RESEARCH ARTICLE

Nutritional and micronutrient status of adolescent schoolgirls in eastern Sudan: A cross-sectional study [version 1; peer review: 2 approved with reservations]

Hyder M. Mahgoub¹, Omar E. Fadlelseed², Ammar H. Khamis³, Jalal A. Bilal⁴, Ishag Adam ⁵

¹New Halfa Teaching Hospital, New Halfa, Sudan
²Department of Biochemistry, College of Medicine, Najran University, Najran, Saudi Arabia
³Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
⁴Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
⁵Faculty of Medicine, University of Khartoum, Khartoum, Sudan

Abstract

Background: Adolescents, especially girls, are susceptible to malnutrition and their diet must be adequate to support their very rapid growth and development. Currently, there is little published data on the nutritional state amongst adolescent girls in Sudan.

Methods: A cross-sectional study was conducted to assess the nutritional and micronutrient status of adolescent schoolgirls in eastern Sudan during the period of January-February 2015. Weight and height were measured using standard methods. Haemoglobin and ferritin levels were measured using blood samples, and blood films for malaria and stool samples for Schistosoma mansoni were investigated. Nutritional status was assessed according to the WHO 2006 reference values. Copper and zinc concentrations were measured by atomic absorption.

Results: Twenty-five (13.7%) out of 183 girls were stunted. Seventy (38.3%) were thin; 17.5, 9.3 and 11.5% had mild, moderate and severe thinness, respectively. Only 10 (5.5%) and six (3.3%) girls were overweight and obese, respectively. The prevalence of anaemia was 77.0%. While there was no significant difference in the haemoglobin, ferritin, copper and zinc levels; thin children had significantly lower zinc (P=0.007).

Conclusions: There is a high rate of stunting, thinness and anaemia among adolescent schoolgirls in eastern Sudan. More care has to be taken in order to provide a better nutrition status in the area.

Keywords
adolescent, anthropometric, micronutrient, schoolgirls, Sudan
Corresponding author: Ishag Adam (ishagadam@hotmail.com)

Author roles: Mahgoub HM: Data Curation, Investigation; Fadelseed OE: Investigation, Writing – Original Draft Preparation; Khamis AH: Data Curation, Formal Analysis; Bilal JA: Formal Analysis, Writing – Original Draft Preparation; Adam I: Conceptualization, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2017 Mahgoub HM et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Mahgoub HM, Fadelseed OE, Khamis AH et al. Nutritional and micronutrient status of adolescent schoolgirls in eastern Sudan: A cross-sectional study [version 1; peer review: 2 approved with reservations] F1000Research 2017, 6:1831 (https://doi.org/10.12688/f1000research.12721.1)

Introduction
Adolescents (individuals aged 10 to 19 years) make up approximately one fifth of the world’s population. During adolescence there is an increase in nutrient demand that is needed for intense growth, where individuals can gain 15% of their ultimate adult height and half of their adult weight. Adolescents are vulnerable groups and their diet must be adequate to support their very rapid growth and development. Well-nourished adolescents can have optimum cognitive and learning skills, and energies, as well as be healthy for future parenthood. Unfortunately, the required optimum nutrition remains unmet for a vast numbers of adolescents, who are thus unable to achieve their full genetic developmental potential. In particular, adolescents girls in developing countries are at risk, since they may become pregnant at an early age and have a greater risk of pregnancy-associated morbidity and mortality, as well as being at a higher risk of being stunted mothers, who are likely to suffer obstetric complications, such as delivering low birth weight babies.

Research on the nutritional status of adolescent girls is of paramount importance to health planners, as well as to practicing physicians. There is little published data on the nutritional status of adolescent girls in countries with few resources, including Sudan, where malnutrition is a major health problem. Consequently, the current study was conducted to assess the nutritional and micronutrient status of adolescent schoolgirls in eastern Sudan.

Methods
Participant sample
A cross-sectional study was conducted in the New Halfa area in eastern Sudan during the period of January–February 2015. Adolescent schoolgirls aged from 11 to 18 years were selected through a two-stage random (using computer generated number) cluster sampling of adolescent girls attending three primary schools (AlHara Aloulah, Tania, and AlHara Althalta) in the area. Stage one, simple random sampling of the schools to randomly identify classes within the specific age range; stage two, random sampling of the class in which girls were identified. Those with chronic illnesses were excluded.

A sample size of 183 subjects was calculated using the assumption of the prevalence of stunting (9.45%) and thinness (23.7%) that was recently reported among school children in Northern Sudan. This sample would provide 80% power to detect a 5% difference at α = 0.05, with an assumption that complete data might not be available for 10% of participants.

Data collection
Nutritional status. Age of the adolescent schoolgirls was taken and double checked with that in the school records, which had been completed using the birth certificate.

Weight was measured using a digital scale to the nearest 0.1 kg. Height was measured using a stadiometer with a moveable headboard to the nearest 0.1 cm, while the participant was barefoot. Body mass index (BMI) was computed as weight (kg) divided by the square of height (m²).

Height-for-age (HAZ) and BMI-for-age z-scores (BAZ) were calculated according to the WHO reference. Stunting was defined by HAZ < -2 z-scores. Overweight was defined by BAZ between 1 z-scores and 2 z-scores, and obesity by BAZ > 2 z-scores. The WHO defines mild, moderate and severe thinness by z-scores: -2, -1; -3, -2; and <-3, respectively.

Micronutrient status. Venous blood (5 mls) was collected from each participant and allowed to clot in plain tubes, and serum was stored at -20°C until analysed in the laboratory in Khartoum for measurement of serum ferritin, copper and zinc. Concentrations of ferritin were determined by immunofluorescent assay using IMMULITE1000 (SIEMENS, CA, USA), according to the manufacturer’s instructions.

Copper and zinc concentrations were measured by atomic absorption spectrophotometry (SOLAAR 2.0, atomic absorption spectrophotometer (ICE 3000), Thermo Fisher Scientific, Cambridge, UK, 3000 Serie), according to the manufacturer’s instructions.

Haemoglobin level was measured by HemoCue haemoglobinometer (HemoCue AB, Angelholm, Sweden), according to the manufacturer’s instructions. Anaemia and severe anaemia were defined as haemoglobin <12 and <8 g/dl, respectively. Iron deficiency was defined as serum ferritin <12 µg/l; iron deficiency anaemia as haemoglobin <12 g/dl and s-ferritin<12 µg/l.

Parasite status. Blood films for malaria (Plasmodium falciparum) were prepared and Giemsa-stained.

Schistosoma mansoni infection was investigated in a single stool sample that was collected from each participant, and a Kato-Katz slide prepared and used to determine the infection intensity, if any.

Statistical analysis
Data were entered using EpiData 3.4 and then exported to SPSS 20 for analysis. Anthropometric indices (HAZ and BAZ) were calculated using WHO child growth references for Z score. Haemoglobin, ferritin, zinc and copper were tested for normality using Kolmogorov –Smirnov test. Mann-Whitney and Kruskal –Wallis tests were used to compare the continuous non-parametric data between two and more than two groups, respectively. Age was normally distributed and compared between two and more than two groups with t-test and ANOVA, respectively. Spearman’s (non-parametric) correlation was used to investigate the correlations between the different variables. A P value of < 0.05 was considered significant.

Ethical statement
The study received ethical clearance from the Research Board at the Faculty of Medicine University of Khartoum (approval # 2012,18). After explaining the purpose of the study, written permission to perform the study was obtained from the local health
and education office (New Halfa Head Office for Education). Written informed consent was obtained from the parents/guardians of the school girls before data collection.

Results

Two hundred adolescent schoolgirls were initially screened; 183 had complete data and were analysed. The nutritional status of the girls is shown in Table 1. Twenty-five (13.7%) out of the 183 girls were stunted. Seventy (38.3%) were thin, 17.5%, 9.3% and 11.5% had mild, moderate and severe thinness, respectively. Only 10 (5.5%) and six (3.3%) children were overweight and obese, respectively. The prevalence of anaemia, iron deficiency and iron deficiency anaemia was 77.0%, 18.0% and 17.5% respectively. Four children (2.2%) had severe anaemia.

Table 1. Anthropometric status of the adolescent schoolgirl, eastern Sudan.

<table>
<thead>
<tr>
<th>Status</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>97</td>
<td>53.0</td>
</tr>
<tr>
<td>Mild thinness</td>
<td>32</td>
<td>17.5</td>
</tr>
<tr>
<td>Moderate thinness</td>
<td>17</td>
<td>9.3</td>
</tr>
<tr>
<td>Severe thinness</td>
<td>21</td>
<td>11.5</td>
</tr>
<tr>
<td>Overweight</td>
<td>10</td>
<td>5.5</td>
</tr>
<tr>
<td>Obese</td>
<td>6</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>183</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2. Anthropometric status and micronutrient levels in adolescent schoolgirl, eastern Sudan. Values show the median (interquartile range).

<table>
<thead>
<tr>
<th>Status</th>
<th>Haemoglobin, g/dl</th>
<th>Ferritin, μg/l</th>
<th>Zinc, μg/ml</th>
<th>Copper, μg/ml</th>
<th>Zinc/copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (n=97)</td>
<td>10.8 (10.1–12.1)</td>
<td>44.2 (16.6–88.8)</td>
<td>113.1 (99.8–130.0)</td>
<td>124.5 (104.7–44.75)</td>
<td>99.7</td>
</tr>
<tr>
<td>Mild (n=32)</td>
<td>10.8 (10.1–11.6)</td>
<td>45.4 (24.3–87.6)</td>
<td>114.2 (105.4–127.3)</td>
<td>97.1 (119.0–138.2)</td>
<td>1.07</td>
</tr>
<tr>
<td>Moderate (n=17)</td>
<td>9.4 (9.8–11.1)</td>
<td>84.3 (8.0–124.9)</td>
<td>106.0 (97.9–120.5)</td>
<td>118.5 (102.2–150.7)</td>
<td>99.9</td>
</tr>
<tr>
<td>Severe (n=21)</td>
<td>10.8 (10.1–12.2)</td>
<td>31.8 (14.4–100.5)</td>
<td>96.1 (83.7–102.6)</td>
<td>108.5 (88.5–140.0)</td>
<td>1.1</td>
</tr>
<tr>
<td>Overweight (n=10)</td>
<td>10.2 (9.6–11.3)</td>
<td>43.4 (31.9–182.4)</td>
<td>116.9 (103.1–135.9)</td>
<td>144.2 (115.0–149.7)</td>
<td>0.7</td>
</tr>
<tr>
<td>Obese (n=6)</td>
<td>10.8 (10.6–11.2)</td>
<td>113.8 (31.5–182.0)</td>
<td>130.1 (109.2–137.3)</td>
<td>137.0 (121.1–149.7)</td>
<td>0.9</td>
</tr>
<tr>
<td>P value</td>
<td>0.649</td>
<td>0.597</td>
<td>0.007</td>
<td>0.191</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Table 3. Stunting and micronutrient levels in adolescent schoolgirl, eastern Sudan. Values show the median (interquartile range).

<table>
<thead>
<tr>
<th>Micronutrients</th>
<th>Stunted (n=25)</th>
<th>Not stunted (n=158)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin, g/dl</td>
<td>10.8 (10.2–11.9)</td>
<td>10.8 (10.2–11.7)</td>
<td>0.925</td>
</tr>
<tr>
<td>Ferritin, μg/l</td>
<td>31.4 (20.3–88.0)</td>
<td>46.1 (17.8–96.9)</td>
<td>0.436</td>
</tr>
<tr>
<td>Zinc, μg/ml</td>
<td>108.4 (99.5–124.7)</td>
<td>112.0 (99.2–129.2)</td>
<td>0.560</td>
</tr>
<tr>
<td>Copper μg/ml</td>
<td>118.5 (104.0–144.7)</td>
<td>123.5 (103.1–144.0)</td>
<td>0.796</td>
</tr>
<tr>
<td>Zinc/copper</td>
<td>0.955</td>
<td>1.055</td>
<td>0.521</td>
</tr>
</tbody>
</table>
Discussion

The current study found a high prevalence of stunting (13.7%), thinness (38.3%) and anaemia (77.0%) among adolescent schoolgirls in this setting. This supports the findings of a previous study where a high prevalence of underweight (41.0%) and stunting (21.4%) was reported among primary school children in Khartoum, Capital of Sudan. These two studies should be compared with caution because of the different study techniques used. Unlike the WHO standard used in the current study, weight-for-age, HAZ and skin-fold thickness of triceps muscle was used by the later study. Recently, Sarar and Diab reported a lower prevalence of stunting (9.4%), thinness (23.1%), and anaemia (29.7%) among 835 school-aged children in Northern Sudan.

The overall prevalence of thinness (38.3%) in the current study was much higher than reports of studies conducted in other neighbouring African countries, e.g. Ethiopia (1.4-8.9%), Kenya (4.5%) and Uganda (10.1%).

Wasting, stunting and thinness are indicators of acute nutritional deficiency. Malnutrition in all age groups is caused by inadequate food intake or poor food utilization caused by infections. Six (3.3%) adolescent girls in the current study were overweight. Being overweight and obesity have been reported among 10.7% of urban Sudanese adolescents.

Though there was no significant difference in haemoglobin, ferritin, and copper levels, a significantly lower zinc level among thin adolescent girls was found compared with girls with normal BMIs in the current study. Contrary to our findings, Bemnet and colleagues showed no association between zinc and HAZ. However, they observed a significant positive correlation between HAZ and copper levels. Both zinc and copper have an important role in growth, and participate in numerous enzyme systems.

Zinc deficiency is common in developing countries and can delay linear growth. Unfortunately, recent research failed to show any benefit of zinc supplement in decreasing stunting in Malawian children.

In this study, we aimed to assess the nutritional and micronutrient status of adolescent schoolgirls in eastern Sudan. A limitation of this study was that adolescent boys were not investigated, which might have underestimated the rate of malnutrition among adolescents (both males and females), as adolescent girls have been shown to be less likely to be stunted than boys. In addition, only schoolgirls were investigated, which might have missed the most vulnerable group of adolescent girls who do not attend school. Another limitation of the current study was the lack of puberty history, since the onset of the menarche might have effects on the nutritional status of the adolescent girls. Moreover, there was a lack of dietary intake history, since physical growth of adolescent girls is generally related to their dietary intake. Another point that should be remembered is the lack of investigation of acute inflammatory markers, e.g. C-reactive protein, which has been to be associated with anaemia in eastern Sudan.

Conclusions

There is a high rate of stunting, thinness and anaemia among adolescent schoolgirls in eastern Sudan. More care has to be taken in order to provide a better nutrition status in the area.

Data availability

Dataset 1: Raw data collected as the basis for this study.

http://dx.doi.org/10.5256/f1000research.12721.d180824

Competing interests

No competing interests were disclosed

Grant information

The author(s) declared that no grants were involved in supporting this work.

Table 4. Spearman correlation between height, BMI and micronutrients among adolescent schoolgirls in eastern Sudan.

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th>Height</th>
<th>Haemoglobin</th>
<th>Ferritin</th>
<th>Zinc</th>
<th>Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.344</td>
<td>0.252</td>
<td>-0.092</td>
<td>-0.106</td>
<td>0.025</td>
<td>-0.082</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td>0.215</td>
<td>0.155</td>
<td>0.738</td>
<td>0.271</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.045</td>
<td>0.542</td>
<td>0.077</td>
<td>-0.014</td>
<td>0.141</td>
<td>0.017</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.077</td>
<td>0.299</td>
<td>-0.114</td>
<td>0.125</td>
<td>0.141</td>
<td>0.017</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>-0.045</td>
<td>0.542</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.016</td>
<td>-0.114</td>
<td>0.101</td>
<td>0.317</td>
<td>0.070</td>
<td>0.115</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.093</td>
<td>0.141</td>
<td>0.191</td>
<td>0.070</td>
<td>0.040</td>
<td>0.004</td>
</tr>
</tbody>
</table>
References

Open Peer Review

Current Peer Review Status: ? ?

Version 1

Reviewer Report 08 January 2018

https://doi.org/10.5256/f1000research.13779.r29436

© 2018 Munisi D. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

David Z. Munisi
Department of Global Health and Bio-Medical Sciences (GHBM), School of Life Sciences and Bio-Engineering (LiSBE), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania

INTRODUCTION

- Line 8, you write “energies”. There is no plural form of energy, so this should be written energy.

METHODS

- To make the section clearer and easy to follow, study design, study population inclusion and exclusion criteria, sample size and sampling procedures should be written under separate subheadings.
- You wrote “........ through a two-stage random cluster sample of adolescent girls attending three primary schools in the area.” Use the word sampling to indicate that it is a procedure. So you can instead write “Two stage cluster random sampling”.
- You have only mentioned exclusion criteria with no inclusion criteria mentioned. Kindly provide inclusion criteria as well.
- You have not mentioned which formula or statistical package you used to calculate the sample size using the values you have supplied. Kindly supply this information to make your methodology section easy to follow.

Data collection

Nutritional status:
- You mention that “Age of the adolescent schoolgirls was taken....” without stating it was taken from where; kindly state.
- “.........“The WHO defines mild, moderate and severe thinness by z-scores: −2, −1; −3, −2; and <−3, respectively”....Kindly state which Z-scores are you referring to here. To state thinness is not enough to make everyone understand which z-scores you are referring to.

Micronutrient status:
- “serum was stored at −20°C until analysed in the laboratory in Khartoum for measurement of serum ferritin, copper and zinc.”. Kindly supply the specific name of the laboratory in which this analysis was done.
- Please provide the reference for the cut-off points for anemia that you used in your study.
Parasite status: ...Change this to “Parasite infection status”

- ...“Blood films for malaria (Plasmodium falciparum)”... Why have you specifically mentioned Plasmodium falciparum here? State which blood smear did you prepare?
- Why did you only assess Schistosoma mansoni infection and ignored other intestinal nematodes (Soil transmitted helminths in particular i.e. Hookworms, Trichuris trichura and Ascaris lumbricoides) which are well known to significantly affect nutritional status and haemoglobin levels?

RESULTS
Table 1:
- Stunting rate doesn’t appear in this table.
- To make this table more useful, you can redraw by including nutritional status against school/or grade.

Paragraph two
- In the paragraph two of the results section, you report findings after comparing means, but it is not clear which test you used to compare the means. Please indicate this in a tabular form and write its summary in the text referring to the table. Tables make it easier for the reader to understand your analysis and findings.

Table 2 and 3
- Under each of the table in which you indicate a p-value, indicate as a footnote the test on which the reported p-values are based.

Table 4
- As a footnote indicate what ‘r’ stands for.

DISCUSSION
- You may need to start your discussion with a brief statement as to why it was important to conduct this study where it was conducted.
- In paragraph three you claim that wasting, stunting and thinness are indicators of acute nutritional insult. Kindly revisit the literature with a particular attention on stunting, then rephrase accordingly.
- “.......C-reactive protein, which has been to be associated with anaemia in eastern Sudan”..It appears there is a missing word between the word been....and to.

CONCLUSION
- The conclusion is very insufficient. Beef up your conclusion by reflecting on what you have found in your study.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 13 November 2017
https://doi.org/10.5256/f1000research.13779.r27612

© 2017 Aboussaleh Y. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

? Youssef Aboussaleh
Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

1. Many parts of the report need good English editing and avoidance of long sentences.

2. The discussion does not report comparisons between anaemic and non anaemic in terms of anthropometry. Nor is there any emphasis on iron deficiency without anaemia.

3. Are there any interactions between iron, zinc and cooper?, needs speculating!

4. May be above the scope of this study but no data is reported on food intake or at least food behaviour in terms of frequency (skipping breakfast for example?).

5. The parasite status is not brought significantly in the results with their interaction with micronutrient status. They are also omitted totally in the discussion.

6. The conclusion is very weak and general. It needs to reports the main contributions of this study

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes
Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com