STUDY PROTOCOL

Protocol for the perioperative outcome risk assessment with computer learning enhancement (Periop ORACLE) randomized study [version 2; peer review: 1 approved with reservations]

Bradley Fritz¹, Christopher King¹, Yixin Chen², Alex Kronzer¹, Joanna Abraham¹,³, Arbi Ben Abdallah¹, Thomas Kannampallil¹,³, Thaddeus Budelier¹, Arianna Montes de Oca¹, Sherry McKinnon¹, Bethany Tellor Pennington¹, Troy Wildes¹, Michael Avidan¹

¹Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
²Department of Computer Science and Engineering, Washington University McKelvey School of Engineering, St. Louis, Missouri, 63130, USA
³Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA

Abstract

Background: More than four million people die each year in the month following surgery, and many more experience complications such as acute kidney injury. Some of these outcomes may be prevented through early identification of at-risk patients and through intraoperative risk mitigation. Telemedicine has revolutionized the way at-risk patients are identified in critical care, but intraoperative telemedicine services are not widely used in anesthesiology. Clinicians in telemedicine settings may assist with risk stratification and brainstorm risk mitigation strategies while clinicians in the operating room are busy performing other patient care tasks. Machine learning tools may help clinicians in telemedicine settings leverage the abundant electronic health data available in the perioperative period. The primary hypothesis for this study is that anesthesiology clinicians can predict postoperative complications more accurately with machine learning assistance than without machine learning assistance.

Methods: This investigation is a sub-study nested within the TECTONICS randomized clinical trial (NCT03923699). As part of TECTONICS, study team members who are anesthesiology clinicians working in a telemedicine setting are currently reviewing ongoing surgical cases and documenting how likely they feel the patient is to experience 30-day in-hospital death or acute kidney injury. For
patients who are included in this sub-study, these case reviews will be randomized to be performed with access to a display showing machine learning predictions for the postoperative complications or without access to the display. The accuracy of the predictions will be compared across these two groups.

Conclusion: Successful completion of this study will help define the role of machine learning not only for intraoperative telemedicine, but for other risk assessment tasks before, during, and after surgery.

Registration: ORACLE is registered on ClinicalTrials.gov: NCT05042804; registered September 13, 2021.

Keywords
Anesthesiology, Machine Learning, Postoperative Complications, Protocol, Surgery
Introduction

Background and rationale

Each year, more than four million people worldwide die within 30 days after surgery, making perioperative events the third-leading cause of death. One common postoperative complication that is associated with an increased risk of death is acute kidney injury (AKI). In one retrospective study, postoperative AKI occurred in 39% of hospitalized surgical patients who had their creatinine checked after surgery. In-hospital mortality increased from 0.6% among those without AKI to 8.8% among those who experienced AKI.

Some postoperative deaths and AKI may be prevented through identification and modification of risk factors. Although some risk factors (e.g., age) are not modifiable and other risk factors (e.g., preoperative glycemic control) are no longer modifiable once surgery has begun, several important risk factors are under the anesthesiologist’s control during surgery. For example, intraoperative hypotension is a well-established risk factor both for postoperative death and for postoperative AKI. Interventions on such risk factors may therefore affect outcomes. Appropriate adjustments to the postoperative care plan may also impact outcomes.

Telemedicine has successfully improved mortality and other outcomes in the intensive care unit (ICU), and similar results may be expected in the operating room. In a stepped-wedge trial across units in a single medical center, tele-ICU implementation was associated with an absolute mortality reduction of nearly 2%. In a subsequent multi-center pre-post study, tele-ICU was associated with reduced in-hospital mortality and length of stay. Improved outcomes were associated with enhanced compliance with best clinical practice guidelines. The effect of telemedicine on outcomes may depend on characteristics of the patients in question—in one study, tele-ICU implementation improved mortality only among patients with higher illness severity scores.

The effectiveness of a telemedicine intervention depends on how well clinicians working in the telemedicine setting can assess patient risk and identify potential interventions to reduce risk. Accurate intraoperative risk assessment by clinicians is challenging for the following reasons. First, the sheer volume of data available is more than the human brain can comprehend with its limited data processing capacity. Competing clinical demands reduce the cognitive capacity available to process these data. Second, anesthesiology clinicians frequently use the available data to make decisions that are not based on sound logic. Clinicians may anchor on the first diagnosis that comes to mind, only seek out data that confirm a previously suspected diagnosis, or interpret ambiguous findings with a false sense of certainty. These concerns become increasingly significant as clinicians monitor increasing numbers of patients and have less time to review each patient’s information.

Clinicians in telemedicine settings may use machine learning (ML) tools to address their innate cognitive deficiencies. Computers can process larger quantities of data more quickly than a human, model more complex relationships and interactions among inputs, and will not fatigue. The ability of clinicians to integrate the output of ML tools into their overall assessment of the patient depends on the ML output being presented in a manner that makes sense to the clinician and caters to the clinician’s information needs. These needs will vary depending on the clinician’s background and the context in which the clinician is working.

Preliminary data

This study is possible because the investigators have previously developed ML algorithms for predicting postoperative death and AKI. They used a retrospective cohort of approximately 110,000 patients who underwent surgical procedures at Barnes-Jewish Hospital between 2012 and 2016. This dataset was divided into a training set (for model parameter tuning), a validation set (for hyperparameter tuning), and a test set (for quantifying model performance) in a ratio of approximately 7:1:2. Inputs to the models included patient characteristics, health conditions, preoperative vital signs and laboratory values, and intraoperative vital signs and medications. The resulting model predicted postoperative death with excellent accuracy (area under the receiver operating characteristic curve of 0.91, 95% confidence interval.
A separate model predicted AKI with good accuracy (area under the receiver operating characteristic curve of 0.82, 95% confidence interval 0.81-0.84). A separate model predicted AKI with good accuracy (area under the receiver operating characteristic curve of 0.82, 95% confidence interval 0.81-0.84).

In addition, the investigators have recently conducted a series of focus groups and user interviews with anesthesiology clinicians (unpublished data) to learn about their workflows and information needs when working in the intraoperative telemedicine unit at Barnes-Jewish Hospital. Based on these insights, the investigators have designed a display interface that shows ML predictions for postoperative death and AKI in real-time during surgery.

Objective

To determine whether anesthesiology clinicians in a telemedicine setting can predict postoperative death and AKI more accurately with ML assistance than without ML assistance. The hypothesis is that clinician predictions will be more accurate with ML assistance than without ML assistance.

Overall study design

The Perioperative Outcome Risk Assessment with Computer Learning Enhancement (Periop ORACLE) study will be a sub-study nested within the ongoing TECTONICS trial (NCT03923699). TECTONICS is a single-center randomized clinical trial assessing the impact of an anesthesiology control tower (ACT) on postoperative 30-day mortality, delirium, respiratory failure, and acute kidney injury. As part of the TECTONICS trial, clinicians in the ACT perform medical record case reviews during the early part of surgery and document how likely they feel each patient is to experience postoperative death and AKI. In Periop ORACLE, these case reviews will be randomized to be performed with or without access to ML predictions.

Methods: Participants, interventions, and outcomes

Study setting

The study will be conducted at Barnes-Jewish Hospital, a 1,252-bed university-affiliated tertiary care facility in St. Louis, MO. About 19,000 inpatient surgeries are performed in the hospital’s 58 operating rooms each year.

Eligibility criteria

The participants will include all patients enrolled in the TECTONICS trial during the 12-month sub-study period for whom the ACT clinicians conduct a case review. The inclusion criteria for TECTONICS include (1) surgery in the main operating suite at Barnes-Jewish Hospital, (2) surgery during hours of ACT operation (weekdays 7:00am-4:00pm), and (3) age ≥ 18. Exclusion criteria include procedures performed without anesthesiology services.

Recruitment

Participants are currently enrolled in TECTONICS via a waiver of consent. The investigators have obtained a waiver of informed consent to include these patients in Periop ORACLE as well.

Interventions – Machine learning algorithms

The machine learning models used in this study were originally trained and validated on a retrospective cohort of approximately 110,000 adult patients who underwent surgery with general anesthesia at Barnes-Jewish Hospital between 2012 and 2016. Input features included demographic characteristics, comorbid conditions, preoperative vital signs, surgical service, functional capacity as documented during the preoperative assessment, and most recent values of selected laboratory tests. A random forest model was implemented in scikit-learn. In the holdout validation cohort of 21,171 patients, the incidence of postoperative death was 2.2% and the model predicted this outcome with receiver operating characteristic area under curve (AUC) of 0.939 and precision-recall AUC of 0.27. The incidence of postoperative AKI was 6.1% and the model predicted this outcome with receiver operating characteristic AUC of 0.799 and precision-recall AUC of 0.275.

In February 2022, the models were retrained using a newer cohort of 84,455 patients who underwent surgery with general anesthesia at Barnes-Jewish Hospital between 2018 and 2020. This time period was after the hospital had transitioned from its previous electronic health record systems (including MetaVision as its anesthesia information management system) to Epic (Epic, Verona, WI). Input features were the same as the previous models, with the addition of the planned surgical procedure text field. A regularized logistic regression was used to predict the outcome from the words in the planned surgical procedure text field. This was used to initialize a gradient boosted decision tree, which was trained using the remaining features. Hyperparameters were selected by 10-fold cross validation. Models were implemented in XGBoost. In the holdout validation cohort of 16,891 patients, the incidence of postoperative death was 1.9% and the model predicted this outcome with receiver operating characteristic AUC of 0.91 and precision-recall AUC of 0.27. The incidence of postoperative AKI was 13.3% and the model predicted this outcome with receiver operating characteristic AUC of 0.90 and precision-recall AUC of 0.66.
A password-protected web application on a secure server has been created for delivery of machine learning algorithm outputs to clinicians. The design of this web application was informed by input obtained by users (clinicians from the ACT) in focus group sessions. For each patient, the machine learning predictions are presented in the form of predicted probabilities of each outcome (e.g., 4.5% chance of AKI). In addition, a list of features contributing most to the prediction is shown, along with Shapley values. During the focus group meetings, most users said they would find it overwhelming to see confidence intervals around the predicted probabilities. A fact sheet about each model is available on demand, including the receiver operating characteristic curve, precision-recall curve, and calibration curve.

Interventions – Implementation and workflow

Clinicians in the ACT currently conduct case reviews by viewing the patient’s records in AlertWatch (AlertWatch, Ann Arbor, MI) and Epic. AlertWatch is an FDA-approved patient monitoring system designed for use in the operating room. Clinicians in the ACT use a customized version of AlertWatch that has been adapted for use in a telemedicine setting. Epic is the electronic health record system utilized at Barnes-Jewish Hospital. For patients included in Periop ORACLE, each case review will be randomized in a 1:1 ratio to be completed with or without ML assistance. If the case review is randomized to ML assistance, the clinician will access the machine learning web application (see previous section) during the case review. Study staff will be immediately available in the ACT during all case reviews to assist with accessing the display interface if needed to improve adherence to the protocol. If the case review is not randomized to ML assistance, the clinician will not access this web application. This choice of comparator mimics current practice more closely than using an active comparator. After viewing the patient’s data, the clinician will complete a case review from in AlertWatch (as described in the data collection section later in this document).

Outcomes

The co-primary outcomes will be clinician accuracy in predicting postoperative death and clinician accuracy in predicting postoperative AKI. Clinician predictions will be retrieved from the case review forms completed in AlertWatch. Observed death and observed AKI will be retrieved from Epic. Death will be defined as 30-day in-hospital mortality. AKI will be defined as a creatinine increase ≥0.3 mg/dl above baseline within 48 hours or an increase to ≥1.5 times baseline within seven days, consistent with the kidney disease: improving global outcomes definition. If no preoperative creatinine is available, then the upper limit of the laboratory’s reference range (1.2 mg/dl) will be used as the baseline.

Secondary outcomes will include AKI stage 2 or greater (creatinine increase to ≥2 times baseline within seven days) and AKI stage 3 (creatinine increase to ≥3 times baseline within seven days, an increase to ≥4.0 mg/dl, or initiation of renal replacement therapy).

Participant timeline

No direct interactions between study staff and the participants are planned, and no anesthetic interventions will be prohibited based on participation in this trial. The initial medical record review and clinician predictions will occur during the participants’ surgery. Additional data retrieval to obtain observed death and AKI will occur at least 30 days after surgery (and may occur in bulk 30 days after the final participant’s surgery).

Sample size

The sample size calculation is based on the assumption that ML-assisted clinicians would predict each outcome with receiver operating curve area under curve (AUC) similar to the published AUC of the ML algorithms. Incidences of death and AKI were also taken from these previous publications. A simulation population of 100,000 patients was generated. ML-assisted and -unassisted clinician predictions were simulated with beta distributions whose parameters were adjusted to achieve the specified AUC. For each sample size tested, 1,000 random samples were drawn and the difference in AUC between the assisted and unassisted clinician predictions was determined. Power at each sample size was defined as the fraction of samples for which the two sets of predictions had significantly different AUC at $\alpha = 0.025$. The minimum clinically meaningful difference (MCMD) in AUC was defined as 0.07.

As shown in Figure 1, a sample size of 4,500 will provide 80% power to detect a difference in AUC from 0.91 to 0.84 (the MCMD) for death and 95% power to detect a difference from 0.91 to 0.81. This sample size will give >99% power to detect a difference in AUC from 0.82 to 0.75 (the MCMD) for AKI (Figure 2).

To allow for 15% missing data, we will enroll 5,300 cases. Currently, about 20 case reviews are performed in the ACT on a typical day. We should therefore be able to complete enrollment over a period of 12 months.
Methods: Assignment of interventions

Allocation

Each participant case review will be randomized in a 1:1 fashion to be completed with or without ML assistance. Randomization will be stratified by intervention/control status of the parent trial because clinicians may be biased to perform case reviews more carefully in the TECTONICS intervention group than in the TECTONICS control group (Figure 3). The allocation sequence will be generated by computer-generated random numbers within the AlertWatch.

Figure 1. Simulation results from power calculation for death. Power achieved in simulations of various sample sizes and effect sizes for postoperative death. Blue line is minimum clinically meaningful difference.

Figure 2. Simulation results from power calculation for AKI. Power achieved in simulations of various sample sizes and effect sizes for postoperative AKI. Blue line is minimum clinically meaningful difference.
software. The allocation will be automatically displayed on the case review form when the clinician opens it. The study staff will not have access to the allocation sequence before the case review.

Blinding
By necessity, the clinician completing the case review and the other study staff in the ACT will not be blinded to treatment allocation. Study personnel who retrieve observed postoperative complications from the electronic health record will be blinded.

Methods: Data collection, management, and analysis
Data collection
Clinician predictions will be collected via an existing case review form in AlertWatch that contains two sections (Figure 4). In the first section, the clinician documents how likely the patient is to experience postoperative death within 30 days, postoperative AKI within seven days, and a few other complications. The clinician selects their choice from a five-point ordered categorical scale (very low risk, low risk, average risk, high risk, and very high risk). In the second section (which is part of the parent TECTONICS trial but not used for this sub-study), the clinician selects treatment recommendations (e.g., blood pressure goals, medications to administer or avoid). An additional question asks the clinician to confirm whether they reviewed the ML display interface prior to documenting their predictions in section one. Finally, clinicians are asked whether the ML predictions on the display interface agree with their previous opinion and whether the display interface caused the clinician to change their opinion.

Observed death and observed AKI will be retrieved from Epic via a query of the Clarity database. Observed outcomes will be retrieved for all randomized participants, including those with protocol deviations.

Data management
The clinical applications used in this project (AlertWatch and Epic) can only be accessed over the secure institutional internet network or using virtual private network, and user authentication is required for access. Computations for the ML models will occur on institutional servers that meet the standards of the Health Insurance Portability and Accountability Act. The ML display interface is also hosted on an institutional server, can only be accessed over the secure institutional internet network or using virtual private network, and requires user authentication for access. For data analysis, the amount of protected health information retrieved will be limited to the minimum amount necessary to achieve the aims of the study. All study data will be stored on institutional servers, and access will be limited to study personnel.

Statistical methods
To compare the accuracy of clinician predictions with and without ML assistance, the investigators will construct logistic regressions for death and for AKI. Separate models will be constructed for the ML-assisted and -unassisted groups. The only inputs will be dummy variables encoding the clinician predictions (Table 1). The regression coefficients will be restricted to positive values, thus modeling a monotonic increasing relationship between the clinician predictions and the
Figure 4. Case review form in AlertWatch. The first two sections contain fields for documentation of clinician predictions of postoperative complications, and the Periop ORACLE randomization allocation is disclosed in the header of the second section. The treatment recommendations documented in the third section are utilized for the parent TECTONICS trial but not for this sub-study. The amount of time the clinician in the ACT spends completing each case review will be retrieved from the Epic audit log.

Table 1. Dummy variable encoding for clinician predicted risk of postoperative death.

<table>
<thead>
<tr>
<th>Clinician prediction</th>
<th>Var1</th>
<th>Var2</th>
<th>Var3</th>
<th>Var4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Very high</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
true incidence of death and AKI. The AUC of the model constructed from ML-assisted cases will be compared to the AUC of the model constructed from ML-unassisted cases,\(^4\) using the Holm method to ensure the family-wise error rate remains less than a two-sided \(\alpha = 0.05\) across the two co-primary outcomes—accuracy of death prediction and accuracy of AKI prediction. The null hypothesis is that the AUCs will be equal.

The primary analysis will follow an intention-to-treat principle, and all case reviews will be included in the group to which they were randomized. Patients on dialysis preoperatively, undergoing dialysis access procedures, or with baseline creatinine > 4.0 mg/dl will be excluded from the AKI analysis but included in the death analysis. In a secondary per-protocol analysis, case reviews will be grouped according to whether the clinician reported viewing the ML display or not. Exploratory analyses stratified by sex and race will evaluate for biases learned during training.\(^5\) If either clinician predictions or observed outcomes are missing for a given case, then the case will be excluded from the analysis. No interim analyses are planned. To determine whether different levels of clinician engagement in the TECTONICS intervention group versus the TECTONICS control group impact the findings, sensitivity analyses will be conducted stratified by TECTONICS intervention status. To examine the effects of dataset shift and model retraining, the prospective performance of the models will be reported for each month of the study, and sensitivity analyses will be conducted in the subgroups who had surgery before and after the February 2022 retraining event.

To examine human-computer agreement, the proportion of cases for which the clinician reported being surprised by the ML prediction will be determined. Among those cases for which the clinician was surprised, the proportion for which the clinician self-reported agreeing or disagreeing with the ML prediction will be determined.

To examine the potential impact of inaccurate ML predictions, we will conduct the following sensitivity analysis. First, the predicted probabilities output by the ML algorithms will be converted to dichotomous predictions by using the cutoff value that maximizes the Youden index. Second, the cases will be categorized as having correct or incorrect ML dichotomized predictions. Finally, the primary analysis will be repeated in the subgroup with correct ML predictions and in the subgroup with incorrect ML predictions.

To estimate the effect of the ML predictions on case review efficiency, chart review duration (approximated using the time the Epic chart was open, retrieved from the audit log) will be compared between case reviews performed with ML assistance and those performed without ML assistance, using either an unpaired T test or Wilcoxon rank sum test as appropriate.

Ethics and dissemination

Ethical statement

This study has been approved by the Human Research Protection Office at Washington University in St. Louis (approval #202108022) on August 26, 2021. Any protocol amendments will be approved by the study steering committee and communicated with the institutional review board. This study presents patients with minimal risks, other than a small risk for a breach of confidentiality if protected health information were to become unintentionally available to individuals outside the study team. To protect against this risk, all electronic data will be kept in an encrypted, password-protected environment accessible only to the research team (see Data Management section). Because the risks are minimal, no dedicated safety monitoring committee is planned for Periop ORACLE. However, the parent TECTONICS trial does have a safety monitoring committee. The institutional review board has granted a waiver of informed consent to enroll patients in this study.

Study results will be presented at national or international scientific meetings and published in a peer-reviewed publication. Individuals who meet the International Committee of Medical Journal Editors authorship guidelines (https://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html) will be included as authors on any publications resulting from this work. To comply with data sharing recommendations, de-identified individual participant data underlying the study results will be made available to researchers who provide a methodologically sound proposal for utilizing that data.

Strengths, limitations, and alternative strategies

This project has multiple strengths. First, this protocol has been prepared in accordance with Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) guidelines.\(^6\) Second, the sample size of predictions made by experienced anesthesia clinicians will be large. The pragmatic design of superimposing Periop ORACLE on the established TECTONICS trial where many case reviews are already being conducted on a daily basis makes it feasible to achieve such a large sample size. Third, the ML models to be used have very good AUC, which enhances the likelihood that ML assistance can increase the accuracy of clinician predictions. Fourth, the ML display interface has been created...
using a human-centered design framework informed by the clinicians who work in the ACT, which maximizes the chances that clinicians will integrate the ML display interface into their workflows and their decision-making.

This project also has limitations. First, data collection in a telemedicine setting rather than in the operating room may limit the generalizability of the findings to institutions that do not utilize intraoperative telemedicine. However, multiple clinicians have stated during focus group interviews that their workflows for performing case reviews in the ACT closely mimic their workflows for preparing to provide bedside anesthesiology care. Thus, the findings may be relevant in the operating room as well. Second, this is a single-center study, so differences in patient population or practice patterns at other institutions may limit generalizability. However, many large academic medical centers care for patient populations similar to those seen at Barnes-Jewish Hospital. Third, some of the outcomes may be incompletely measured. While in-hospital vital status should always be available, some patients may not have a postoperative creatinine measurement available to distinguish whether AKI has occurred. However, AKI is expected to be extremely uncommon among patients without postoperative labs, minimizing the effect of this potential bias. Fourth, AKI is defined using creatinine only and not urine output, based on anticipated data availability. This may cause some cases of AKI to be missed. However, during ML model training, the incidence of AKI using this definition was compatible with the incidence of AKI reported in other studies. Finally, clinicians may give the ML display interface varying degrees of weight during case reviews randomized to ML assistance. Understanding this variability is of interest to the research team, which is why the case review form will ask the clinician how the ML display impacted their decision-making.

The expected result is that prediction accuracy for death and for AKI to be greater with ML assistance than without ML assistance. If the null hypothesis is rejected for only one of the two co-primary outcomes, this result will still be viewed as evidence that the ML assistance is beneficial. A possible unintended consequence would be if false negative ML predictions lead telemedicine clinicians to pay less attention to some patients who are actually at high risk for death or AKI.22 Even if ACT clinicians monitor these patients less intensely, these patients will still receive standard-of-care monitoring and care by clinicians in the operating rooms. Thus, the reduction in telemedicine monitoring should not result in patient harm. The telemedicine clinicians supplement, but do not replace, standard care.

Conclusion
Intraoperative telemedicine has the potential to improve postoperative outcomes if interventions can be targeted to patients most at-risk for complications, and ML may be able to help clinicians distinguish which patients those are. Periop ORACLE will test the hypothesis that anesthesiology clinicians in a telemedicine setting can predict postoperative complications more accurately with ML assistance than without ML assistance. By nesting this study within the ongoing TECTONICS randomized clinical trial of intraoperative telemedicine, the investigators will efficiently assemble a large dataset of clinician predictions that will be used to achieve the study objective. Successful completion of this study will help define the role of ML not only for intraoperative telemedicine, but for other risk assessment tasks before, during, and after surgery.

Data availability
No data are associated with this article.

Reporting guidelines
This protocol is presented according to the SPIRIT guidelines.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

Open Peer Review

Current Peer Review Status: ?

Version 1

Reviewer Report 22 July 2022

https://doi.org/10.5256/f1000research.134258.r143767

© 2022 Mathis M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Michael Robert Mathis
Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA

This study is a protocol a sub-study nested within the TECTONICS RCT (assessing the impact of telemedicine approaches to preoperative risk assessment), seeking to understand the impact of machine-learning based prediction models to improve the accuracy of such preoperative risk assessments.

The study follows SPIRIT guidelines for reporting, and is overall well-written and of great clinical significance to anesthesiologists. Strengths of the study include its rigorous design; weaknesses include its single-center nature and perhaps limited exploration of unintended consequences of machine learning algorithm implementation.

Overall I believe this study will be an important scientific contribution to the field of anesthesiology, and look forward to its execution. However as the protocol is currently written, I have several critiques for the authors to address:

1) There limitations of using solely a creatinine-based AKI endpoint (as opposed to creatinine + UOP + dialysis), but on balance I recognize the choice to focus on simply creatinine, given it is widely available within the EHR. However, there are other unusual circumstances that the authors might consider, that may lead to misguided conclusions if left unaddressed:
 a. How are patients with stage 4 or 5 CKD handled? Perhaps they are included, but it is misleading to think that AKI in such patients has anything to do with perioperative care, as most will develop AKI simply due to their native pathophysiology.
 b. If there is an EGFR-based cut-off for inclusion, how is EGFR computed? Would recommend the 2021 CKD-EPI formula which addresses racial bias.
 c. How are patients with no preoperative creatinine available handled?
 d. How are patients undergoing procedures which by definition impair renal function handled? (e.g. renal artery embolization; nephrectomy for RCC, etc.).
 e. Are dialysis access procedures (e.g. AV fistula placements) included in this study?
2) I agree from both a study power / and clinical significance standpoint in using AKI Stage 1 or greater as AKI outcome (and of course mortality is more challenging to power); however you might consider breaking down AKI by stages as a secondary outcome (e.g. Stage 2 or greater; Stage 3 or greater), given their greater clinical significance (although even Stage 1 is important).

3) It could be helpful to explore unintended consequences of the machine learning algorithm implementation. For example, workload/efficiency metrics may be useful to track: the authors may wish to track the total amount of ‘active review time’ used by clinicians in performing preoperative assessments with and without aid of the machine learning algorithm. If implemented in clinical care, there should be a plan (perhaps covered by the DSMB of the TECTONICS trial) to understand unexpected outcomes (for example, increased risk of stroke or MI, at the expense of decreased risk of AKI).

4) As the AKI and mortality prediction algorithms are imperfect, do the clinicians performing preoperative risk assessments have insight into the performance characteristics of the algorithm (for example, do they know the algorithm's positive predictive value, negative predictive value; perhaps Shapley values, AUROC, AUPRC, etc.), in order to better understanding exactly how much they should be trusting it? It may be interesting to study the impact of the machine-learning based risk assessments, for the cases in which the algorithm was *wrong*... in order to understand the potential impact of automation bias induced by machine learning algorithms on clinical decision-making.

5) One of the major issues confronting ML-based algorithm support in healthcare decision-making is dataset shift – defined as an evolving mismatch between the data upon which the algorithm is trained upon, versus the data the algorithm is using in real-time to make predictions (PMID 34260843). Maintaining algorithm robustness over time remains very challenging, and decreases in algorithm performance can be seen whenever there are changes to practice patterns, EHR documentation patterns, or shifts in the patient population being studied. Although this study is limited by its single-center nature, it is not limited in its ability to assess temporal trends / algorithm de-tuning (and potential effects of algorithm re-tuning, if the authors wish to incorporate this into the study) over the time period studied. I would suggest assessing temporal trends in (i) AKI and mortality prediction algorithm performance, which if decreased may lead to a temporal trend in (ii) outcomes of this study.

6) Whereas the study protocol appropriately follows SPIRIT guidelines, when this study is executed and reported, this study will most likely need to follow DECIDE-AI guidelines (PMID 35585198), although I could be mistaken. The study team may wish to consider that downstream study now, and have the trial protocol written in such a way that the downstream study will be able to best adhere to DECIDE-AI reporting guidelines.

- Is the rationale for, and objectives of, the study clearly described?
 Yes

- Is the study design appropriate for the research question?
 Yes

- Are sufficient details of the methods provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Machine learning applied to healthcare; anesthesiology; prediction modeling; large observational database research; acute kidney injury prediction.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 21 Sep 2022

Bradley Fritz, Washington University School of Medicine, St. Louis, USA

Thank you for your thoughtful review of this protocol. We have revised the protocol to address your concerns, and we feel these changes have made the protocol stronger. Please see our point-by-point response below:

COMMENT 1a. How are patients with stage 4 or 5 CKD handled?
Perhaps they are included, but it is misleading to think that AKI in such patients has anything to do with perioperative care, as most will develop AKI simply due to their native pathophysiology.

Patients who are on dialysis preoperatively and patients with baseline creatinine level > 4.0 mg/dl will be excluded from the analyses of AKI, but other patients with CKD will be included. We agree that AKI will be highly prevalent among patients with CKD. Although some (many?) cases of AKI in this population will not be preventable, other cases will be driven at least partly by modifiable risk factors.

All patients, including those on dialysis preoperatively and those with baseline creatinine > 4.0 mg/dl, will be included in the analyses of postoperative death. We have added a sentence to make this clearer:

“Patients on dialysis preoperatively, undergoing dialysis access procedures, or with baseline creatinine > 4.0 mg/dl will be excluded from the AKI analysis but included in the death analysis.”
(Methods/Statistical Methods)

COMMENT 1b. If there is an EGFR-based cut-off for inclusion, how is EGFR computed?
Would recommend the 2021 CKD-EPI formula which addresses racial bias.

We agree that historically common EGFR equations can introduce racial bias, and we appreciate the reviewer’s suggestion for an alternative. As noted above, we will not use an EGFR-based cut-off for inclusion.
COMMENT 1c. How are patients with no preoperative creatinine available handled?

If no preoperative creatinine was available, then the upper limit of the laboratory’s reference range (1.2 mg/dl) was used as the baseline. We felt this was a reasonable approximation because patients with abnormal renal function before surgery would most likely have a creatinine value available. We have added a sentence to make this clearer:

“If no preoperative creatinine is available, then the upper limit of the laboratory’s reference range (1.2 mg/dl) will be used as the baseline.” (Methods/Outcomes)

COMMENT 1d. How are patients undergoing procedures which by definition impair renal function handled? (e.g. renal artery embolization; nephrectomy for RCC, etc.).

These patients will be included in the AKI analyses. Although it may frequently not be possible to prevent AKI in these situations, it may be possible to lessen its severity. Therefore, a clinician would want to be aware of the elevated risk in these patients.

COMMENT 1e. Are dialysis access procedures (e.g. AV fistula placements) included in this study?

Patients undergoing dialysis access procedures will be excluded from the analyses of AKI. However, they will be included in the analyses of postoperative death. We have added a sentence to make this clearer:

“Patients on dialysis preoperatively, undergoing dialysis access procedures, or with baseline creatinine > 4.0 mg/dl will be excluded from the AKI analysis but included in the death analysis.” (Methods/Statistical Methods)

COMMENT 2. I agree from both a study power / and clinical significance standpoint in using AKI Stage 1 or greater as AKI outcome (and of course mortality is more challenging to power); however you might consider breaking down AKI by stages as a secondary outcome (e.g. Stage 2 or greater; Stage 3 or greater), given their greater clinical significance (although even Stage 1 is important).

Thank you for this suggestion. We have added these as secondary outcomes:

“Secondary outcomes will include AKI stage 2 or greater (creatinine increase to \(\geq 2 \times \) baseline within seven days) and AKI stage 3 (creatinine increase to \(\geq 3 \times \) baseline within seven days, an increase to \(\geq 4.0 \) mg/dl, or initiation of renal replacement therapy).” (Methods/Outcomes)

COMMENT 3. It could be helpful to explore unintended consequences of the machine learning algorithm implementation. For example, workload/efficiency metrics may be useful to track: the authors may wish to track the total amount of ‘active review time’ used by clinicians in performing preoperative assessments with and without aid of the machine learning algorithm. If implemented in clinical care, there should be a plan
(perhaps covered by the DSMB of the TECTONICS trial) to understand unexpected outcomes (for example, increased risk of stroke or MI, at the expense of decreased risk of AKI).

We agree it would be insightful to investigate the time spent reviewing each case. If the machine learning algorithms have an impact on active review time, then the impact could plausibly be in either direction: clinicians may spend less time in the patient's chart for ML-assisted cases because the algorithms have expedited the risk assessment process, or they may spend more time because the algorithms have pointed out concerns the clinicians otherwise would not have noticed. We have added this to the data collection and analysis plans:

“The amount of time the clinician in the ACT spends completing each case review will be retrieved from the Epic audit log.” (Methods/Data collection)

“To estimate the effect of the ML predictions on case review efficiency, chart review duration (approximated using the time the Epic chart was open, retrieved from the audit log) will be compared between case reviews performed with ML assistance and those performed without ML assistance, using either an unpaired T test or Wilcoxon rank sum test as appropriate.” (Methods/Statistical methods)

Information from the case reviews performed in ORACLE will only be communicated to bedside clinicians in the operating room if the patient is in the intervention arm of the parent TECTONICS trial. (All patients in ORACLE are also enrolled in TECTONICS.) The TECTONICS trial has a data safety monitoring committee that reviews adverse events.

COMMENT 4. As the AKI and mortality prediction algorithms are imperfect, do the clinicians performing preoperative risk assessments have insight into the performance characteristics of the algorithm (for example, do they know the algorithm’s positive predictive value, negative predictive value; perhaps Shapley values, AUROC, AUPRC, etc.), in order to better understanding exactly how much they should be trusting it? It may be interesting to study the impact of the machine-learning based risk assessments, for the cases in which the algorithm was *wrong*... in order to understand the potential impact of automation bias induced by machine learning algorithms on clinical decision-making.

We have added a new paragraph to explain what pieces of meta-data are provided along with the predictions:

“For each patient, the machine learning predictions are presented in the form of predicted probabilities of each outcome (e.g., 4.5% chance of AKI). In addition, a list of features contributing most to the prediction is shown, along with Shapley values. During the focus group meetings, most users said they would find it overwhelming to see confidence intervals around the predicted probabilities. A fact sheet about each model is available on demand, including the receiver operating characteristic curve, precision-recall curve, and calibration curve.” (Methods/Interventions – Machine Learning Algorithms)
To address the impact of “wrong” predictions, we have added a sensitivity subgroup analysis:

“To examine the potential impact of inaccurate ML predictions, we will conduct the following sensitivity analysis. First, the predicted probabilities output by the ML algorithms will be converted to dichotomous predictions by using the cutoff value that maximizes the Youden index. Second, the cases will be categorized as having correct or incorrect ML dichotomized predictions. Finally, the primary analysis will be repeated in the subgroup with correct ML predictions and in the subgroup with incorrect ML predictions.” (Methods/Statistical methods)

COMMENT 5. One of the major issues confronting ML-based algorithm support in healthcare decision-making is dataset shift – defined as an evolving mismatch between the data upon which the algorithm is trained upon, versus the data the algorithm is using in real-time to make predictions (PMID 34260843). Maintaining algorithm robustness over time remains very challenging, and decreases in algorithm performance can be seen whenever there are changes to practice patterns, EHR documentation patterns, or shifts in the patient population being studied. Although this study is limited by its single-center nature, it is not limited in its ability to assess temporal trends / algorithm de-tuning (and potential effects of algorithm re-tuning, if the authors wish to incorporate this into the study) over the time period studied. I would suggest assessing temporal trends in (i) AKI and mortality prediction algorithm performance, which if decreased may lead to a temporal trend in (ii) outcomes of this study.

This is an important point that we had considered but failed to mention in the previous version of the protocol. At the time the study was initiated, we were utilizing models that had been trained on a retrospective cohort of patients who had surgery at Barnes-Jewish Hospital between 2012 and 2016. Approximately six months after study initiation, we retrained the models using patients who had surgery between 2018 and 2020. We have added two new paragraphs to the methods section to explain this clearly:

“The machine learning models used in this study were originally trained and validated on a retrospective cohort of approximately 110,000 adult patients who underwent surgery with general anesthesia at Barnes-Jewish Hospital between 2012 and 2016. Input features included demographic characteristics, comorbid conditions, preoperative vital signs, surgical service, functional capacity as documented during the preoperative assessment, and most recent values of selected laboratory tests. A random forest model was implemented in scikit-learn. In the holdout validation cohort of 21,171 patients, the incidence of postoperative death was 2.2% and the model predicted this outcome with receiver operating characteristic area under curve (AUC) of 0.939 and precision-recall AUC of 0.161. The incidence of postoperative AKI was 6.1% and the model predicted this outcome with receiver operating characteristic AUC of 0.799 and precision-recall AUC of 0.275.

In February 2022, the models were retrained using a newer cohort of 84,455 patients who underwent surgery with general anesthesia at Barnes-Jewish Hospital between 2018 and 2020. This time period was after the hospital had transitioned from its previous electronic health record systems (including MetaVision as its anesthesia information management system) to Epic (Epic,
Verona, WI). Input features were the same as the previous models, with the addition of the planned surgical procedure text field. A regularized logistic regression was used to predict the outcome from the words in the planned surgical procedure text field. This was used to initialize a gradient boosted decision tree, which was trained using the remaining features. Hyperparameters were selected by 10-fold cross validation. Models were implemented in XGBoost. In the holdout validation cohort of 16,891 patients, the incidence of postoperative death was 1.9% and the model predicted this outcome with receiver operating characteristic AUC of 0.91 and precision-recall AUC of 0.27. The incidence of postoperative AKI was 13.3% and the model predicted this outcome with receiver operating characteristic AUC of 0.90 and precision-recall AUC of 0.66.” (Methods/Interventions – Machine Learning Algorithms)

To examine the effects of dataset shift on model performance and trends over time, we will report the prospective performance (i.e., AUC) of each model for each month of the study. To examine the effects of model retraining, we will also conduct subgroup analyses repeating the primary analyses in the subgroups who had surgery before and after the retraining event. We have added these steps to the statistical methods:

“To examine the effects of dataset shift and model retraining, the prospective performance of the models will be reported for each month of the study, and sensitivity analyses will be conducted in the subgroups who had surgery before and after the February 2022 retraining event.”

(Methods/Statistical methods)

COMMENT 6. Whereas the study protocol appropriately follows SPIRIT guidelines, when this study is executed and reported, this study will most likely need to follow DECIDE-AI guidelines (PMID 35585198), although I could be mistaken. The study team may wish to consider that downstream study now, and have the trial protocol written in such a way that the downstream study will be able to best adhere to DECIDE-AI reporting guidelines.

Thank you for this suggestion—we agree the study results will be reported according to DECIDE-AI guidelines. To make it easier for the results manuscript to adhere to DECIDE-AI guidelines, we have expanded the methods section of this protocol to add details that are required by the DECIDE-AI guidelines. In particular, we have broken up the Intervention subsection into two new sections describing the AI system (checklist item 4) and describing the implementation (checklist item 5), which are mentioned in our responses to your earlier comments. In addition, we have added statistical methods that will allow us to report on human-computer agreement (checklist item 12):

“To examine human-computer agreement, the proportion of cases for which the clinician reported being surprised by the ML prediction will be determined. Among those cases for which the clinician was surprised, the proportion for which the clinician self-reported agreeing or disagreeing with the ML prediction will be determined.”

(Methods/Statistical methods)

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com