types for further analysis.
The first step was to construct the neighborhood quantile matrix. We applied PCA to reduce the dimension of the expression matrix. We kept 19 principal components, which is the smallest number of components required to explain 90% of the variance. These components were labelled as PC_1, \ldots, PC_{19}. Next, neighborhoods were defined using a radius of 60 pixels. We only include the cells among the top 40 nearest neighbors to the center cell of the neighborhood. Quantiles for each principal component were calculated based on neighborhoods. To avoid the influence of extreme values, only quantiles $q_{0.10}, q_{0.15}, \ldots, q_{0.90}$ were included. Hence, we derive a 6643×323 quantile matrix of neighborhoods after featurization. The second step was to obtain the network matrix of the neighborhoods. We again used a radius of 60 pixels to define neighborhoods and kept only the 40 closest cells. Networks were constructed based on these neighborhoods. We linked cells whose centers were within 30 pixels of one another. Then, 29 network statistics were calculated according to the neighborhood networks; most of these network statistics were different kinds of network centralities. This resulted in a 6643×29 neighborhood network matrix.

The third step was to combine the quantile and network matrices together into an extended neighborhood matrix. The network matrix was rescaled in this step. The result was a 6643×352 neighborhood matrix. The final step applied dimensionality reduction and clustering to the neighborhood matrix. We applied UMAP to the neighborhood matrix to generate two-dimensional embeddings of each cell. K-means was applied to the UMAP embeddings to find potential clusters. These can be interpreted as microenvironments.

We used a Shiny app implemented in NBFvis to explore the result of UMAP embeddings and K-means clusters. Figure 13 shows the UMAP embeddings and spatial plot of the neighborhood matrix. Figure 13a gives the embeddings based on the reduction of the neighborhood matrix. The points in the embedding plot are colored according to their cell types. There are two main clusters in the embedding plot, composed primarily of immune and tumor cells, respectively. These two clusters are connected by a transition zone of a mixture of tumor and immune cells. Figure 13b is the spatial plot of the cells in the tissue section. By selecting the transition zone in the embedding plot, we found that the cells in this area are located on the boundary of immune cells, tumor cells, and keratin-positive tumor cells. This is shown in Figure 14.

K-means clustering applied to the UMAP embeddings suggests potential microenvironments. Figure 15 shows clustering results with $K = 5$. The clusters are distinguished by their colors. In the embedding plot Figure 15a, the embeddings are divided into five clusters, and the corresponding locations of these clusters are shown in the spatial plot Figure 15b. One finding of note is that the clusters in the embedding space were spatially consistent.

In Figure 15b, two microenvironments were found among the tumor cells and keratin-positive tumor cells, Cluster 3 in the inner part of the tumor cell groups and Cluster 4 close to the boundary of immune cells. This mirrors the findings of Chen et al. (2020). Another finding was a special immune cell microenvironment, Cluster 2, lying on the boundary of immune cells, tumor cells, and keratin-positive tumor cells. This microenvironment was distinguished from the immune microenvironment in the inner part of immune cell groups, which is Cluster 5 in Figure 15b. Notice that
Clusters 4 and 5, which are the microenvironments close to the tumor-immune boundary, are in the transition zone in the UMAP embedding plot in Figure 14. Moreover, another microenvironment, Cluster 3, was found in the top-left corner of Figure 15b, separate from the previous two immune microenvironments, Clusters 2 and 5.

Next, we explored the differences between these microenvironments by studying their expression patterns. Figure 16 is the heatmap of the inner and boundary immune microenvironments, which are Clusters 2 and 5 in Figure 15b, respectively. The heatmap shows the top 10 most differentially expressed proteins between these two clusters, determined by the differences between medians of expressions in each group. We chose the two most differentially expressed proteins, CD45 and CD45RO, for further exploration. The histograms in Figure 17 show the contents of CD45 across these two microenvironments. The inner immune microenvironment has a right-skewed distribution of CD45, indicating that many cells in this microenvironment have a low content of CD45. In contrast, the distribution of CD45 in the boundary immune microenvironment was significantly higher than that in the inner immune microenvironment. Figure 18 is the expression plot of CD45, this confirms that cells along the tumor-immune boundary had elevated CD45.

Checking the histogram and spatial expression of CD45RO in the inner and boundary immune microenvironments, we arrived at similar conclusions. Figure 19 is the histogram of these two microenvironments. The histogram for the inner immune microenvironments has a peak near the minimal value, which does not appear on the histogram of the boundary immune microenvironments. It shows that there were lower contents of CD45RO in the inner immune microenvironment but higher contents of CD45RO. Figure 20 also shows that there was a lighter boundary on the tumor-immune cells, highlighting this microenvironment.
Figure 16. Heatmap of expressions in Cluster 2 and 5. Cluster 2 is on the tumor-immune boundary and Cluster 5 is in the inner part of immune cell groups. The most obvious difference in expressions between these two clusters are CD45 and CD45RO. Cluster 5 had significantly lower CD45 and CD45RO content than Cluster 2.

Figure 17. Histograms of CD45 across Clusters 2 and 5, highlighting elevated CD45 levels in immune cells closer to the tumor-immune boundary. Histograms for different features can be selected using the interface, and the choice can be guided by a heatmap like in Figure 16.

Figure 18. UMAP embedding and spatial plots shaded in according to measured CD45. The existence of brighter cells near the tumor-immune boundary is consistent with Figures 16 and 17. This view also reveals elevated CD45 in the top-right region, corresponding to Cluster 3.
Cell-level approach

We also used the visualization tool to show the UMAP embedding and clustering results when directly applied to the original cell-level protein expression matrix. We used the same preprocessing as Keren et al. (2019). This serves as a reference point against which to compare the proposed neighborhood-based featurization.

Figure 21 gives the UMAP embedding and spatial plot using the cell-level approach. We found two clusters in the Figure 21a, one mainly made up of immune and one of tumor cells, respectively. The result was similar to the simulation, where UMAP embeddings were dominated by the differences between cell types and microenvironments were hardly distinguishable.

Figure 22 shows the clustering results after K-means clustering with K = 5. The clustered microenvironments were mixed with each other; in particular, it was difficult to distinguish a tumor-immune boundary microenvironment. Figure 23 compares the clustered spatial plots based on the cell-level and neighborhood-based approaches. In Figure 23a, the cells in Region 1 were a mixture of three microenvironments derived from the cell-level approach. It was difficult to identify which microenvironment this region belonged to. Although Region 2 of Figure 23a was mainly composed of Cluster 3, there were cells from Clusters 4 and 5 distributed throughout. Though in principle it is possible to distinguish microenvironments based on particular mixture patterns across cell types, doing so requires much more effort than examining the neighborhood-based representation.

Compared with the cell-level approach, the neighborhood-based featurization has a noticeably clearer clustering result. In Region 1 of Figure 23b, the cells in the boundary of tumor cells are spatially consistent according to their own cell types. Further, in Region 2 of Figure 23b, we observe a dominant microenvironment without needing to parse mixed patterns of cell types.

Figure 19. The analog of Figure 17 for CD45RO, another marker found to be differentially expressed across Clusters 2 and 5. In contrast to CD45, the distribution in both clusters is strongly right-skewed, even after the preprocessing applied by Keren et al. (2019).

Figure 20. The analog of Figure 18 for CD45RO. This marker’s spatial expression structure is similar to that for CD45. The fact that more cells are shaded darkly reflects the right skew observed in the histograms in Figure 19.

Cell-level approach

We also used the visualization tool to show the UMAP embedding and clustering results when directly applied to the original cell-level protein expression matrix. We used the same preprocessing as Keren et al. (2019). This serves as a reference point against which to compare the proposed neighborhood-based featurization.

Figure 21 gives the UMAP embedding and spatial plot using the cell-level approach. We found two clusters in the Figure 21a, one mainly made up of immune and one of tumor cells, respectively. The result was similar to the simulation, where UMAP embeddings were dominated by the differences between cell types and microenvironments were hardly distinguishable.

Figure 22 shows the clustering results after K-means clustering with K = 5. The clustered microenvironments were mixed with each other; in particular, it was difficult to distinguish a tumor-immune boundary microenvironment. Figure 23 compares the clustered spatial plots based on the cell-level and neighborhood-based approaches. In Figure 23a, the cells in Region 1 were a mixture of three microenvironments derived from the cell-level approach. It was difficult to identify which microenvironment this region belonged to. Although Region 2 of Figure 23a was mainly composed of Cluster 3, there were cells from Clusters 4 and 5 distributed throughout. Though in principle it is possible to distinguish microenvironments based on particular mixture patterns across cell types, doing so requires much more effort than examining the neighborhood-based representation.

Compared with the cell-level approach, the neighborhood-based featurization has a noticeably clearer clustering result. In Region 1 of Figure 23b, the cells in the boundary of tumor cells are spatially consistent according to their own cell types. Further, in Region 2 of Figure 23b, we observe a dominant microenvironment without needing to parse mixed patterns of cell types.
Figure 21. The UMAP embedding and spatial plots obtained without neighborhood features. Cells are shaded by cell type. Compare with Figure 13.

Figure 22. A version of Figure 21 where cells are shaded by K-means clusters found in the embedding on the left. Sub-cell type variation in the embedding plot does not correspond to spatially meaningful microenvironments. Compare with Figure 15.

Figure 23. A direct comparison of the spatial plots from Figures 15 and 22. Microenvironments with similar expression patterns (and stable cell type mixtures) are enclosed in black boxes. Microenvironments are more clearly visible when using neighborhood-based featurization.
Overall, the neighborhood-based featurization provides representations with better spatial consistency, simplifying the discovery of microenvironments.

Package
We next summarize how to use NBFvis to implement the proposed workflow. We first loaded the packages and dataset we need. The dataset `patient4` is a 6643 × 59 data frame of all cells in the tissue section of Patient 4 in the TNBC data (Keren et al., 2019). We added two columns named `x_center` and `y_center`, which are the coordinates of the calculated cell centers from the spatial raster data.

```r
library (NBFvis)
library (dplyr)
data (patient4)
```

We selected 41 variables from dsDNA to HLA Class 1, most of which are proteins and cell type markers. The `quantiles_matrix` function generates the quantile matrix from each cell’s neighborhood.

```r
Quantiles_patient4 <- quantiles_matrix(
  data = patient4 %>% select (dsDNA:HLA_Class_1),
  coordinate = patient4 %>% select(x_center,y_center),
  index = patient4$index,
  NN = 40,
  distance = 60,
  min_percentile = 0.1,
  max_percentile = 0.9,
  quantile_number = 17,
  method = pca_)
```

The function `network_matrix` first builds the network inside the neighborhood and then calculates the corresponding network statistics using the argument given by `fun`. In this example, we used the function `centralities`, also exported by our package.

```r
centrality_patient4 <- network_matrix(
  coordinate = patient4 %>% select (ends_with("_center")),
  index = patient4$index,
  radius = 60,
  NN = 40,
  edge = 30,
  fun = centralities,
  length_output = 29,
  name_output = NULL)
```

The scales of these two matrices are not the same, which means rescaling is needed. Here we removed `Column`, `index` and `n_neighborhood` in the quantile matrix so that all the columns left were quantile and network variables. Normalization and centering were applied to the centralities matrix so that they had a similar scale to the quantile matrix.

We then combined the quantile matrix and the rescaled network matrix to construct an extended featurization matrix, which we called the neighborhood matrix earlier.

```r
neighborhood_info_patient4 <- cbind(
  Quantiles_patient4 %>% select(-index, -n_neighbor),
  scale (centrality_patient4 %>% select(-index)))
```

The final step was to input the neighborhood matrix, the cell dataset `patient4`, and the names of the variable of interest in the function `NBFvis`. This returned an interactive Shiny app that was the source of figures in the Results section.

```r
NBF_vis(
  matrix = neighborhood_info_patient4,
  origin_data = patient4,
  var_names = colnames (patient4)[17:57])
```
Discussion
We have presented a method for visualizing spatial omics datasets that integrates dimensionality reduction methods like UMAP with neighborhood-based featurization based on quantiles and network properties. According to the results of our simulation, dimensionality reduction based on genomic features alone has difficulty identifying microenvironments because the associated embeddings are dominated by differences in expression patterns across cell types. Also, K-means clustering on the UMAP embeddings from this approach results in spatially inconsistent clusters, making it difficult to identify potential microenvironments. In contrast, our approach, though simple to implement, is able to avoid these problems by leveraging neighborhood information of cells. After combining neighborhood-based statistics like quantiles and centralities, we can detect microenvironments with mixed cell types, paralleling our simulation results. Furthermore, spatially consistent K-means clusters can be derived, supporting discovery of microenvironments.

We applied our methodology to the spatial omics dataset of (Keren et al., 2019) and found five spatially continuous microenvironments in the cells’ spatial plot. We compared this result with the analogous approach based on cell-level data and found that it is more difficult to identify meaningful microenvironments without an initial featurization step.

One advantage of our methodology is that the choice of neighborhood-based featurization is flexible. In our example, we used neighborhood quantiles of principal components and network statistics to build the neighborhood matrix for UMAP. These statistics could be replaced by other neighborhood-based statistics like cell-type diversity or local modularity. Also, the embedding and clustering methods are not fixed. We could use alternative dimensionality reduction methods like t-distributed stochastic neighbor embedding (t-SNE) and PCA or clustering methods like spectral clustering depending on the problem structure.

There are several avenues to develop this work. First, we treated the nodes in the neighborhood networks identically, ignoring their cell types. This is convenient for the computation of network statistics, but the information is nonetheless lost. To address this, it may be possible to build neighborhood networks with different node types and compute corresponding network statistics. A second question is how to combine matrices. Our featurization is based on matrices from two groups of statistics (quantiles and network statistics), and their variances and interpretation could be quite different according to their groups. Is there a more principled approach to scaling and combining these measures into a single featurization? One possible solution could be multiple factor analysis, which distinguishes between groups of statistics (Pages, 2014). Thirdly, we used K-means clustering in our methodology, which is a common choice but far from the best clustering algorithm for low-dimensional embeddings. K-means clustering is sensitive to outliers in the embedding plot and assumes spherical clusters, making it potentially unreliable. Spectral clustering could be a potential improvement because it is more sensitive to the gradient structures in the UMAP embeddings.

Data availability

Underlying data
The TNBC dataset of Keren et al. (2019) can be downloaded from https://www.angelolab.com/mibi-data.

Extended data
Analysis code available from: https://github.com/XTH1114/NBFvis

Archived analysis code as at time of publication: DOI: 10.5281/zenodo.6639613

License: GNU General Public License

Acknowledgements
We would like to express our gratitude to all the members of our group, who provided us with precious suggestions for the modification of our methodology and the Shiny app. In particular, we thank MinXing Zheng for suggestions on the choices of network statistics and Xinran Miao and Hanying Jiang for help improving the user interface of our Shiny app.

References

Pagès J: Multiple factor analysis by example using R. CRC Press; 2014.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com