DATA NOTE

REVISED Prenatal brain MRI samples for development of automatic segmentation, target-recognition, and machine-learning algorithms to detect anatomical structures [version 2; peer review: 2 not approved]

Hugues Gentillon\(^1,2\), Ludomir Stefańczyk\(^2\), Michał Strzelecki\(^1\), Maria Respondek-Liberska\(^3\)

\(^1\)Institute of Electronics, The Faculty of Electrical, Electronic, Computer and Control Engineering, Technical University of Łódź, Łódź, Poland
\(^2\)Department of Radiology and Diagnostic Imaging, Barlicki University Hospital, Medical University of Łódź, Łódź, Poland
\(^3\)Diagnosis and Prevention of Congenital Malformations, Instytut Centrum Zdrowia Matki Polki, Łódź, Poland

First published: 31 Jan 2017, 6:93
https://doi.org/10.12688/f1000research.10723.1

Latest published: 08 Sep 2017, 6:93
https://doi.org/10.12688/f1000research.10723.2

Abstract

In this data note, we present a sorted pool of fetal magnetic resonance imaging (MRI) specimens. These were selected for a project seeking to further develop computer vision software called MaZda, which was originally created for magnetic resonance (MR) image analysis. A link to download the samples is provided in the manuscript herein. This data descriptor further explains how and why these fetal MRI samples were selected. Firstly, thousands of cross-sectional images obtained from fetal MRI scans were processed and sorted semi-manually with other software. We did so because a built-in “samplesort” (sorting algorithm) is missing in MaZda version 5. Additionally, the software is unfortunately lacking effective and efficient algorithms to allow automatic identification and segmentation of anatomical structures in fetal MRI samples. Hence, the final sorting steps were carried out manually via time-consuming methods (i.e., human visual detection and classifications by the gestational age of pregnancy and the rotational plane of the MR scanner). Thus, the latter correlates with the anatomical plane of the mother, rather than the hypothetical plane used to transect the fetus. In brief, we collated these fetal MRI samples in an effort to facilitate future research and discovery, especially to aid the improvement of MaZda.

Keywords

fetal MRI, automatic segmentation, algorithms, fetal brain, neuroinformatics, cybernetics, applied artificial intelligence
Corresponding author: Hugues Gentillon (hugues.gentillon@stud.umed.lodz.pl)

Author roles: Gentillon H: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Stefańczyk L: Funding Acquisition, Project Administration, Resources, Software, Supervision, Validation, Writing – Review & Editing; Strzelecki M: Resources, Software, Validation, Visualization, Writing – Review & Editing; Respondek-Liberska M: Funding Acquisition, Resources, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Medical University of Lodz & Polish Research Committee and affiliated institutions and hospitals; Self-funded; MRI cost was covered by Polish National Health Fund, grants and financial aid from Swedish Ministry of Education and Research/Centrala Studiestödsnämnden and from U.S. Department of Education. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2017 Gentillon H et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Gentillon H, Stefańczyk L, Strzelecki M and Respondek-Liberska M. Prenatal brain MRI samples for development of automatic segmentation, target-recognition, and machine-learning algorithms to detect anatomical structures [version 2; peer review: 2 not approved] F1000Research 2017, 6:93 https://doi.org/10.12688/f1000research.10723.2

First published: 31 Jan 2017, 6:93 https://doi.org/10.12688/f1000research.10723.1

This article is included in the INCF gateway.

This article is included in the Artificial Intelligence and Machine Learning gateway.

This article is included in the Data: Use and Reuse collection.
Amendments from Version 1

We revised the first draft for clarity. Unnecessary words were omitted to make sure that the text flows from one logical point to another.

See referee reports

Introduction

Sample sorting can be useful for clinical research seeking to measure the feasibility of new ideas and to develop new technology. MaZda software (http://www.eletel.p.lodz.pl/programy/mazda/) makers and developers have shown that they are listening to their users by continuing to release updates and new versions12. The samples provided with the manuscript herein were collected and sorted especially for testing upcoming versions of MaZda. The aim is to continue to collaborate with MaZda software engineers in order to code target-recognition semantics and eventually build ideal algorithms for automatic segmentation of the prenatal brain. It is important to also note that it is not an easy task: to deconstruct the scientific knowledge acquired by radiologists after several hours of practice to master the skills of diagnostic imaging. Moreover, we have recently tested MaZda version 4.6 and version 5.0 and made some recommendations to the software engineers12–14. In reaction to our need, the MaZda team announced an upcoming version called qMaZda, being codeveloped with Weka (www.eletel.p.lodz.pl/pls/SoftwareQmazda.html; www.cs.waikato.ac.nz/ml/weka). We are expecting to see some improvements in qMaZda.

Methods

This dataset was created to improve the efficacy of MaZda. Sample collection was approved by the Research Ethics Committee of the Medical University of Lodz (permit number: RNN/213/13/KE). Subjects were informed with a written statement of consent for research and publication. As per agreement, personal information was removed from the original specimens.

Dataset 1. Fetal MRI data

http://dx.doi.org/10.5256/f1000research.10723.d150296

1.5/3T samples were manually sorted by gestational age and anatomical plane. Format: 32-bit BMP.

In terms of subject demographics and phenotypes, the background of the patients was consistent with the majority of the Polish population. In 2015, the World Health Organization (WHO) reported 2.68 million neonatal deaths (WHO fact sheet on congenital anomalies, updated September 2016: www.who.int/mediacentre/factsheets/fs370/en/). The estimate of children born with at least one congenital malformation is about 2–3% worldwide (www.who.int/geneconomics/anomalies/en/Chapter02.pdf). In Poland, the prevalence rate of birth defects was estimated at 52 to 53 per 1000 live births (http://www.marchofdimes.org/materials/global-report-on-birth-defects-the-hidden-toll-of-dying-and-disabled-children-full-report.pdf). Known birth defects can be detected early in pregnancy using non-invasive and/or invasive techniques15–17. Some can even be treated in utero11,11. There flows the rationale behind this collation of fetal magnetic resonance imaging (MRI) data to improve the efficacy of MaZda.

The enrolled subjects underwent MRI examination for the purpose of investigating suspected congenital, obstetrical, and placental anomalies that could not be detected by routine ultrasound and genetic amniocentesis. Volunteers who donated fetal MRI samples to create this dataset were in need of fetal, obstetrical or placental care. The criteria for inclusion and exclusion were as follows: 1) 1.5T or 3T MRI; 2) all three anatomical planes were scanned (axial, coronal, and sagittal); 3) individual cross-sectional images are “usable” (i.e., not heavily degraded by noise and artifacts, motion blur, or uncontrollable movement of fetal head); 4) visible fetal brain with no significant malformation; 5) thalamus, gray matter, white matter, and ventricles are also visible (Figure 1). The request to collect MRI scans was sent long after MRI examination was performed. Hence, MRI examination was not prescribed for the purpose of creating this dataset. After looking at 1358 MRI scans in two teleradiology databases, we manually selected 6 patients who had undergone 1.5T MRI examination at Barlicki University Hospital (Łódź, Poland) and 11 patients who had undergone 3T MRI examination at Polish Mother’s Memorial Hospital-Research Institute (Łódź, Poland).

Electro-radiology technicians performed fetal MRIs, as per details provided on the prescription and hospital regulations12. Hence, we did not have control of MR scanner settings. The technicians stored the MRIs on compact discs (CDs). By default, MaZda version 4.6 and 5 are lacking an automatic samplesort (sorting algorithm) to extract images and arrange them into folders and subfolders. An option was to create a plug-in especially written for MaZda. Due to time consumption, we used other software to carry out image acquisition (Micro Dicom 0.9, Dimensions 2, Sante Dicom 4, Photoshop CS6 64-bit Extended). For the extraction of Digital Imaging and Communications in Medicine (DICOM) data, we used the 64-bit portable version of Micro Dicom 0.9.1. Most CDs could be accessed with Micro Dicom or Photoshop CS6 64-bit Extended. We used the rescue feature in Sante Dicom 4 to recover the data and export them in DICOM format. Micro Dicom was the preferred samplesort, because it also allowed image selection, batch conversion, and export of DICOM files as 32-bit BMP. Sorting of the sample by MR strength (3T, 1.5T) was carried out with Dimensions 2. Clinical arrangements of the sample by gestational age of pregnancy and anatomical plane of the mother were carried out manually. The primary goal was to select images that had clearly identifiable anatomical regions such as gray matter, white matter, ventricles, and thalamus. It was not possible to complete the task with the MaZda version 5 package, as the available algorithms were lacking automatic...
Figure 1. Schematic view of the clinical arrangement of the data. Fetal magnetic resonance imaging studies were extracted from compact discs and sorted by gestational age of pregnancy and anatomical plane of the mother.
segmentation to detect anatomical structures of the fetal brain. Additionally, details about in-depth sorting as well as MRI specifications and file formats are provided in the methods of the cited article 1.

Ethics and informed consent

Permission to collect samples was approved by the Research Ethics Committee of the Medical University of Lodz. Written informed consent was obtained from all subjects (permit number: RNN/213/13/KE).

Data and software availability

Dataset 1: Fetal MRI data. 1.5/3T samples were manually sorted by gestational age and anatomical plane. Format: 32-bit BMP. doi, 10.5256/f1000research.10723.d150296 13

MaZda Package v5 RC HG available from: http://dx.doi.org/10.17632/dkxyrzwpzs.1

Micro Dicom 0.9: www.microdicom.com/downloads.html

Sante Dicom 4: www.santesoft.com/downloads.html

Photoshop CS6 64-bit Extended: https://helpx.adobe.com/photoshop/using/dicom-files.html

Author contributions

HG conceived, designed, and wrote this data descriptor. LS and MRL contributed to sample collection and sorting. LS, MRL, and MS helped with the description and the clinical arrangement of the data. MS helped with editing the research notes, coordinated with the software engineers to get technical feedback, and provided the latest updates. All authors were involved in the revision process and have agreed to the final content.

Competing interests

No competing interests were disclosed.

Grant information

Medical University of Lodz & Polish Research Committee and affiliated institutions and hospitals; Self-funded; MRI cost was covered by Polish National Health Fund, grants and financial aid from Swedish Ministry of Education and Research/Centrala Studiestödsnämnden and from U.S. Department of Education.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

The authors gratefully acknowledge Rafał Pawliczak and MUL staff for research coordination, logistics, and administration; Paweł Liberski and MUL Neuropathology Department for counsels with funds to cover MRI expenses; Ludomir Stefaričzyk and Barlicki Hospital staff for sample supply and clinical feedback; Maria Respondek-Liberska and Matki Polki Hospital for sample supply and clinical feedback; Tadeusz Biegiarski, ICZMP Director; Michał Strzelecki and TUL staff for providing MaZda software and technical feedback.

References

Open Peer Review

Current Peer Review Status: ✗ ✗

Version 1

Reviewer Report 03 July 2017

https://doi.org/10.5256/f1000research.11563.r23366

© 2017 Shi F. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Feng Shi
Cedars-Sinai Medical Center, Los Angeles, CA, USA

The authors proposed a sample sorting method for fetal MR images. Below are several suggestions to potentially improve the clarity of the paper.

The Introduction stated that the goal of this work is to further improve the MaZda software. The authors may consider enlarging its audience size by introducing how this data could benefit other researchers in the fetal research community.

The sample sorting seems totally manual, which may be more efficient with the help of some machine learning algorithms.

Experiments could be added to evaluate the performance/correctness of the sample sorting process.

Some details of the data itself could be useful for readers, such as the final data number, demographic information. The dataset 1 for downloading seem only contain 3 subjects.

Is the rationale for creating the dataset(s) clearly described?
Partly

Are the protocols appropriate and is the work technically sound?
Partly

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
No
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Early brain development

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Author Response 03 Jul 2017

Hugues Gentillon, Medical University of Łódź, Łódź, Poland

Thank you for your comments and suggestions. Again, on F1000Research's policies, it states that ‘Data Notes are brief descriptions of scientific datasets that include details of why and how the data were created; they do not include any analyses or conclusion’, and we feel that some of your comments mentioned are a matter of personal preference. For example, you ask us to publish experimental analysis and information about 'patient demographics' but we feel that this is unnecessary, in this case.

We do not agree with some of your comments and suggestions from a practical (clinical) point of view, for the following reasons below.

The main goal of the Mazda software is to evaluate signal-to-noise ratio. In fact, cerebral fluid should be homogeneous in both 1.5T and 3T MR images, regardless of patient demographics (Africans, Europeans, Asians, etc.). If so it is a plus for MaZda and the method, as well as a good reference for MR image quality. It is also a good start to assess the maturation of fetal brain in MR. This process is a fact.

Competing Interests: None.
good that patient inclusion is provided but it would be nice to know how many images acquired
with what protocol are collected, as well as the patient characteristics.

Furthermore, exact purpose of the software is currently unclear. Reading descriptions available at
provided links provides some clarification but it would be much better if this manuscript is self-
contained.

The manuscript contains many specific terms that are to the best of my knowledge not generally
known and hence need to be introduced and explained to allow understanding of the work. For
example, the introduction starts with “sample sorting” which is not introduced. In the same
paragraph, the authors mention “target recognition semantics” but it is not known what is meant
by this.

The authors mention that personal information has been removed according to agreement, but it
is not clear what agreement.

It would be important to describe in the manuscript if and how scientific community can benefit
from this image database and the described software.

The title does not reflect the content of the paper well. I would advise to change it accordingly.

Is the rationale for creating the dataset(s) clearly described?

No

Are the protocols appropriate and is the work technically sound?

Partly

Are sufficient details of methods and materials provided to allow replication by others?

No

Are the datasets clearly presented in a useable and accessible format?

No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Medical image analysis

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to state that I do not consider it to be of an acceptable scientific standard, for
reasons outlined above.

Author Response 31 May 2017

Hugues Gentillon, Medical University of Łódź, Łódź, Poland

Thank you for your comments and suggestions. On F1000Research's policies, it states that
‘Data Notes are brief descriptions of scientific datasets that include details of why and how
the data were created; they do not include any analyses or conclusion’, and we feel that some of your comments mentioned are a matter of personal preference. For example, you request us to publish information about ‘patient characteristics’. It is unnecessary.

Competing Interests: None

Comments on this article

Version 1

Author Response 06 Sep 2017

Hugues Gentillon, Medical University of Łódź, Łódź, Poland

We will make some editing changes in version 2 to improve clarity. We also wish to reiterate (emphasize again) that this paper is a "data note" (also known as data descriptor) -- meaning it briefly describes data to help others reuse the data. The focus is on MR images of brain tissues, not the background of the patients. All humans share the same anatomy, regardless of ethnicity. Also, we did not test any hypotheses, did not conduct any experiment and did not present any results. Hence, it is unnecessary to write descriptive analysis/interpretation about findings and speculations about benefit for a scientific community. We hope that the referees will reconsider their negative reviews and will not do any disservice to the integrity and the general role of the peer review."

Competing Interests: None.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com