CORRESPONDENCE

Optimal timing for lithium levels [version 1; peer review: awaiting peer review]

Kevin J Black

Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA

First published: 12 Jul 2022, 11:779
https://doi.org/10.12688/f1000research.122507.1

Latest published: 12 Jul 2022, 11:779
https://doi.org/10.12688/f1000research.122507.1

Abstract
Reddy and Reddy (2014) discuss the optimal timing for lithium levels in patients taking once-daily extended-release lithium formulations. They argue for blood sampling 24 h after the previous dose rather than the standard 12 h. I interpret the data quite differently. The authors start with the assumption that the clinician wants a trough level. I disagree. What one wants is to be able to compare a patient's lithium level to the large body of published knowledge about lithium dosing. Almost all of that data comes from standard 12-h blood draws with plain (immediate-release) lithium carbonate or lithium citrate. So, the real question of interest is, with extended-release lithium formulations, at what time point does one draw the lithium level to compare most accurately with a standard 12-h blood draw with plain lithium carbonate?

The answer is not obvious because extended-release formulations affect only the absorption and not the excretion of lithium. Their primary benefit is reducing the transient peak lithium serum concentration, not delaying the (already relatively slow) elimination of lithium.

Emami and colleagues (2004) provide the needed data. First they show that 90% of the administered dose of a commercial extended-release formulation (Eskalith CR®) is absorbed by 4 h after a dose, and ~100% is absorbed by 8 h (their Figure 2A). Second, they show that at 12 h after a dose, the blood levels for immediate and extended release formulations are essentially identical (their Figure 3). Thus 12 h after the previous dose is the ideal time for drawing blood levels for extended-release lithium tablets.

Keywords
lithium, pharmacology, administration & dosage, pharmacokinetics, blood level, concentration
Reddy and Reddy (2014) discuss the optimal timing for lithium levels in patients taking once-daily extended-release lithium formulations. They argue for blood sampling 24 h after the previous dose rather than the standard 12 h. I interpret the data quite differently. The authors start with the assumption that the clinician wants a trough level. I disagree. What one wants is to be able to compare a patient’s lithium level to the large body of published knowledge about lithium dosing. Almost all of that data comes from standard 12-h blood draws with plain (immediate-release) lithium carbonate or lithium citrate. So, the real question of interest is, with extended-release lithium formulations, at what time point does one draw the lithium level to compare most accurately with a standard 12-h blood draw with plain lithium carbonate?

The answer is not obvious because extended-release formulations affect only the absorption and not the excretion of lithium. Their primary benefit is reducing the transient peak lithium serum concentration, not delaying the (already relatively slow) elimination of lithium.

Emami et al. (2004) provide the needed data. First they show that 90% of the administered dose of a commercial extended-release formulation (Eskalith CR®) is absorbed by 4 h after a dose, and ~100% is absorbed by 8 h (their Figure 2A). Second, they show that at 12 h after a dose, the blood levels for immediate and extended release formulations are essentially identical (their Figure 3). Thus 12 h after the previous dose is the ideal time for drawing blood levels for extended-release lithium tablets.

Data availability
There are no data associated with this article.

References

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com