STATEHUB-STATEPAINTR: RAPID AND REPRODUCIBLE CHROMATIN STATE EVALUATION FOR CUSTOM GENOME ANNOTATION [VERSION 1; PEER REVIEW: 3 APPROVED WITH RESERVATIONS]

Simon G. Coetzee¹, Zachary Ramjan²,³, Huy Q. Dinh⁴, Benjamin P. Berman¹,⁴, Dennis J. Hazelett¹,⁴

¹The Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
²Zaxxis LLC, Grandville, MI, 49418, USA
³Van Andel Research Institute, Grand Rapids, MI, 49503, USA
⁴Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA

Abstract
Genome annotation is critical to understand the function of disease variants, especially for clinical applications. To meet this need, there are segmentations available from public consortia reflecting varying unsupervised approaches to functional annotation based on epigenetics data, but there remains a need for transparent, reproducible, and easily interpreted genomic maps of the functional biology of chromatin. We introduce a new methodological framework for defining a combinatorial epigenomic model of chromatin state on a web database, StateHub. In addition, we created an annotation tool for bioconductor, StatePaintR, which accesses these models and uses them to rapidly (on the order of seconds) produce chromatin state segmentations in standard genome browser formats. Annotations are fully documented with change history and versioning, authorship information, and original source files. StatePaintR calculates ranks for each state from next-gen sequencing peak statistics, facilitating variant prioritization, enrichment testing, and other types of quantitative analysis. StateHub hosts annotation tracks for major public consortia as a resource, and allows users to submit their own alternative models.

Keywords
epigenomics, chromatin, visualization, methylation, variant annotation, ChIP-seq, bioconductor

This article is included in the International Society for Computational Biology Community Journal gateway.
Corresponding author: Dennis J. Hazelett (dennis.hazelett@csmc.edu)

Author roles: Coetzee SG: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing – Review & Editing; Ramjan Z: Data Curation, Resources, Software; Dinh HQ: Formal Analysis, Investigation; Berman BP: Conceptualization, Funding Acquisition, Methodology, Resources, Writing – Review & Editing; Hazelett DJ: Conceptualization, Funding Acquisition, Investigation, Methodology, Project Administration, Software, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The study was funded by National Institutes of Health (U01CA184826 (BPB) and RO1CA190182 (DJH)).

Copyright: © 2018 Coetzee SG et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Coetzee SG, Ramjan Z, Dinh HQ et al. StateHub-StatePaintR: rapid and reproducible chromatin state evaluation for custom genome annotation [version 1; peer review: 3 approved with reservations] F1000Research 2018, 7:214 (https://doi.org/10.12688/f1000research.13535.1)

Introduction

Chromatin segmentations are increasingly important for a broad area of research that includes regulatory genomics, genetic epidemiology, precision health, and molecular genetics. There is a need for consistent, unbiased resolution of chromatin states to interpret the epigenome and predict function across different tissues and cell types.

Complex, overlapping patterns of post-translational modifications (PTM) to histone subunits\(^1\), signify differing states of chromatin activity. These modifications consist of mono-, di-, or tri-methylation and acetylation of histone 3 lysines 4, 9, 27, and 36\(^1\). Direct assays for histone PTMs with next-generation sequencing (NGS) using chromatin immunoprecipitation (ChIP-seq) result in a set of genomic intervals with evidence for enrichment over background (input chromatin), using signal intensity.

In addition to ChIP-seq of histone PTMs, there are also NGS methods for histone displacement, including DNase I hypersensitivity\(^1\) (DNase-seq or DHS), Formaldehyde Assisted Isolation of Regulatory Elements\(^1\) (FAIRE-seq), Assay for Transposase Accessible Chromatin\(^1\) (ATAC-seq) and Nucleosome Occupancy and Methylome sequencing (NOME-seq)\(^1\). Histone displacement, nucleosome positioning and DNA methylation are also detected in genomewide assays (e.g. whole genome bisulfite sequencing\(^1\)). Histone displacement is associated with transcription factor binding and transcriptional activity\(^1\). In addition, direct binding of transcription factors is measured in ChIP-seq experiments with an antibody directed against a transcription factor or an epitope-tagged version.

All these data are compatible with data represented as genomic intervals (in bed format), including CpG islands, annotated transcription start sites, repeat elements, 3' UTRs. The input and final (output) processed data format are both as browser extensible data (bed), a flexible standard for different peak calling methods (e.g. “narrowPeak” and “broadPeak” are types of .bed files).

Several machine-learning approaches integrate NGS experiments into annotation tracks\(^1\). The goal is to discover epigenomic states and aid in understanding “non-coding” genomic elements in an unbiased and biologically meaningful way. Newly discovered states are likely an amalgam of true functional categories reflected in chromatin biology. The most popular and widely used of these machine learning methods is ChromHMM\(^1\). Other machine-learning approaches include spectral-based learning\(^1\), inference based on read counts\(^1\), dynamic bayesian networks\(^1\), probabilistic approaches\(^1\), supervised enhancer detection\(^1\), and other hidden Markov methods\(^1\).

The interpretability and general usefulness of the state predictions produced by these algorithms varies. A multitude of states often must be consolidated into simpler, biologically meaningful categories. Hoffman et al., recognized this problem when they proposed a combined meta-analysis of ChromHMM and Segway annotations\(^1\). However, a software framework for expert or rule-based segmentations is still lacking. Such methodology is needed for integrating different experimental data (including non-NGS data) in a reproducible way, reflecting both the novel insights gained from the machine learning methods and our current understanding of genome biology.

Here we introduce StateHub and StatePaintR for generating and documenting chromatin state and other genome segmentation models in a transparent and reproducible fashion. StateHub is a public resource for storing annotation models, state definitions and associated data in a shareable, referenceable form. The StatePaintR package implements these models and state definitions to produce annotation tracks. We show that StatePaintR can be used to rapidly annotate large collections of public data for summarizing epigenomics data or annotation of variants. We show how annotations gracefully degrade, in that cell types or tissues with missing data types are annotated appropriately based upon available information. We show some use cases, and describe how StatePaintR uses ChIP-seq data peak statistics to rank the state prediction for each segment.

Methods

Implementation

StatePaintR is implemented as a software package in the R language freely available from the Bioconductor repository: www.bioconductor.org/packages/release/bioc/html/StatePaintR.html. The package contains functions for generating annotation tracks according to the rules specified in a model matrix. The matrix cell values can take any of 4 different values (Table 1) representing the relationship between the row labels (proposed state) and column labels (functional categories). The current package only accepts these 4 values, since each value produces very specific behavior from the software.

Each cell of the model matrix relates functional category to chromatin state in a 3 bit code representing the answers to two TRUE/FALSE questions (see Table 1). Is the functional category required in order to call the state? And, is overlap consistent with the state? For example, in our focused poised promoter model, the cell of the decision matrix defining the relationship between the state “PPR” and the functional category “PolycombNarrow” is 3, representing the binary value 11\(^2\). In order to call the PPR state, PolycombNarrow data is required be

<table>
<thead>
<tr>
<th>required for state?</th>
<th>consistent with state?</th>
<th>binary value</th>
<th>decimal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>00(_2)</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>01(_2)</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>10(_2)</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>11(_2)</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1. StatePaintR matrix values. StatePaintR assigns annotations according to custom rules specified in a matrix. The rules are represented as an integer code that takes any of 4 values [0–3]. The meaning of each value is summarized in the table below.
To illustrate the use of StatePaintR

StatePaintR then evaluates the presence or absence of each mark and eliminates erroneous states. Next the program assesses overlaps of each segment to determine whether the conditions specified in each cell of the decision matrix are compatible with that segment, producing a boolean value. Rows with perfect matches in all cells are candidate state calls. Since StatePaintR evaluates in order of increasing information content, lower information states can be overwritten if higher information states match. This is very useful for building degeneracy in a model. An example of this in Figure 1 is illustrated by the states ER and EAR. If active marks (e.g. H3K27Ac) are not available for a given cell type, StatePaintR will annotate H3K4me1 marks as ER under our default model. In a different cell type for which H3K27Ac data are available, StatePaintR will know to distinguish between H3K4me1 enriched regions as either active or poised based on overlap of this second mark. Thus, a model can specify different state calls as appropriate based on the availability of data for each cell type. StatePaintR includes a peak score for each state drawn from all experiment categories (columns) that have a matrix value of 3, i.e. because they are required for and consistent with that state. The peak scores are rank normalized on a scale of 1 to 1,000, with 1 being the minimum peak size and 1000 being the maximum. If multiple categories are required, StatePaintR selects the median peak score for the annotation. This behavior can be overridden (see documentation for details). The package includes an R-markdown vignette. The current release version of this vignette is always available from the Bioconductor website.

StateHub is implemented as an interactive website (www.statehub.org). StateHub contains a database implemented in MongoDB and a search engine written with Google Web Toolkit (GWT), which updates dynamically with user input. This database includes all models, model metadata and pre-computed StatePaintR browser tracks. Models are composite JSON objects that include an unique identifier, name, revision number, a searchable text description, and a model matrix (as defined in Table 1). The website also includes links to this manuscript, R-markdown containing code for figures, the latest version of the vignette, links to twitter feed and additional instructional materials.

StateHub models

The main text makes reference to two models in StateHub (statehub.org). The unique identifiers of these models are as follows: “Default” (model ID: 581f9f246e0b66b4b6b178) and “Focused Poised promoter” (model ID: 5813b67f46e0b6b493ceb0). In each of the two models presented and discussed in this paper we chose a naming convention for our states reflecting biological function.

Annotation of public datasets

Preprocessed peak calls were obtained from the IHEC and ENCODE websites (see Table 2) for hg19, and where possible hg38. Where possible we used IDR (Irreproducible discovery rate) processed narrowPeak calls for DHS and broadPeaks for broad marks (H3K27Ac, H3K4me1, H3K27me3, H3K36me3) unless otherwise specified in the model. A complete manifest with filenames, plus all annotation tracks are available on the StateHub website.

Enrichment calculations

Parkinson’s GWAS variants. To illustrate the use of StatePaintR chromatin state segmentations in GWAS functional annotations, we revisited an earlier study of Parkinson’s disease in which tested for tissue-specific enrichment of genetic associations. Parkinson’s GWAS variants were obtained from a previously published large scale meta-analysis21. We used a beta-binomial conjugate distribution to estimate the credible range of differences in overlaps between observed (GWAS hits) vs. random variants. To calculate enrichment we selected all variants within 1 MB of the index SNP in each region with a minor allele frequency (MAF) > 0.01, defining foreground as SNPs in linkage disequilibrium with the index SNP at a cutoff of $r^2 > 0.8$ and background as all SNPs inclusive (MAF > 0.01). Enrichment in genomic annotations. Analyses and graphics were produced using the SegTools package22.

Analysis of methylation data

To select methylation variants, we analyzed the Infinium HM450 data of 114 ovarian tumor samples23 and 216 control normal Fallopian tube samples24. We define differentially methylated regions as those having a difference in beta values of 0.3 (cancer vs. normal) and significance in Mann-Whitney U-test (FDR-corrected p-value < 0.01). We then performed enrichment calculations using overlaps between probes that were hypermethylated in cancer vs. normal and the state calls from two models described above and in the text. The enrichment calculations were as described in the previous section, treating methylation “variants” analogously to SNPs. We used the complete HM450 probeset as background.

Operation

All code used to generate figures, tables, and this manuscript is included as an R-markdown document (Supplementary File 1). A copy of this document may also be obtained from the StateHub website. In addition, a workflow vignette is available from the bioconductor package and mirrored on the github repository at github.com/Simon-Coetzee/StatePaintR.
Figure 1. Mapping datasets to functional significance annotations. Experimental data and external database annotations are combined into abstraction layers (columns), integrated to produce chromatin states (rows) from the decision matrix. StatePaintR produces state assignments by iteratively comparing the marks that are present in each segment with each row of data in the table. The values of color-coded squares signify relationships between data and state: 0 (light red) the feature/data type negates the state but is not required to be present, 1 (light green) feature is consistent with the state but not required, 2 (red) if the feature is required to be available and negates the state, and 3 (green) it is both required and consistent with the state. Information content (sum of row values) of states increases from top to bottom. For the example, red dotted arrows indicate non-matching rows, and green arrows indicate matching rows. The state call corresponds to the last matched row.
Table 2. Annotation of public datasets.
Data from the indicated public consortia were downloaded and processed in StatePaintR. The resulting annotation files and browser sessions are available from the StateHub web page under each model page.

<table>
<thead>
<tr>
<th>Model</th>
<th>hg19</th>
<th>hg38</th>
<th>mm10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blueprint (IHEC)</td>
<td>630</td>
<td>548</td>
<td>0</td>
</tr>
<tr>
<td>CEEHRC (IHEC)</td>
<td>158</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>DEEP (IHEC)</td>
<td>22</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ENCODE</td>
<td>84</td>
<td>109</td>
<td>98</td>
</tr>
<tr>
<td>Roadmap</td>
<td>127</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Results
A framework for rules-based annotation
In order to assign chromatin states, it is necessary to account for the complex interplay of input from genomic annotations and cell-type-specific experimental data sources that define and demarcate functional regions of the genome. Computationally they have to be put in the right order to avoid erroneous overwriting of information-rich categories with information-poor ones.

We initially wrote a model as a decision tree, encompassing a set of basic rules for annotation, but quickly discovered that any small change to the model necessitated a near complete re-write of our software. Secondary to this, we wanted a solution that would enable us to specify any change in the model and have it produced the same way as all previous models while minimizing software updates. And thirdly, we felt that any such model should be reproducible, documented, cite-able and extensible to any combination of experiments. Moreover from a bioinformatics perspective, we felt that any two colleagues working separately should be able to produce precisely the same annotations from the same datasets and models. To satisfy these different requirements we separated the model specification from the annotation tool. We implemented modelSpecification as a decision matrix, which has the advantage of separating model specification from software, enabling complete explicit control of the annotation software without computer programming expertise.

We created a searchable website, StateHub, to host a permanent repository of models, document model objects and make them available as a resource to the community. The StatePaintR package retrieves models from StateHub and performs annotations on local data. Thus, StateHub-StatePaintR is a framework to document models and apply them to annotate genomic data. The models in StateHub consist of an abstraction layer, defining the relationships between data sources and functional categories. These categories are integrated to produce annotations (left hand column, “Chromatin States”) via a decision matrix (Figure 1).

Within the model each state has associated descriptions of arbitrary length which may contain key words or other relevant details (bottom right).

Use Cases
Segmentation of public datasets
We generated annotations of 119 ENCODE cell lines, 128 Roadmap tissues, 26 cell lines and tissues from CEEHRC (peak calls obtained from the IHEC website), and 23 blood cell types from Blueprint (download at statehub.org). On a desktop PC it takes approximately 12–15 seconds to produce an annotation from a typical cell line, depending on the number of datasets and intervals (see Figure S1). StatePaintR produces genome browser compatible BED files with color-coded state annotations (specified in StateHub model). Figure 2 shows a representative region around the POLR2A gene from a subset of 77 high-quality (at least 15m reads) tissue samples and cell lines with H3K27Ac data from Roadmap. A complete manifest for processing these data is included in additional files 1.

Annotation of genomewide association studies
A common use of genome annotation is to assign putative function to genetic loci identified by genome-wide association studies (GWAS), particularly for non-coding regions. We previously used a custom annotation of Roadmap tissues based on the approach described in this manuscript to identify locus-specific tissue enrichment in variants associated with Parkinson’s disease. In that study, we displayed locus-by-tissue enrichment as a heat-map. Here we present a similar analysis using our new StateHub model as the basis for an alternative visualization. Since we showed that Parkinson’s disease variants are primarily associated with enhancers and promoters, we plotted the 95% range of credible values for enrichment in enhancers and promoters vs background SNPs (matched for GC content & minor allele frequency). Each locus (row) is plotted against a selection of tissues in Roadmap (Figure 3).

Evaluation of two models with respect to cancer methylation
Our “default” model proposes a class of enhancers and promoters in a poised state (EPR and PPR). These features have H3K4me1 or H3K4me3 and lack H3K27Ac. This model also classifies H3K27me3 as silenced/polycomb repressed (SCR). To investigate functional enrichment of methylation variants, we looked at how differentially methylated regions (DMR) in ovarian cancer tumors partition between chromatin states as defined in this model (Figure 1).

From previous work, CpG islands containing temporarily silenced (poised) genes by polycomb repressive complex in normal tissues may acquire DNA methylation during cancer formation resulting in permanent silencing. While the segments called EPR and PPR were associated with hypermethylated probes in ovarian cancer across tissues, the magnitude of enrichment was not great (see Figure 4, “Model 1”), and it remained possible that our state definitions were too broad.
Figure 2. **Annotation of public epigenomics data sets.** Annotations of 77 cell types from the Roadmap Epigenomics consortium, including some Roadmap-processed ENCODE data, selected for their high quality with default model. Roadmap tissues are clustered and color coded at left according to the same color scheme used in Roadmap publications.

Figure 3. **Locus- and tissue-specific enrichment of Parkinson’s GWAS variants GWAS data and LD proxies ≥ 0.8.** Bars: 95% credible range for enrichment in active states vs SNPs in the region with similar minor allele frequency and LD < 0.8, for each of 4 independent genetic loci. θ_1, θ_2 relative enrichment in foreground and background sets, respectively. a_1, b_1 number of foreground SNPs overlapping biofeatures or not-overlapping, respectively. a_2, b_2 number of background SNPs overlapping biofeatures or not-overlapping, respectively. a and b are shape parameters of a beta distributed prior. Significant enrichment profiles for roadmap tissues are displayed in color (REMC lineage-specific colors); non-significant are gray.
One hypothesis is that poised promoters are distinguishable by the presence or absence of focused H3K27me3, in particular the narrowPeak calls (as opposed to broad, low-level enrichment from broadPeak files used in model 1). To address this hypothesis, we repeated the analysis in Figure 4 for an alternative model (model 2; “focused poised promoter”) in which H3K27me3 is called as both broadPeak and narrowPeaks. We use the H3K27me3 broadPeak file as in the previous model to identify repressed regions, and H3K27me3 narrowPeaks to identify poised states (EPR and PPR). Enhancers lacking H3K27Ac and H3K27me3 were classified as weak enhancers and promoters (EWR and PWR, not shown in Figure 4). Regulatory elements with these properties have been also been called “primed”29.

We found greater enrichment when we defined poised states in this way (compare model 2 (focused poised promoter) with
model 1 (default) in Figure 4). The hypermethylated ovarian cancer CpGs were more enriched in EPR, PPR, and SCR states as defined in the focused poised promoter model relative to the default model, and hypomethylated probes were enriched only in HET and SCR states (not shown). The odds ratio of enrichment for hypermethylated CpGs in EPR and PPR from the default model fell in a range between 0 and 5. However, the enrichment of the hypermethylated probes in our focused poised promoter model was > 5 in PPR and > 10 in EPR (Figure 4, model 2). Thus, ovarian hypermethylated probes are enriched across road-map tissues in H3K27me3+ enhancers and promoters, and we concluded that H3K27me3 narrowPeaks are an important distinguishing feature for this class.

Enrichment of functional annotation
Next, we characterized the distribution of states in our focused poised promoter model relative to Gencode v37 gene annotations and also to enhancers from Ensembl. Figure 5 shows the relative enrichment of Human mammary epithelial cell (HMEC) chromatin states in each of these features. We found enrichment in Ensembl enhancers for three states: Active enhancer (EAR), Active regions (AR) and Weak enhancer (EWR). The definition of “active enhancer” in the Ensembl build is cumulative across cell types and therefore includes many cell-type specific enhancers that would be predicted to be weak (having exclusively H3K4me1) in a particular cell line such as HMEC. These three states were not enriched in any other category of genomic annotations. Likewise we found enrichment of the inactive enhancers in Transcribed (TRS) and Silenced/Polycomb (SCR). TRS was most enriched in gene body annotations, particularly internal exons and introns. SCR and Heterochromatin (HET) were depleted across all categories. Lastly, the 5′, first exon and first intron regions were enriched in active and weak promoters, consistent with the role of these regions in transcription initiation.

Enhancer predictions
To use ChIP-seq data for quantitative analysis, we ranked within each state by peak score from Macs2 output (generic peak height). We programmed StatePaintR to rank each state by normalizing on a scale of 1-1000, 1000 being the highest rank. StatePaintR ranks the required dataset(s) for each state (i.e. assigned “3” in the

![Figure 5. Enrichment in genomic annotations.](image)

Relative enrichment of called states genomewide from HMEC in annotations from Ensembl and Gencode. Gene graph (top) visualization of the regions indicated for each column. Enrichment is \(\log_2 \) observed over random. Positive enrichment is indicated with mustard color (scale from 0 to 0.66) vs. relative depletion in purple (scale from 0 to -0.37).
decision matrix). To evaluate the ranking function, we measured area under the precision-recall-gain curve (AUPRG) using the set of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice (VISTA enhancer browser and31). We randomly sampled 100 enhancers from 7 VISTA tissues to evaluate different aspects of our models (training), and then used the remainder of the data to test our enhancer predictions against previously published predictions using the same data sets.

Some states, including the ones that are germane for enhancer prediction, reference more than one required (matrix value 3) dataset, and therefore it was necessary to optimize the best method for ranking based on > 1 ChIP-seq experiment. We computed the average, median and ceiling functions of ranks across multiple ChIP-seq tracks. The three methods were comparable, but median and average produced the best results (Figure S2). There are three required marks for active enhancers in our model, but if one of them is not informative for active enhancer prediction, using the ceiling “max” method would produce false positives when this mark has the highest peak rank. Therefore we interrogated which marks are informative using a leave-one-out approach. We found that leaving out H3K4me1 significantly improved our predictions, whereas leaving out the other marks did not (Figure S3).

Next we assessed AUPRG of different state calls vs. VISTA enhancers and found that predictive power descends in order AR + EAR > EAR > AR > RPS > EPRC > etc (Figure S4). When we tried combinations of states the highest precision recall gain was observed for EAR, EARC, AR and ARC added together (Figure S4), and this was greater than other combinations and than any of the state calls individually. H3K27Ac is the most informative predictor of enhancers.

Since H3K4me1 does not improve predictions and is the only thing that distinguishes between AR and EAR (by its presence or absence), an improved model would consolidate AR and EAR into a single state and reassign “1” to H3K4me1 instead of “3”, leaving this mark exclusively to define weak (or primed) promoters.

To validate our method of enhancer prediction, we compared our predictions with ENCODE Encyclopedia, Version 3 (zlab-annotations.umassmed.edu), EnhancerFinder, RFECS, DELTA, CSIANN, and REPTILE for held-out data using AUPRG (Figure S5).

Our predictions are comparable to the Encode model that uses H3K27Ac overlapping with distal DHS, RFECS and REP-TILE, which had the lowest average rank across tissues (Table 3, Figure S5). Our predictions compared favorably to EnhancerFinder and CSIANN which had an average rank > 6 across the different tissues; heart, midbrain, hindbrain, neural tube and limb. Predictions are only available for these tissues. Thus, StatePaintR ranking is useful for drawing quantitative comparisons between different models, making predictions, or prioritizing regions for functional evidence.

Table 3. Relative performance of StatePaintR enhancer ranking vs. VISTA enhancers

Columns 2–6 reflect the area under the precision-recall gain (auprg) curve.

<table>
<thead>
<tr>
<th>source</th>
<th>neural tube</th>
<th>mid-brain</th>
<th>hind-brain</th>
<th>limb</th>
<th>heart</th>
<th>average auprg</th>
<th>average rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCODE</td>
<td>0.82</td>
<td>0.82</td>
<td>0.80</td>
<td>0.85</td>
<td>0.88</td>
<td>0.83</td>
<td>3.4</td>
</tr>
<tr>
<td>EnhancerFinder</td>
<td>NA</td>
<td>0.59</td>
<td>0.63</td>
<td>0.67</td>
<td>0.82</td>
<td>0.54</td>
<td>6.8</td>
</tr>
<tr>
<td>REPTILE</td>
<td>0.86</td>
<td>0.87</td>
<td>0.76</td>
<td>0.89</td>
<td>0.92</td>
<td>0.86</td>
<td>2.0</td>
</tr>
<tr>
<td>DELTA</td>
<td>0.81</td>
<td>0.84</td>
<td>0.76</td>
<td>0.84</td>
<td>0.93</td>
<td>0.84</td>
<td>3.6</td>
</tr>
<tr>
<td>RFECS</td>
<td>0.79</td>
<td>0.85</td>
<td>0.78</td>
<td>0.85</td>
<td>0.92</td>
<td>0.84</td>
<td>3.0</td>
</tr>
<tr>
<td>CSIANN</td>
<td>0.72</td>
<td>0.68</td>
<td>0.62</td>
<td>0.69</td>
<td>0.84</td>
<td>0.71</td>
<td>6.2</td>
</tr>
<tr>
<td>StatePaintR†</td>
<td>0.84</td>
<td>0.84</td>
<td>0.79</td>
<td>0.85</td>
<td>0.88</td>
<td>0.84</td>
<td>3.0</td>
</tr>
</tbody>
</table>

†Annotations using “poised promoter” model as described in the text.
Discussion
We created a platform for hosting, browsing, and generating new genome annotation models called StateHub. The StateHub framework makes it possible to specify combinations of genomic data as they relate to regions of functional significance in epigenetically marked chromatin. In addition, we created a software package, StatePaintR, that facilitates the use of StateHub models to generate browser tracks for bioinformatic analyses. We showed how StatePaintR can be used as part of a workflow with uniformly processed data to generate reproducible annotations from public and private data.

Our framework does not replace current machine learning methods, the aim of which is to discover states. But these methods suffer from certain drawbacks that we have addressed with a rules-based approach that provides greater transparency and reproducibility. For example, it is often the case with machine-learning methods that more states are discovered than immediately understood, and there have been different solutions proposed. During discovery, one could iteratively reduce the number of states, minimizing the number of similar or redundant combinations of histone marks. Then the number of discovered states would depend on the number of unique data types used for learning and their distribution around known features. This brittleness makes replication in different settings (with different labs or types of experiments) impractical. Our method avoids these issues, allowing users to specify a model of the epigenome in a matrix (as in Figure 1) that accounts for all known possibilities. Thus, we built a comprehensive framework for a rules-based annotation, reflecting current hypotheses (or models) of the epigenome.

A significant drawback of our approach is that some unusual combinations of marks that may have biological function will be ignored. This has much to do with the fact that StatePaintR is not for discovering novel states, but rather for annotating the genome according to a specific, existing model. Nonetheless, the label assignment step of other chromatin state discovery tools also suffers the same limitations; states are aggregated or optimized in an iterative fashion based on prior knowledge and assumptions. ENCODE for example has published tracks for both ChromHMM and Segway that include multiple states with similar names (e.g. “Tss” vs. “TssF” from ChromHMM, and “EnhF1” vs. “EnhF3” from Segway). To resolve discrepancies between the two methods, the authors of those studies proposed a combined analysis to simplify the number of state labels and summarize discovery using a rule-based metric not unlike a StateHub model. Thus, they classified regions into 7 types “emphasizing biologically meaningful differences.” In direct comparisons, we found that our own annotations exhibited greater similarity to the combined analysis than to either of the Segway or ChromHMM tracks separately (not shown). Whatever the protocol, the basic problem persists; machine-learning is able to provide insight into what the categories are, but not how many categories there should be. Currently this remains the exclusive province of the biologist.

One of the additional challenges is compatibility between data sets. In order for two or more cell types to be annotated according to the same model, it is necessary to combine each of the cell types for the training. One solution is concatenation of genomes. Another approach is to jointly model epigenomes in parallel, as proposed in Integrative and Discriminative Epigenome Annotation System (IDEAS). This approach has the distinctive advantage of also modeling segment boundaries. Our approach does not model boundaries, but does offer some advantages. One is reproducibility: StatePaintR always produces the same annotation independently for each cell type from the same model. Secondly, even samples with different types of data or missing data result in compatible annotations because they come from the same model. Third, the models, composed of a 2D matrix with a range of 4 values, are relatively easy to understand and author. Every file produced in StatePaintR contains a record of the model ID, genome version and all the source files. Clinicians working with human genetics will value consistency and reproducibility across datasets. We produced annotations for REMC, ENCODE, IHEC and blueprint and made these available on the StateHub website for the two models described in this paper. The website also has links to browser sessions where they can be explored and used to create figures. A fourth advantage is speed: samples can be processed in parallel and there is no computationally expensive learning step.

A final feature that is very useful is the ranking by peak score (Figure S5). Using this scheme, we investigated what states contribute most to true enhancers (Figure S2–Figure S4). We found that H3K27Ac defined the best predictive subset of annotations for VISTA enhancers. We also investigated different approaches for handling multiple peak calls for a state and found the median to be optimal (Figure S2), and incorporated this method as the default behavior of StatePaintR. When we compared our predictions to held-out data, they were comparable to the best enhancer predictions and ENCODE enhancers and on the web (unpublished).

We demonstrated a workflow wherein new models generate annotations, which are used to test predictions against experimental data, and then in turn to make improvements to old models. We anticipate that this will be valuable in testing new ideas and hypotheses generated from unsupervised methods. The ability to rank features also aids in prioritizing variants for GWAS and studies of somatic mutations. Knowing which variants overlap features in the epigenomic landscape of a particular cell type is key. In the future, other methods may become available for incorporation into StatePaintR but the models described in StateHub will remain stable.

Conclusions
We introduced two new computational resources, an online database of chromatin state models and processed genome segmentations called StateHub, and an R/Bioconductor tool called StatePaintR, which translates epigenomics files into segmentations...
using these models. One may annotate incomplete datasets rapidly and sensibly according to a single model specification that gracefully degrades to lesser annotations with missing data. Annotations have header documentation with genome version, StateHub model, and the names of source files and their mappings. These tools document segmentations and state labels precisely as they are used in individual studies and to allow comparisons between evolving models of epigenomic states as they relate to NGS experiments. They also enable mixing of epigenomic states with other types of data, such as 3D looping assays, transcription factors, primary sequence features such as position weight matrices, or disease variants.

Data and software availability
The following are additional files containing manifests to run StatePaintR with current releases of all public datasets listed in Table 2, links to segmentation tracks, and all code used for analysis and generation figures in this manuscript. Complete code generated from R markdown (Rnotebooks/html format) for generating all analyses, figures and tables is available here.

StateHub available from: http://statehub.org/
Archived source code of StateHub as at time of publication: https://zenodo.org/record/1148792

Archived source code of StatePaintR as at time of publication: https://zenodo.org/record/1137825
License: GPL v3.0

At the time of publication we have submitted our package to Bioconductor. A new version of the article will be updated once this package is available. For now, the entire package is available on GitHub.

Competing interests
No competing interests were declared.

Grant information
The study was funded by National Institutes of Health (U01CA184826 (BPB) and RO1CA190182 (DJH)).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

Supplementary File 1: Statepaint.rnb.html: This file contains code for all the examples and use cases in the text of this manuscript, generated as an html from Rmarkdown. Archived version of this file as at time of publication is available here.

Click here to access the data.

Figure S1: Relationship between data and runtime. StatePaintR takes only a few seconds to run. The exact time depends on the number number of unique segments (lines of data) created by overlapping genomic intervals of all input files, cumulative. Thus, 128 Roadmap tissues can be run in 10 sec × 128 ≈ 1,280 sec (21 min).

Click here to access the data.

Figure S2: Predictions with multiple marks. Ranked ChIP-seq peak scores for multiple marks were used to rank active enhancers (H3K4me1 + H3K27Ac + DHS) by 3 methods (median, mean, ceiling) and compared to a sample (n = 100) of experimentally validated enhancers. The average or median of three marks was a better predictor than ceiling. The choice of function is subservient to choice of data for ranking–if one of the three is less informative, it will produce false positives when using the max method–therefore it is better to eliminate uninformative marks. See also Figure S4.

Click here to access the data.

Figure S3: Ranking enhancers with subsets of marks. Combinations of marks were used to predict active enhancers by the max ranking method (as in Figure S2) and compared to enhancer score. “All” includes regulatory (H3K4me1), active (H3K27Ac), and core (DHS). We also tried a leave-one-out strategy for each of these categories in succession. Leaving out H3K4me1 (“no regulatory”) produced superior predictions, suggesting that its inclusion made the predictions less specific.

Click here to access the data.

Figure S4: Chromatin states as predictors of true enhancers. We tested different chromatin states for their ability to predict true enhancers under the poised focused promoter model. Active enhancers exhibited the greatest predictive power under the precision recall gain curve.

Click here to access the data.
Figure S5: Performance of enhancer predictions. Area under precision-recall-gain curves reflect the accuracy of three models of enhancer prediction. True positive enhancers are those validated in the VISTA enhancer browser. The ENCODE method (in blue) and the StatePointR method (in red) show similar accuracy in retrieving VISTA enhancers showing tissue specific enhancer activity, while EnhancerFinder (in green) is less accurate.

Click here to access the data

References

7. Rothbart SE, Strahl BD: Enhancer prediction. True positive enhancers are those validated in the VISTA enhancer browser. The ENCODE method (in blue) and the StatePointR method (in red) show similar accuracy in retrieving VISTA enhancers showing tissue specific enhancer activity, while EnhancerFinder (in green) is less accurate.

Open Peer Review

Current Peer Review Status: ? ? ?

Version 1

Reviewer Report 23 May 2018

https://doi.org/10.5256/f1000research.14699.r33702

© 2018 Filion G. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Guillaume J. Filion
Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain

The authors present a pair of tools called StateHub and StatePaintR to annotate genomic states based on chromatin data (ChIP-seq, ATAC-seq etc.). This work has a very pragmatic take on the problem: the software is fast, based on universal rules, linked to a wealth of data etc. For this, the authors have decided to use a rule-based method instead of the traditional machine-learning approach, which in my opinion is completely justified. The early to discover and annotate chromatin states were based on different methods, all “optimal” in their own way. However, none of these methods has proved to have a decisive advantage over the others for the following two reasons: First, chromatin states do not “exist”, they are useful representations associated with a particular state of our knowledge and a particular problem at hand. Second, the choice of the input data and the number of states (i.e. the granularity of the segmentation) seems to be the most influential factor on the end result. With these elements in mind, it makes perfect sense to develop a tool aiming to satisfy the needs of the user and the demand for reproducibility and traceability, rather than some mathematical constraint.

Overall, the manuscript is well constructed – and as mentioned above it describes a relevant advance – but it could be streamlined for clarity. Many terms are ambiguous (like “active states”) or are jargon for chromatin specialist (like “PolycombNarrow”). The figure legends are barely enough to understand what is plotted and the axes are not all properly labelled. It is a good thing that the authors give some examples to explain the entries of the design matrix. For didactic purposes, they could give more of those, or make the examples more concrete throughout the manuscript to help the reader understand the logic of their tool.

The manuscript does otherwise a great job at making the work reproducible, explaining the limitations and the scope of their software, and also at giving a high level description of the implementation. To help the authors sharpen the manuscript for more readability, below is a list of typos and minor issues.

Page 3, paragraph starting with “All these data...”": Perhaps a word is missing in the sentence “The input and output (final) data are both [?] as browser extensible data...”.

Page 3, last sentence of the main text: it should read “… PolycombNarrow data is required [to] be
present”.

Page 4, second paragraph, fourth sentence from the end: a space seems to be missing in “StatePaintR[space]selects”.

Page 4, third paragraph, fourth sentence: “an unique” should be “a unique”.

Page 4, paragraph “Enrichment calculations”, first sentence. A word seems to be missing in “… an earlier study of Parkinson’s disease in which [...] tested for…”.

Page 6, paragraph “A framework for rules-based annotation”: “rules-based” should be “rule-based”. See https://english.stackexchange.com/q/1366/44109

Page 6, paragraph “Segmentation of public datasets”, second sentence from the end, a space is missing before the parentheses in “…high-quality[space](at least 15m reads”. Also, the “m” probably stands for “million” but in scientific texts it must stand for “metres”. If the authors mean “million”, the best option is to write “million”.

Figure 3, legend: what are “active states”? The authors could give the complete list.

Figure 4, legend: the authors should indicate on the graph what is plotted on the Y axis (and give the unit). Are the data also plotted in “active” states? Whatever the answer, this should be stated clearly.

Page 8, first paragraph of the main text, last sentence: there is one “been” too much in “… with these properties have been also been called…”.

Page 9, first paragraph, last sentence: “roadmap” should be written with a capital R.

Page 11, second paragraph, second sentence: “rules-based” should be “rule-based” (and again in the last sentence of the paragraph).

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Yes
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 10 May 2018

https://doi.org/10.5256/f1000research.14699.r33619

© 2018 Park Y. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Yongjin Park
Broad Institute, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA

Overall the paper could be quite impactful and the software they developed can be highly usable. But the paper doesn’t read well. I assume the authors intended to write a research paper, not a technical note. All of my comments are based on this assumption.

- The authors need to put more efforts to convince ordinary users that StatePaintR is more powerful compared to a single model trained on relevant cell / tissue types. Perhaps expanding from the results in the supplementary section could improve the paper.
- Why not just train chromHMM or segway given current chip-seq tracks? What’s a clear advantage of the rule-based method? I don’t think the rule-based method can clearly estimate underlying model complexity of epigenomics. I think this is too important information to be omitted:

 In direct comparisons, we found that our own annotations exhibited greater similarity to the combined analysis than to either of the Segway or ChromHMM tracks separately (not shown). Whatever the protocol, the basic problem persists; machine-learning is able to provide insight into what the categories are, but not how many categories there should be. Currently this remains the exclusive province of the biologist.

- Does this method help prioritize relevant cell / tissue types?
- Description in the method section is fuzzy. I think a complete paper needs to be self-contained without looking up definitions and terminology from other sources. However, many terms are either vaguely used or never defined. Moreover, the method section needs to be better organized in a top-down fashion instead of enumerating what were implemented.
- Figure 1 is confusing and not so informative. Why don’t you include real-world example such as chip-seq or methylation tracks?
- Perhaps you can combine Table 1 with Figure 1. First of all, is Table 1 really necessary? Why do you need both binary and decimal code (I know why but it is irrelevant to the main story of this paper)? It is probably better to show graphical examples how you assign decimal values.
- How do you define information content? How do you define enrichment? How do you calibrate significance?
- Is Beta-Binomial reasonable assumption? There are more examples in the background. Do you estimate Beta-Binomial by moment-matching of posterior distribution or maximum-likelihood?
- y-axis labels are either missing or badly named (Fig 3 and 4).
- As future direction, how easy is it to implement user-defined enrichment models / methods?
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

© 2018 Libbrecht M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maxwell W. Libbrecht
School of Computing Sciences, Simon Fraser University, Burnaby, BC, Canada

The authors present a method for annotating the genome using genomics data sets such as histone modifications, transcription factor binding and methylation. The algorithm is applied to data from a given tissue. It takes as input a collection of genomics data sets that have been binarized in a preprocessing step, such that each is represented by a binary vector over the genome. The method outputs a genomic vector of one of K states, such as "Promoter" or "Transcribed" (K=20 in their default model). The method uses a "model matrix" which defines, for each state-dataset pair, for a given base to be called as that state, if (1) the dataset *may* be positive for that base, and (2) if that dataset *must* be positive for that base.

StatePaintR is likely to be an impactful method. Genome annotations are a very useful product of epigenomics data sets, as evidenced by the wide array of methods developed for their production. StatePaintR is an alternative to existing algorithms based on probabilistic models that is much simpler and
more transparent.

Unfortunately, the manuscript is difficult to understand in its current form because many key definitions are missing. Several examples:
- The term "functional category" is not defined.
- The Introduction uses the term “functional category” to mean a state, where later that term is used to refer to a collection of data sets (such as “silencing marks”)
- The form of the input and output are not explicitly mentioned.
- It is not explicitly mentioned that the model matrix is generated manually.

Minor notes:
- It is claimed that the information content of a state equals the sum of the cell values. However, it seems to me that the maximally-permissive value is 1 (neither required nor exclusionary), not 0.
- P3: “3 bit code”. Should be 2 bit code.
- Figure 1: “red dotted arrows indicate non-matching rows”. I don't understand -- each arrow connects to two rows, not just one.

Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: computational genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com