META-pipe Authorization service [version 1; referees: 1 approved with reservations]

Inge Alexander Raknes¹, Lars Ailo Bongo²

¹Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, 9037, Norway
²Department of Computer Science, UiT - The Arctic University of Norway, Tromsø, 9037, Norway

Abstract
We describe the design, implementation, and use of the META-pipe Authorization service. META-pipe is a complete workflow for the analysis of marine metagenomics data. We will provide META-pipe as a web based data analysis service for ELIXIR users. We have integrated our Authorization service with the ELIXIR Authorization and Authentication Infrastructure (AAI) that allows single sign-on to services across the ELIXIR infrastructure. We use the Authorization service to authorize access to data on the META-pipe storage system and jobs in the META-pipe job queue. Our Authorization server was among the first services that integrated with ELIXIR AAI. The code is open source at: https://gitlab.com/uit-sfb/AuthService2.

This article is included in the ELIXIR gateway.

Corresponding author: Lars Ailo Bongo (larsab@cs.uit.no)

Author roles: Raknes IA: Conceptualization, Methodology, Software, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Bongo LA: Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Raknes IA and Bongo LA. META-pipe Authorization service [version 1; referees: 1 approved with reservations] F1000Research 2018, 7(ELIXIR):32 (doi: 10.12688/f1000research.13256.1)

Copyright: © 2018 Raknes IA and Bongo LA. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: Funding was provided from ELIXIR and ELIXIR-Norway. ELIXIR received funding from the European Union’s Horizon 2020 research and innovation program (ELIXIR-EXCELERATE, grant agreement 676559). ELIXIR-Norway is funded by the Research Council of Norway through the ELIXIR.NO project (grant number 208481). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Introduction
ELIXIR brings together and coordinates European life science resources, including databases, software tools, training materials, cloud storage, and supercomputers. One of the resources developed in the ELIXIR-EXCELERATE project is META-pipe, an automated pipeline for annotation and analysis of metagenomic and genomic sequence data targeted for marine metagenomics. We will provide META-pipe as a web based data analysis service for ELIXIR users.

The ELIXIR Compute Platform builds distributed cloud, compute, storage, and access services for the life-science research community. An important part of the cloud platform is the geographically distributed Authentication & Authorization Infrastructure (AAI) that provides services for identification, authentication, and authorization of ELIXIR end users. We have integrated our META-pipe Authorization service with ELIXIR AAI, such that our users can use the single sign-on used across all ELIXIR services. Most users can sign-on using their home institution credentials; the remaining users can use Google, LinkedIn, or ORCID credentials. Our Authorization server was among the first services that integrated with ELIXIR AAI.

In this paper, we describe the design, implementation, and use of the META-pipe Authorization service. It limits which services and users are authorized to access and modify META-pipe datasets and job results. It authenticates users using ELIXIR AAI, and it authorizes access to data on the META-pipe storage system and jobs in the META-pipe job queue. We therefore use it as ad-hoc authentication for our own services.

We designed the META-pipe authorization service with three main design goals:

1. Keep it simple and stupid; especially for creating new services.
2. Separation of concerns. Keep authentication and authorization separate from the other META-pipe backend services.
3. Stable interface to avoid doing the same work multiple times. We therefore use existing standards in the interaction between services as these are assumed to be reasonably defined and stable.

Our solution is an external application decoupled from the rest of our services. It contains all the integration code needed to integrate with an external authentication service such as ELIXIR AAI, and it can be further be improved independent of the other META-pipe services. We also wanted it to be simple enough such that our small development team could implement it from scratch. We follow standards so we can re-use existing libraries and use proven, stable interfaces.

Existing out-of-the-box solutions do not fulfill our requirements. For example, OpenID Connect is a large standard with many mandatory parts that we do not need for our service. We have therefore chosen standards, libraries, and tools that are simple and developer friendly, and that can easily be incorporated in any framework/programming language combination as our services use Scala and Go, and Java.

The rest of this paper describes the design and implementation of the server, how it is used by end-users and our backend services, and it gives an overview of the standards and libraries we have used. Finally, we outline ongoing and future work.

Methods
This section summarizes the implementation and usage of the META-pipe authorization service. Additional details are in The META-pipe Authorization service design document.

Design
The authorization service fits into the context of the META-pipe backend that has two Clients: the web application and the Galaxy tool. In addition, the context has several services, including storage and job management services. We have integrated our Authorization server with the ELIXIR AAI, which provides user identities from the ELIXIR federated IDP for European educational and research institutions, Google, LinkedIn, and ORCID. Users therefore use the single sign on ELIXIR web interface, and we rely on ELIXIR AAI to maintain (the federated) user databases.

Since some external IDPs, such as the Norwegian Feide that is one of the federated ELIXIR AAI IDPs, requires single sign-out we needed a way to revoke tokens on a short notice. This requires a central service for validating tokens and is one of the reasons we chose to use Token Introspection over JWT Bearer Tokens (RFC-7523).

The authorization server implements the Authorization Code Grant in the OAuth 2.0 Authorization Framework (RFC-6749) (Figure 1). The server uses OAuth 2.0 Bearer Tokens (RFC-6750) as the access tokens since the Bearer Tokens are well supported by software libraries and they are required by the Token Introspection specification. In addition, the server implements an OAuth 2.0 Token Introspection (RFC-7662) endpoint that the Resource Servers can use to introspect the tokens, whereby getting information about what can be accessed and if the token is still valid.

Our Meta-pipe web application stores the Access Tokens and Refresh Tokens in the browser’s local storage.

In OAuth 2.0 the Access Token Scope is defined by the Authorization server. Since we use a REST architecture for our services, each resource has its own URI. We have defined the Access Token Scope such that a Resource Server can determine if a request is authorized by comparing the Access Token Scope with the requested URI and method.

Integration with ELIXIR AAI
We have integrated the META-pipe Authorization service with ELIXIR AAI. We use the OAuth 2.0 Authorization Code Grant since it is flexible enough to isolate the integration to the authorization server. We can therefore implement our Clients
without them having to know neither about SAML nor ELIXIR AAI. We cannot use standards such as RFC-7522 (Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants) and the more general RFC-7521 (Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants), since these require the Client to directly interact with the Issuer and hence both the Client and the Authorization server need to know SAML and how to interact with the ELIXIR AAI. Another benefit of the Authorization Code Grant is that it has very good software library support.

A client using the OAuth 2.0 Authorization Code Grant redirects the User Agent to the Authorization Endpoint and then, after the Resource Owner has authorized the request, the User Agent is redirected to a URI defined by the Client where an Authorization Code is included in the URI query parameter. The Client can then exchange this Authorization Code for an Access Token and a Refresh Token by querying the Token Endpoint.

While RFC-6749 specifies how the Client interacts with the Authorization Server, it does not specify how the Authorization Endpoint obtains an authorization from the Resource Owner; this is left to the implementer of the Authorization Endpoint. Therefore, once the User Agent has been redirected to the Authorization Endpoint we can perform the authentication process that is required by the ELIXIR AAI (including any Use Agent interactions/redirects) if we are able to redirect the User Agent to the URI specified by the Client after the user has been authenticated.

Integration with ELIXIR-Norway Galaxy/Feide
ELIXIR-Norway uses Galaxy as a common GUI for the analysis services provided for Norwegian users: https://nels.bioinfo.no/. The Galaxy users are authenticated using the Feide authentication infrastructure (Feide technical guide, Feide integration guide) that is used by all Norwegian universities. We have integrated our ELIXIR-Norway Galaxy using an Apache HTTPD reverse proxy with AuthMemcookie and SimpleSAMLPHP. The Apache HTTPD proxies authenticated requests to the Galaxy web application with an HTTP header used to specify who is logged in.

A Galaxy tool is defined by an XML file that describes how to launch a process and how the process' arguments should be presented in the Galaxy GUI. The tool developer maps every relevant parameter to a command line that Galaxy executes when the user runs the tool. The parameters include parameters selected by the user in the web GUI as well as a few contextual parameters, like the user’s email address that is retrieved from Feide when the user authenticates.

Software components coupling and limitations
The Authorization Server must know about ELIXIR AAI, the SAML protocol and the AAI specific attributes that provides information about a user. It must also have knowledge about which users are authorized to use which resources.

The Client must support OAuth 2.0 (RFC-6749) and Bearer Token Usage (RFC-6750).
The Resource server must support **Bearer Token Usage (RFC-6750)** and **OAuth 2.0 Token Introspection (RFC-7662)**. It must also know how to interpret a Scope in the correct context of the application.

Implementation

We have implemented the authorization service in the Dropwizard web framework. Dropwizard is a lightweight Java web framework aimed at creating micro services. It uses Apache Oltu for handling the OAuth protocol, and it stores all its state in a PostgreSQL database using Hibernate ORM. Apache Oltu is a library for implementing OAuth 2.0 servers in Java. It manages the OAuth 2.0 protocol and helps serializing responses and parsing/validating requests. Hibernate is an Object Relational Mapper.

We have implemented the META-pipe web application (Client) in JavaScript using the Client OAuth 2.0 library for interfacing with the authorization server and the Resource Servers. Client OAuth 2 (mulesoft/js-client-oauth2) is a JavaScript library for obtaining an authorization from an OAuth 2.0 Authorization server and for making authorized requests to a Resource Server. Client OAuth 2 supports several Authorization Grants including the Resource Owner Password Credentials Grant and Authorization Code Grant. It also supports Bearer Token usage (RFC-6750). Client OAuth 2 can be used from a web browser or from within NodeJS.

OAuth 2.0 Token Introspection is not yet widely supported by software libraries, so we had to implement this from scratch. The specification is only 17 pages and it is very easy to implement. Our library implementation for Resource Servers is therefore only 176 lines of Go code.

Standards

We here list the standards that we used and that are useful for others that are developing a similar service. These contain key definitions, abstraction, and representations:

- The OAuth 2.0 Authorization Framework (RFC-6749) standard for performing authorization describes the Access Token, which is a key abstraction in OAuth 2 that provides an abstraction layer, replacing different authorization constructs (such as username and password) with a single token understood by the resource server.
- The **OAuth 2.0 Token Introspection (RFC-7662)** defines a method for inspecting a token. The Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants (RFC-7522) describes how to use SAML to request an OAuth 2.0 access token and how to use SAML for client authentication.

Use cases

Here we describe the request flow for three use cases: META-pipe web application, command line, and Galaxy. In addition, we describe the request flow for the REST API used to submit jobs for these three use cases, and we discuss limitation for downloading of META-pipe results using the browser.

User login via META-pipe web application

To authorize an end-user to run META-pipe analyses:

1. The end-user (Resource Owner) clicks “Log in with ELIXIR AAI” in the META-pipe web application.
2. The end-user is redirected to the Authorization Endpoint as defined by the Authorization Code Grant and then to the ELIXIR AAI using SAML web SSO.
3. The end-user logs in via one of the IDPs that are supported by the ELIXIR AAI and is then redirected back to the web application via the authorization server where it obtains an Authorization Code.
4. The web application obtains an Access Token by contacting the Token Endpoint with the Authorization Code.

Command line tool

We provide a command line tool to a few power users so they can submit multiple jobs simultaneously. The tool obtains an Access Token by using the Client Credentials Grant.

Galaxy tool login

When the META-pipe Galaxy tool (Client) is called by Galaxy the end user will already be authenticated using the Galaxy/Feide integration at https://galaxy-uit.bioinfo.no/.

1. The Galaxy tool will get the user's email address as a command line parameter.
2. The Galaxy tool will be trusted to access all users’ data and will obtain an Access Token and a Refresh Token using the **Client Credentials Grant (RFC-6749)** with a Scope that is limited to the requesting user’s resources that are necessary to run a job.
3. The Galaxy Tool will hold the Access Token and Refresh Token in memory for subsequent API requests until the job has completed, and the tool terminates. No authorization state will be persisted between multiple tool invocations.

API request to Resource Server

The above three use-cases use the META-pipe REST API to either submit jobs or monitor their progress. When a Client contacts an API endpoint (Resource Server) the following happens:

1. The Client provides the Bearer Access Token in the Authorization header to the API endpoint (RFC-6750).
2. When the Resource Server receives the request, it will query the Introspection Endpoint to get the Scope of the Access Token and verify that it is still valid.
3. If the Access Token is valid the Resource Server will compare the Access Token’ Scope (as returned by the
Introspection Endpoint) to the scope required to process the request. If the request is authorized it will process the request, otherwise it will respond with an appropriate error code (RFC-6750).

Summary
We have described the design, implementation, and use of the META-pipe Authorization service. We use the Authorization service to authorizes access to data on the META-pipe storage system and jobs in the META-pipe job queue. Our Authorization server was among the first services that integrated with ELIXIR AAI.

Future work
When downloading a data set (META-pipe result) from our storage service via the browser it is necessary to provide a direct link to the downloadable content while at the same time provide an Access Token to access the data. RFC-6750 allows for the use of an “access_token” URI query parameter containing a Bearer Token for authorization. A potential issue with this approach is that if a user shares a download link with other users they will get the user’s access token. A solution to this is to limit the access token’s Scope to only have read access to that particular resource, thus mitigating the risk of users inadvertently giving access to their account.

We plan to add an admin group for META-pipe administrators to a configuration file in the Authorization server. Another solution is to create a group in an Virtual Organization provided by ELIXIR AAI.

Software and data availability
No data is needed to use the Authorization service.

The code is open source at: https://gitlab.com/uit-sfb/AuthService2.

Archived code at time of publication is: https://doi.org/10.5281/zenodo.1058995

The software is licensed under The MIT License.

A user guide is at: https://gitlab.com/uit-sfb/AuthService2.

Competing interests
No competing interests were disclosed.

Grant information
Funding was provided from ELIXIR and ELIXIR-Norway. ELIXIR received funding from the European Union’s Horizon 2020 research and innovation program (ELIXIR-EXCELERATE, grant agreement 676559). ELIXIR-Norway is funded by the Research Council of Norway through the ELIXIR.NO project (grant number 208481).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
Open Peer Review

Current Referee Status:

Version 1

Mikael Linden
CSC – IT Center for Science, Espoo, Finland

The paper is a useful description on how Meta-Pipe relies on OAuth2 framework for authorising access to the Meta-Pipe storage and job queue.

What is the criteria the authorisation server uses to authorise the user to a certain resource? Based on what criteria is the authorisation granted to a user? Is it that users can only access their own files? Or are there also other criteria e.g. who in general can access the META-Pipe?

ELIXIR AAI provides an OpenID Connect provider that is an OAuth2 authorisation server. Could you use it instead of developing your own server?

Does the Meta-Pipe web application run in a user's browser or in a server?

What is the relation of Feide and ELIXIR AAI in the context of Meta-Pipe? What is the relation of Meta-Pipe authorisation server and Feide? Does the Meta-Pipe authorisation server rely on them both for user authentication?

In the end of Standards section on page 4 you refer to RFC 7522 as a spec you used but on the previous page you say you couldn't use that spec.

You could improve figure 1 by clearly indicating where are the OAuth2 authorisation server, client and resource server. Perhaps you could also introduce another drawing where the OAuth2 messages are presented. That would make it easier for the reader to follow how you have mounted OAuth2 for your deployment.

Clients other than Meta-pipe Web app are missing in the Figure 1. What is the service behind the Meta-pipe REST API (from other sections I learn they are the job submission/management and storage services)?

In the future work section; instead of displaying the user a URL with an embedded access token, why can't you protect the URI with OAuth2, triggering the client to obtain the Access token from the Authorisation server directly and then presenting it to the storage server.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: Meta-Pipe relies on ELIXIR AAI service that I have been developing.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com