RESEARCH ARTICLE

Classification of processes involved in sharing individual participant data from clinical trials [version 1; referees: 1 approved, 2 approved with reservations]

Christian Ohmann1, Steve Canham2, Rita Banzi3, Wolfgang Kuchinke4, Serena Battaglia5

1European Clinical Research Infrastructure Network (ECRIN), Düsseldorf, 40477, Germany
2Canham Information Systems, Redhill, Surrey, RH1 6QH, UK
3Mario Negri Institute of Pharmacological Research, Milan, 20156, Italy
4Coordination Centre for Clinical Trials, Heinrich Heine University Dusseldorf, Dusseldorf, 40225, Germany
5European Clinical Research Infrastructure Network (ECRIN), Paris, 75013, France

Abstract

Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed.

Methods: Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis.

Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support.

Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing.

Keywords
clinical trial, data sharing, individual participant data (IPD), process, business process model, generic framework
This article is included in the Science Policy Research gateway.

Corresponding author: Christian Ohmann (christian.ohmann@med.uni-duesseldorf.de)

Author roles: Ohmann C: Conceptualization, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Canham S: Conceptualization, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Banzi R: Formal Analysis, Investigation, Writing – Review & Editing; Kuchinke W: Conceptualization, Formal Analysis, Investigation, Visualization, Writing – Review & Editing; Battaglia S: Formal Analysis, Investigation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This project has received funding from the European Union's Horizon 2020 research and innovation programme (CORBEL, under grant agreement n° 654248).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Ohmann C et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Ohmann C, Canham S, Banzi R et al. Classification of processes involved in sharing individual participant data from clinical trials [version 1; referees: 1 approved, 2 approved with reservations] F1000Research 2018, 7:138 (https://doi.org/10.12688/f1000research.13789.1)

First published: 01 Feb 2018, 7:138 (https://doi.org/10.12688/f1000research.13789.1)
Abbreviations
AAI, Authentication and Authorisation Infrastructure; API, Application Programming Interface; ATT, The Open Science and Research Initiative; BPMN, Business Process Model and Notation; BRIDG, Biomedical Research Integrated Domain Group; CDISC CDASH, Clinical Data Interchange Standards Consortium - Clinical Data Acquisition Standards Harmonization; CDISC ODM, Clinical Data Interchange Standards Consortium - Operational Data Model; CDISC SDM, Clinical Data Interchange Standards Consortium - Study Design Model; COMET, Core Outcome Measures in Effectiveness Trials; CORBEL, Coordinated Research Infrastructures Building Enduring Life-science Services; CRUK, Cancer Research UK; DOI, Digital Object Identifier; ECRIN, European Clinical Research Infrastructure Network; ID, Identity; IPD, Individual Participant Data; IT, Information Technology; MRC, Medical Research Council (UK); PCROM, Primary Care Research Object Model; QA, Quality Assurance; UK, United Kingdom; UKCRC, UK Clinical Research Consortium; US, United States; WHO, World Health Organization

Introduction
In recent years, a cultural change in the handling of research data has resulted in the strong promotion of a culture of openness and increased sharing of data. Many organisations, initiatives and projects have expressed their commitment to support open scientific research. This move has been extended also to clinical trials. Today, the results of clinical trials are more and more considered as a public good, and access to the individual participant data (IPD) generated by those trials is seen as part of a fundamental right to health data (see Research Councils UK principles on data policy).

To support data sharing in clinical trials, several organisations have developed generic principles, guidance and practical recommendations for implementation in recent years (e.g. the Institute of Medicine report in the US1, the Nordic Trial Alliance Working Group on Transparency and Registration for the Nordic countries2, the good practice principles for sharing IPD from publicly funded trials by MRC, UKCRC, CRUK and Wellcome, in the UK34, or the guide to publishing and sharing sensitive data for Australia5). Within the EU Horizon 2020 funded project CORBEL (Coordinated Research Infrastructures Building Enduring Life-science Services) and coordinated by the European Clinical Research Infrastructure Network (ECRIN), an interdisciplinary and international stakeholder taskforce reached a detailed consensus on principles and recommendations for data sharing of clinical trial data6. That document was taken as the starting point for the current paper.

Data sharing of IPD from clinical trials involves a complex set of processes and the interaction of many actors and actions. Some documentary support is available, (e.g. templates for data sharing plans, data transfer and data use agreements), but this is scattered and thus not always easy to find. In addition, although some IT-tools and services are available to give support for individual tasks in the process of data sharing (e.g. de-identification service for datasets; see Electronic Health Information Laboratory page on de-identification software) or an ID-generation service for study objects), these are again difficult to discover and their quality is not easy to explore. An additional aspect of complexity stems from the very heterogeneous set of repositories that are available for storage of IPD (see Registry of Research Data Repositories). There are general scientific repositories, repositories dedicated specifically to clinical research, repositories specialised in storing data related to a specific disease area and institution-specific repositories. In summary, although fragments of infrastructure are available to support sharing of IPD from clinical trials, the various services and tools are scattered and a global vision of how all these components should interact and interoperates does not currently exist.

What is still missing is a generic framework or architecture for data sharing that could be used for modelling, describing, and designing operations, data requirements, IT-systems and technological solutions (see Open Group TOGAF® framework). Such a framework would link structural concepts (e.g. actors) with behavioural concepts (e.g. processes linked to services) giving an overview of how actors, processes and services interact to form a system for data sharing of IPD. Due to its complexity with many different processes and actors, such a framework is not available at the moment. As a first step in creating such a framework, in this paper we provide a systematic, structured and comprehensive list of processes/subprocesses linked to data sharing derived from our CORBEL consensus document.

Methods
Recommendations and principles from the data sharing consensus document were analysed in detail and individual processes/subprocesses identified and linked to actors and possible services/tools by a small group of experts (CO, SC, RB, WK, SB). The consensus document covers all stages of the data sharing life cycle and is highly structured, with 7 main topics, 10 principles assigned to these topics and 50 specific recommendations, making the analysis process relatively straightforward6. The specification of processes/subprocesses, actors and services/tools was agreed between the experts in telephone conferences and by written communication, and summarized in a table with listings.

In the next step, possible services/tools associated with single processes/subprocesses were analysed and grouped according to different types of support, preserving reference to the processes/subprocesses specified in the first step.

The following definitions were adapted from the business process model and notation (BPMN) and applied to our analysis (see Object Management Group page, 7):

Process: A sequence or flow of activities in an organization with the objective of carrying out work (see Object Management Group page).

In this study, processes may relate to different organisations and business goals, e.g. the various activities of the data generators, data storage managers and secondary users all represent different business processes, operating at different times by different actors.
Subprocess: A process that is included within another process (see Object Management Group page)

Actor: Some person or organization taking part in day-to-day business activity (see Object Management Group page)

Actors are belonging to or have a relationship with the clinical trial arena. Actors include: investigators, trial unit heads, QA-staff, senior data management and IT-staff, trial unit operational managers, statisticians, sponsors, trial management team, specialist agencies, repository managers, analysis environment providers, secondary users of data, data use advisory panel, research infrastructures, journal publishers, patient representatives, and funders. Definitions of actors have been taken from the glossary in the consensus document and some from the CDISC-glossary.

Service: A service is a functional business entity that fulfils a particular requirement (see Open Science and Research framework)

Services/tools may be relatively non-technical (e.g. providing information, example materials, template policies and procedures, assessment criteria, metadata, and infrastructure specifications) or technical, i.e. information technology based. The technology required may be conventional (e.g. webpages, web-based information systems) and already available (though would need normally need specific organisation and application). Other services/tools may require specialist software development (e.g. development of an analysis environment, developing systems to support metadata repositories).

Subservice: A subservice is a special case of a service (see Open Science and Research framework)

To keep things as simple as possible, processes were structured according to the main activities within data sharing of IPD and then further differentiated with respect to subprocesses. For every process the involved actors and possible tools/services are linked.

For graphical illustration, the BPMN approach was used. In BPMN, a process is depicted as a graph of flow elements, which are a set of activities, events, gateways, and sequence flow that adhere to a finite execution semantics. The usual BMBP notation and symbols were taken (event, activity, gateway, connections, swim lane) (see Object Management Group page). In this publication, BPMN is used only to give a high-level overview on the relation between the main processes.

Results
From the analysis of the consensus document 9 main processes involved in data sharing of IPD were identified:

1. Preparation for data sharing, in general
2. Plan for data sharing, in the context of a specific trial
3. Preparation of data for sharing, after data collected
4. Transferring data objects to an external repository
5. Repository data and access management
6. Access to individual participant data and associated data objects
7. Discovering the data objects available
8. Publishing results of re-use
9. Monitoring data sharing

Process 1 to 5 can be summarized under the heading “Data preparation and storage”, the processes 6-9 under the heading “Data request and secondary analysis”. The relationship between the main processes is presented in Figure 1.

The main processes were structured further into more detailed processes/subprocesses and linked to actors involved and possible services/tools. As result a detailed and comprehensive list of individual processes/subprocesses involved in data sharing is given in Table 1.

In Table 2, possible services/tools associated with processes are grouped according to major types of support, preserving reference to the processes/subprocesses. As the table illustrates, these tools and services fall into 6 (overlapping) categories:

1. Providing general background material
2. Locator services (for resources for data sharing, and / or to support data standards)
3. Example documents and templates
4. Services (e.g. to de-identify data, assign IDs, provide metadata, evaluate repositories)
5. Frameworks and guidance (e.g. metadata schemas, citation systems, checklists)
6. Tools (IT based, e.g. APIs to harvest repository contents, tools to assign metadata)
Main processes in sharing of IPD from clinical trials

Data generator
1. Preparation for data sharing (in general)
2. Plan for data sharing
3. Preparation of data sharing (after data collected)
4. Transferring data objects to external repository
5. Repository data and access management

Data repository
6.2.6 Data access arranged
6. Access to IPD and associated data objects
9. Monitoring data sharing

Data requester
7. Discovering the data
6.2.2 Request forms completed and submitted
8. Carry out secondary use / publish results

The following symbols from BPMN (http://www.bpmn.org/) were applied:
- Lane
- Start event (process trigger)
- Start event (process trigger)
- Activity
- Group
- Gateway (forking / merging of paths)

Sequence Flow (order of activities)

Figure 1. Overview on the main processes in sharing of IPD.
<table>
<thead>
<tr>
<th>Process</th>
<th>Subprocess</th>
<th>Actors</th>
<th>Possible Services/Tools</th>
<th>Subservices/tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preparation for data sharing, in general</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Learn about individual participant data (IPD) and data object sharing 1.</td>
<td>1.1.1 Learn about policies, requirements, implications, options, resources, etc.</td>
<td>Investigators, Trials unit heads, operational managers</td>
<td>Education service (web pages, videos, courses, texts etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1.2 Become aware of repositories available for data sharing, features, pros and cons, costs, etc.</td>
<td>Investigators, Trials unit heads, operational managers</td>
<td>Web based information sources on repositories, published surveys, repository quality assessments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Clarify own institution’s requirements for data sharing</td>
<td>Trials unit heads, operational managers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Develop local SOPs and related quality documents supporting aspects of IPD and data object sharing</td>
<td>1.3.1 Develop procedures governing data sharing planning and procedures within a trial.</td>
<td>Trials unit heads, QA staff, operational managers, senior data management and IT staff</td>
<td>Example SOPs and proformas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3.2 Develop procedures and libraries to promote the use of data standards in database and metadata design.</td>
<td>Trials unit operational managers, statisticians, senior data management and IT staff</td>
<td>Links to standards and associated resources. Example local procedures Libraries of re-usable components</td>
</tr>
<tr>
<td>2. Plan for data sharing, in the context of a specific trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Decide the strategy for data sharing for this trial.</td>
<td>2.1.1 Explore options for data sharing (considering datasets, timeframe, funder, planned journal, costs, etc.)</td>
<td>Sponsors, with Trial management team and network of investigators</td>
<td>Checklist of issues that need to be considered, with supporting material, option descriptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.2 Check funder requirements for data sharing</td>
<td>Trial management team</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.3 Decide the strategy and specific actions required for data sharing</td>
<td>Sponsors, with Trial management team</td>
<td>Checklist of issues that need to be considered, with supporting material, option descriptions</td>
<td></td>
</tr>
<tr>
<td>2.2 Document the strategy for data sharing for this trial in trial documents</td>
<td>2.2.1 Incorporate data sharing details within the data management plan</td>
<td>Trial management team</td>
<td>Example DMP sections, with supporting material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.2 Incorporate data sharing summary in section of the protocol</td>
<td>Trial management team</td>
<td>Example protocol sections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.3 Incorporate data sharing summary within trial registration data</td>
<td>Trial management team</td>
<td>Example registry data sections</td>
<td></td>
</tr>
<tr>
<td>2.3 Incorporate information on data sharing plan into participant documents of clinical trials</td>
<td>2.3.1 Summarise and explain data sharing plan in patient information sheets.</td>
<td>Trial management team</td>
<td>Guidance on legislation framework – Demonstration material, templates, examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.2 Include request for broad consent for data sharing in informed consent documents.</td>
<td>Trial management team</td>
<td>Demonstration material, templates, examples</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Subprocess</td>
<td>Actors</td>
<td>Possible Services/Tools</td>
<td>Subservices/tools</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2.4 Check and align data sharing plans of collaborators who are also generating data.</td>
<td>2.4.1 Ensure any plans to publish collaborators’ data (e.g. lab data) are compatible with plans for clinical IPD sharing</td>
<td>Trial management team</td>
<td>Examples of possible issues (e.g. with expectations of publishing lab data, increased re-identification risk)</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Ensure all collaborators have contributed to and have agreed to data sharing plans.</td>
<td></td>
<td>Trial management team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 Ensure that data and metadata standards have been used as far as possible in database design</td>
<td></td>
<td>Trial management team</td>
<td>Links to standards and associated resources. Libraries of re-usable components</td>
<td></td>
</tr>
</tbody>
</table>

3. Preparation of data for sharing, after data collected

3.1 Decide upon strategy for data preparation for sharing	3.1.1 Decide if (further) pseudonymisation or anonymisation required.	Trial data management and IT staff	Guidance on interpretation of legal requirements in different jurisdictions.	
3.1.2 Assess risk of re-identification with existing datasets. Decide on de-identification required.		Trial data management and IT staff, specialist de-identification agencies	De-identification/anonymisation service for datasets	
3.2 Carry out strategy for data preparation	3.2.1 De-identify, and pseudo-anonymise or anonymise dataset for data sharing	Trial data management and IT staff, specialist de-identification agencies	De-identification/anonymisation service for datasets	
3.2.2 Select file formats for data and metadata and transform if necessary		Trial data management and IT staff	File formats recognised as standard	
3.2.3 Update (or generate/transform) metadata and reference to datasets		Trial data management and IT staff, specialist metadata agencies	Specialist services for generating metadata	
3.3 Document data preparation process	3.3.1 Assess and document risk of re-identification with revised datasets	Trial data management and IT staff, specialist de-identification agencies	De-identification/anonymisation service for datasets	
3.3.2 Incorporate record of data preparation and risk assessments within metadata		Trial data management and IT staff	Metadata scheme for describing de-identification and data preparation processes	

4. Transferring data objects to external repository

<p>| 4.1 Select repository (within institutional constraints) | 4.1.1 Explore repository features, management, access options, costs, certification | Sponsors with trial management team | Data repository identification service including assessment against quality criteria, standards, certification process for repositories | |
| 4.2 Transfer the datasets under a formal data transfer agreement | 4.2.1 Agree on access regime, data sharing decision processes, assignment of responsibilities including data controller role | Sponsors with trial management team | Checklists to support data transfer agreement | |
| 4.2.2 Agree on responsibilities for generating discoverability metadata | | Sponsors with trial management team | Checklists to support data transfer agreement | |
| 4.2.3 Draw up and agree data transfer agreement, including provision if repository disappears | | Sponsors with trial management team | Tools for generating data transfer agreement | |
| 4.2.4 Apply discoverability metadata to datasets and transfer data | | Trial data management and IT staff and/or repository staff | Metadata schemas for data object discoverability; tools for their application | |</p>
<table>
<thead>
<tr>
<th>Process</th>
<th>Subprocess</th>
<th>Actors</th>
<th>Possible Services/Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Monitor repository and status of datasets transferred to it.</td>
<td>4.3 Monitor repository and status of datasets transferred to it.</td>
<td>Reporting services provided by repository.</td>
<td>Monitoring tools, reporting services, and status monitoring tools.</td>
</tr>
<tr>
<td>5. Repository data and access management</td>
<td>5.1 Maintain highly granular access control to IPD, that can be changed rapidly</td>
<td>Repository managers.</td>
<td>Access control tools, authentication and authorization tools, and rapid access change mechanisms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Authentication and authorization tools (for definition see 3) at the end of the table.</td>
</tr>
<tr>
<td></td>
<td>5.2 Maintain mechanisms to set up and apply authentication and authorisation</td>
<td>Repository managers.</td>
<td>Authentication and authorization tools, validation mechanisms, and authorization frameworks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Authentication and authorization tools; validation mechanisms.</td>
</tr>
<tr>
<td></td>
<td>5.3 Provide a protected temporary analysis environment</td>
<td>Repository managers, analysis environment providers.</td>
<td>Analysis tools and services, workflow recording tools, and data import and logging tools.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The analysis environment itself, analysis environment tools.</td>
</tr>
<tr>
<td></td>
<td>5.4 Supply discovery data for IPD and data objects on a regular basis to metadata repositories (for definition see 1) at the end of the table.</td>
<td>Repository managers.</td>
<td>Template and example data use agreements, schema for discovery metadata, and API for making it available from each repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schema for discovery metadata, API for making it available from each repository.</td>
</tr>
<tr>
<td></td>
<td>5.5 Provide an expert advisory panel</td>
<td>Repository managers.</td>
<td>Where the data transfer agreements stipulate it, allow the advisory panel to process and filter requests, and recommend or take decision on data release.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.5.1 Where the data transfer agreements stipulate it allow the advisory panel to process and filter requests, and recommend or take decision on data release.</td>
</tr>
<tr>
<td></td>
<td>5.6 Provide data request forms</td>
<td>Repository managers.</td>
<td>For data that requires them, post data request forms for users to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.6.1 For data that requires them, post data request forms for users to complete.</td>
</tr>
<tr>
<td>Process</td>
<td>Subprocess</td>
<td>Actors</td>
<td>Possible Services/Tools</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>5.7 Provide data use agreement templates</td>
<td>5.7.1 The templates allow potential users to see the information they will need to provide, (for data that requires them), and the conditions to which they will need to conform.</td>
<td>Repository managers</td>
<td>Template and example data use agreements</td>
</tr>
<tr>
<td>5.8 Provide usage reports to data depositors</td>
<td>5.8.1 If not already provided by the request process, regular (e.g. quarterly) reports on access made, by whom and reasons given.</td>
<td>Repository managers</td>
<td>Report services maintained by repository managers</td>
</tr>
</tbody>
</table>

6. Access to individual participant data and associated data objects

<table>
<thead>
<tr>
<th>Process</th>
<th>Subprocess</th>
<th>Actors</th>
<th>Possible Services/Tools</th>
<th>Subservices/tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Manage direct responses to the sponsors or coordinating investigators, in case no legal sponsor is available (data not yet in a repository)</td>
<td>6.1.1 Decide upon the possibility, in legal terms, of making the data available to others at all.</td>
<td>Sponsors and trial management team</td>
<td>Guidance on interpretation of legal requirements in different jurisdictions, for different levels of consent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1.2 Assess the reasonableness of the request and the ability of the requesters to draw sensible conclusions</td>
<td>Sponsors and trial management team</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1.3 Assess the costs of de-identifying the data, preparing metadata, etc.</td>
<td>Sponsors and trial management team</td>
<td>Data on costs in data preparation exercises</td>
<td>Research papers investigating this area</td>
</tr>
<tr>
<td></td>
<td>6.1.4 Make a final decision as to whether to share the data with the requestor.</td>
<td>Sponsors and trial management team</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1.5 Draw up a data use agreement and transfer the data under its terms</td>
<td>Sponsors and trial management team</td>
<td>Example data use agreements</td>
<td></td>
</tr>
<tr>
<td>6.2 Manage access to data in a repository (if access requests individually reviewed)</td>
<td>6.2.1 Repository makes appropriate request forms available on-line</td>
<td>Repository managers</td>
<td>Available forms on line (see 5.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.2 Request forms completed and submitted (on or off-line)</td>
<td>Secondary users</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.3 (If stipulated in data transfer agreement) Request passed to advisory panel for assessment and recommendation, otherwise to data controllers</td>
<td>Sponsors or Advisory panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.4 (If stipulated in data transfer agreement) Decision to allow request made, by advisory panel/repository if stipulated in data transfer agreement, otherwise by data controllers</td>
<td>Sponsors or Advisory panel, or repository managers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.5 If positive decision, data use agreement drawn up and agreed</td>
<td>Sponsors or Advisory panel, Repository managers, Secondary users</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.6 Data access arranged after liaison with repository managers</td>
<td>Sponsors or Advisory panel, Repository managers</td>
<td>Pipeline for quick processing of access change requests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.7 Access request and decision documented</td>
<td>Sponsors or Advisory panel, Repository managers</td>
<td>Recording systems for request and decision</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Subprocess</td>
<td>Possible Services/Tools</td>
<td>Subservices/tools</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>7. Discovering the data</td>
<td>7.1 Agree a common metadata standard</td>
<td>Repository managers, metadata repository managers</td>
<td>The metadata scheme itself</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repository managers, metadata repository managers</td>
<td>Existing mechanisms integrated where possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1.1 Publish and agree a standard that can be used for discovery metadata, or to which existing standards can map.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2 Agree an ID generation scheme for data objects</td>
<td>Repository managers, metadata repository managers</td>
<td>The ID generation mechanism itself</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2.1 Develop, cost and implement a mechanism for generating persistent IDs (e.g. DOIs) for data objects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3 Collect metadata apart from clinical studies</td>
<td>Metadata repository managers</td>
<td>The ID schemes above, existing public repositories. WHO registry data, cross-ref, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3.1 Collect existing metadata samples and sources into a prototype metadata repository</td>
<td>Metadata repository managers</td>
<td>The ID generation mechanism itself</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4 Collect metadata together into a public metadata repository under a single portal</td>
<td>Metadata repository managers</td>
<td>The ID generation mechanism and sources under the same portal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4.1 Collect existing metadata samples and sources into a prototype metadata repository</td>
<td>Metadata repository managers</td>
<td>The ID schemes above, existing public repositories. WHO registry data, cross-ref, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4.2 Maintain the metadata by arranging regular harvesting (e.g. nightly, using API and metadata scheme)</td>
<td>Metadata repository managers</td>
<td>The metadata scheme from 7.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4.3 Federate additional metadata sources under the same portal</td>
<td>Metadata repository managers</td>
<td>The metadata scheme described in 7.4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4.4 Search for the data objects concerned with a trial or clinical study</td>
<td>Metadata repository managers</td>
<td>The metadata scheme described in 7.4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.5 Search for particular study data objects using study identifiers, name, and object identifiers. Receive data on location and access details.</td>
<td>Metadata repository managers</td>
<td>The metadata scheme described in 7.4.</td>
<td></td>
</tr>
<tr>
<td>8. Publishing results of re-use</td>
<td>8.1 Publish re-analysis, preferably open (e.g. peer reviewed journal)</td>
<td>Metadata repository managers</td>
<td>Agreed schemes for citation and credit for data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.1.1 Publish re-analysis, preferably open (e.g. peer reviewed journal)</td>
<td>Metadata repository managers</td>
<td>Agreed schemes for citation and credit for data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2 If successful, ensure proper citation of data and credit to data generators.</td>
<td>Metadata repository managers</td>
<td>Agreed schemes for citation and credit for data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.3 Whether or not published in a journal, publish summary results - usually in source repository.</td>
<td>Metadata repository managers</td>
<td>Agreed schemes for citation and credit for data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4 Apply metadata to new data objects, ensure harvesting in metadata system.</td>
<td>Metadata repository managers</td>
<td>Agreed schemes for citation and credit for data</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Subprocess</td>
<td>Actors</td>
<td>Possible Services/Tools</td>
<td>Subservices/tools</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>9. Monitoring data sharing</td>
<td>9.1 Gather and disseminate data on data requests (where explicit requests are required).</td>
<td>Repository managers, research infrastructures, publishers, patient representatives, funders, etc.</td>
<td>Web site on which to display collected data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data collection tools based on agreed API</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2 Gather and disseminate data on reasons for request refusal (where explicit requests are required).</td>
<td>As 9.1</td>
<td>Web site on which to display collected data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3 Gather and disseminate data on data accesses, downloads etc.</td>
<td>As 9.1</td>
<td>Web site on which to display collected data; Data collection tools based on agreed API</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4 Attempt to monitor products of secondary use (papers, datasets etc.).</td>
<td>As 9.1</td>
<td>Web site on which to display collected data</td>
<td></td>
</tr>
</tbody>
</table>

Data objects: any discrete packages of data in an electronic form – whether that data is textual, numerical, a structured dataset, an image, film clip, (etc.) in form. They are each a file, as that term is used within computer systems, and are named, at least within their source file system. In the context of clinical research and data sharing, data objects can include electronic forms of protocols, journal papers, patient consent forms, analysis plans, and any other documents associated with the study, as well as datasets representing different portions and types of the data generated, and the metadata describing that data.

Authentication: The process of ensuring that a person or system that is trying to access a system is who they say (it says) they are. With a person, authentication is by provision of one or more of something only they should know (e.g. a password), or should have (e.g. a card or fob), or can show (e.g. fingerprint, iris pattern). With a system it is more often by provision of a secret token (in effect a machine password), often derived from public key cryptography.

Authorisation: The process of giving an authenticated entity the rights to access particular subsets of data and/or to carry out particular functions within a system. It is usually carried out by assigning user entities to roles and to groups that together define the access allowed.
Table 2. Classification and description of possible tools/services to support processes in sharing IPD from clinical trials.

<table>
<thead>
<tr>
<th>Type of service/tool</th>
<th>Description/comments</th>
<th>Reference to process (Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Providing general background material</td>
<td>Providing general background material</td>
<td>Collection of relevant resources about data sharing in general – e.g. • Links to papers and relevant policy documents from an annotated bibliography, • Summary documents (e.g. built around recent consensus paper) and web pages • Glossary of terms • Links to general educational and training resources provided elsewhere • Courses, webinars, books using materials above • Meetings, conference sessions looking at aspects of data sharing and related topics • Advice to citizens, ethics committees</td>
</tr>
<tr>
<td>2. Locator services</td>
<td>Locator service for data sharing resources</td>
<td>Resource identification – Especially of • Repositories for storage of datasets and other data objects, and their facilities, terms of service etc. • Services to aid in de-identification • Provides information on the applicable legal framework • Provides model agreements templates that can be adapted to meet the particular circumstances of data sharing projects.</td>
</tr>
<tr>
<td></td>
<td>Locator service for data standards resources</td>
<td>Annotated Links to • Repositories of standard data items, e.g. within CDISC’s CDASH, CFAST. • Repositories of standard data instruments, e.g. CDISC QRS (questionnaires, ratings and scales) • Metadata schemes • Core outcome sets (e.g. COMET)</td>
</tr>
<tr>
<td>3. Example documents</td>
<td>Example documents supporting data sharing processes</td>
<td>Example SOPs, Supporting relevant checklists, forms Covering all aspects of data sharing, e.g. • during study preparation, or as part of long term data management, in the context of pre-defined collaborations, or when handling requests for access. • Use of data standards in study design • Use of metadata for data description, data object discovery • Examples of data sharing policies (universities, research institute) • Examples of data sharing requests from funders or journals</td>
</tr>
<tr>
<td></td>
<td>Example data sharing documents (trial set up)</td>
<td>Examples of possible • Sections of a protocol • Sections of a Data Management Plan • Trial Registry sections • Participant information sheets • Consent forms • Pro formas, for agreements with collaborators • Pro formas, for using lab and genetic data All dealing with aspects of planning for data sharing and publication plans, available as a central resource. These could then be used / adapted in the context of individual trials.</td>
</tr>
<tr>
<td>Type of service/tool</td>
<td>Description/comments</td>
<td>Reference to process (Table 1)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Example data sharing documents (data transfer)</td>
<td>Examples / templates of possible data transfer agreements, relevant sections of a Data Management Plan, checklists for the data transfer process.</td>
<td>4.4.1, 4.2.2, 4.2.3</td>
</tr>
<tr>
<td>Example data sharing documents (data re-use)</td>
<td>Examples of data request forms, data use agreements, checklists to support the development of a data use agreement. Any central resource holding such material should also provide a rationale for their structure and contents.</td>
<td>5.6, 5.7, 6.1.5</td>
</tr>
<tr>
<td>4. Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De-identification / anonymisation service for datasets</td>
<td>There are four possible services here – resources that allow trials units to develop their own de-identification/anonymisation processes (if compliant with legal considerations), consultancy input to advise on de-identification in the context of a particular trial, services that carry out and document a de-identification process on behalf of the sponsor / trials unit, service for assessment of risk of re-identification.</td>
<td>3.1.2, 3.2.1, 3.3.1, 3.3.2</td>
</tr>
<tr>
<td>Descriptive metadata services for datasets</td>
<td>To be useful (easily searchable, comparable etc.) the descriptive metadata of the data needs to be in a standard format, or one of a few recognised standard formats (e.g. CDISC ODM). Mechanisms and/or services to convert proprietary metadata descriptions into such a format could therefore be useful when required.</td>
<td>3.2.3, 3.3.2</td>
</tr>
<tr>
<td>Assessment / certification service for data repositories</td>
<td>Provision of a set of standards, that can be used to assess the suitability of any repository as a location for data object storage, would act as a useful guide to the potential users of those repositories. The further application of such standards within a certification scheme.</td>
<td>4.4.1</td>
</tr>
<tr>
<td>An ID assignment mechanism for data objects</td>
<td>An ID (e.g. doi) generation service is required for all stored data objects.</td>
<td>7.2</td>
</tr>
<tr>
<td>A common pipeline for processing access requests</td>
<td>With the possibility of many different data repositories emerging storing clinical datasets, there is potential advantage from making the application, review, decision making process for each very similar (e.g. using common application proformas) or even managing those processes together, e.g. with a common expert advisory board. This could ultimately create a common ‘request pipeline’.</td>
<td>6.2.6</td>
</tr>
<tr>
<td>Recording and reporting systems for data access requests and episodes</td>
<td>Reports that could be provided by repositories include level and type of data object deposition, the types of data access arrangements in place, numbers and types of access requests, the decisions reached and reasons for rejections. Data objects generated as a result of data re-use.</td>
<td>5.8, 6.2.7, 9.1</td>
</tr>
<tr>
<td>Provision of a prototype metadata repository</td>
<td>A metadata repository, (or a portal linked to multiple such repositories) with discovery metadata for clinical trial data objects, is seen as a fundamental requirement if data sharing is going to work efficiently.</td>
<td>7.4, 7.5</td>
</tr>
<tr>
<td>Service for provision of a secure analysis environment</td>
<td>Based on tools to provide an analysis environment for in-situ work (see below).</td>
<td>5.3</td>
</tr>
<tr>
<td>Reference to process (Table 1)</td>
<td>Description/comments</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>5. Frameworks and guidance</td>
<td>The development of a discovery metadata schema is needed on a common discovery metadata standard that can link data objects to studies and that can describe the access mechanisms associated with each. Agreement is needed on a common discovery metadata standard that can link data objects to studies and that can describe the access mechanisms associated with each. Proposals have been made, based on an existing scheme (DataCite), but need further development.</td>
<td></td>
</tr>
<tr>
<td>4.2.4, 5.4, 7.1</td>
<td>Agreement is needed on a common discovery metadata standard that can link data objects to studies and that can describe the access mechanisms associated with each. Proposals have been made, based on an existing scheme (DataCite), but need further development.</td>
<td></td>
</tr>
<tr>
<td>4.2.4</td>
<td>There needs to be a universally recognised scheme that will allow fair credit for the re-use of data.</td>
<td></td>
</tr>
<tr>
<td>8.1.2</td>
<td>The development of an agreed scheme for citation of re-use. There needs to be a universally recognised scheme that will allow fair credit for the re-use of data, in terms of academic citation and recognition.</td>
<td></td>
</tr>
<tr>
<td>3.1.2, 3.1.1, 6.1.1</td>
<td>Legal and regulatory framework. As the legal and regulatory environment continues to evolve, there is a need for updating the data sharing resources (e.g. templates, legal database, procedures). Similarly, the researchers and data managers have to be informed of any changes and data sharing processes will need to be updated. A legal service could be provided as a general framework for guidance.</td>
<td></td>
</tr>
<tr>
<td>4.2.4, 8.1.4</td>
<td>Checklist to support the development of data transfer agreement/data use agreement.</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Checklist to support the development of data transfer agreement/data use agreement.</td>
<td></td>
</tr>
<tr>
<td>6.2.4</td>
<td>Checklist to decide the strategy for data sharing. Checklist to support the specification of agreements overseeing data sharing.</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Manual to support the specification of agreements overseeing data sharing.</td>
<td></td>
</tr>
<tr>
<td>2.3.1, 3.1.1, 6.1.1</td>
<td>Manual to establish boards overseeing data sharing.</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Tools to support the application of discovery metadata scheme. Tools for de-identification/anonymisation service for datasets above.</td>
<td></td>
</tr>
<tr>
<td>4.2.4, 8.1.4</td>
<td>Checklist to support the development of data transfer agreement/data use agreement.</td>
<td></td>
</tr>
<tr>
<td>3.1.2, 3.1.1, 3.3.1.</td>
<td>Checklist to decide the strategy for data sharing. Checklist to support the specification of agreements overseeing data sharing.</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Manual to establish boards overseeing data sharing.</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Tools for generation of data transfer agreements/data use agreements.</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Software tools supporting the development of data transfer agreements/data use agreements.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>APIs to access repository catalogue data (e.g. metadata aggregation) and data. When discovery data is not (or has not been) directly transferred to a central repository using the tools described above, it will be necessary to try and harvest metadata from data repositories on a regular basis. Using APIs to access the repository catalogue, a key part of the effort will be to try and link data objects to studies.</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Within the framework of the EU H2020 funded project CORBEL, major issues associated with sharing of IPD were investigated and a consensus document on providing access to IPD from clinical trials was developed, using a broad interdisciplinary approach. The taskforce reached consensus on 10 principles and 50 recommendations, representing the fundamental requirements of any framework used for the sharing of clinical trials data. To support the adoption of the recommendations, adequate tools and services are needed to promote and support data sharing and re-use amongst researchers, adequately inform trial participants and protect their rights, and provide effective and efficient systems for preparing, storing, and accessing data. As a first step on the way to inventory existing tools/services, their quality and applicability for data sharing, a systematic analysis of processes and actors involved in data sharing was performed. The work done resulted in a systematic, structured and comprehensive list of processes/subprocesses that need to be supported to make data sharing a reality in the future. It is basic work against which existing tools/services can be mapped, and gaps, where new tools/services are needed, can be identified.

In the context of this work, we explored the possibility of generating a generic framework for the sharing of IPD from clinical trials. As an example we considered the Framework for Open Science and Research by ATT (see Open Science and Research framework). This framework provides a general description of the desired architecture in a domain of open science. The framework configures and defines the key structural elements of the overall solution. It gives an overview of how various actors, research processes and services – including data, data structures, actors, roles and IT-systems – could form an interoperable system in the ‘target’ open state. The Enterprise Architecture (EA) approach is used, modelling, describing and designing operations, data requirements, IT-systems and technical solutions in accordance with a common model. The work done in developing a framework for open science and research could be of major relevance for a similar model in the area of data sharing. At this stage, of trying to basically structure processes/subprocesses involved in data sharing, it was seen as too early to develop a generic framework. It may, however, be that this approach is taken up again when the basic work has been done and the components for such a framework have been identified.

Nevertheless, we thought it useful to use a standardised terminology and notation for describing basic processes in data sharing. This will simplify the extension to a more generic and comprehensive framework at a later stage. As one approach, business modelling has been applied successfully in the health and health research area. It has been used, for example, to perform requirements analysis of the barriers to conducting research linking of primary care, genetic and cancer data, to model the complexity of health and associated data flow in asthma and to provide a generic architecture for a type 2 diabetes mellitus care system. We decided not to apply the full spectrum of business process modelling (BPMN), but to use only basic elements to give a notational and terminological basis for further work. This does not imply, however, that the application of the full spectrum of BPMN techniques is a necessary step in developing an overall framework. More work is needed to explore the suitability and benefit of BPMN for a generic framework for data sharing.

Different models for clinical trials and clinical trials workflow already exist, such as the domain analysis model BRIDG, the study design model CDISC SDM and the primary care information model PCROM. Any framework or model for data sharing needs to map or reference these clinical trial models, though none currently include the secondary use of data after the trial has completed. Although clinical trial processes and data sharing processes are distinct, they are clearly linked, and any models need to incorporate those linkages. As a consequence, developing a generic framework or architecture for data sharing needs much more work and is not covered in this paper.

Many of the services/tools identified in this paper are non-technical but nevertheless may be of major importance, especially for data generators and data requestors. This includes templates/examples, checklists and guidance. For some of the processes specified in this paper IT-tools and services already exist and can be applied (e.g. de-identification tools and services, see Electronic Health Information Laboratory page on de-identification software), others are under development or need improvement (e.g. metadata repository for identifying clinical trial objects, 13). The next step is to perform a scan on the availability and suitability of services/tools for data sharing based on this work, with the involvement of stakeholders. We will summarize this information in a separate report.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Competing interests

No competing interests were disclosed.

Grant information

This project has received funding from the European Union’s Horizon 2020 research and innovation programme (CORBEL, under grant agreement n° 654248).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

The authors wish to thank Mihaela Matei (ECRIN) for support with legal issues.

Open Peer Review

In this paper, Ohmann et. al. perform a detailed analysis of steps required to share patient microdata from clinical trials with the research community. They provide a process diagram describing the workflow of preparing, transferring and maintaining the data and metadata to an external repository. The main part of the work consists of a comprehensive list of all sub-processes, the involved actors and services or tools. They also elaborate on scope and depth of the services or tools and give examples.

The valuable contribution of this work lies in the sequential structuring of data sharing tasks. Especially study groups who want (or have to) actively provide data have a checklist at hand, which gives them the opportunity to assess each sub-task in its complexity and to put together suitable persons or teams for implementation. This prevents important stakeholders from being overlooked or partial steps from being insufficiently taken into account, particularly with regard to regulatory issues.

The article focuses on aspects of data sharing in clinical trials, addressing a relevant problem of academic research, namely the long-term availability of research results in an environment that has only a limited lifespan due to project funding. It shows the complexity of the topic and every research group should already think about it during the project planning phase. Additionally, it is also relevant for other types of research projects, such as clinical registries, epidemiological cohorts or studies in health care research, with minor modifications.

I particularly liked the fact that aspects of providing analysis environments were also addressed, e.g. with special Docker containers that bring the evaluation algorithms to the data instead of releasing data.

The weak part of the paper is that even with a detailed listing of the sub-processes and the relevant tools, most researchers will find it difficult to design a concrete implementation strategy or to check whether the implementation meets the state of the art. Notes such as "Provide sample documents", "Assess risk of re-identification" or "Select suitable metadata schemas for object discovery" are simply too vague to be a real help. At this point, a knowledge base must be built up that provides researchers with concrete guidelines, implementation guidelines and example scenarios for successful projects.

Points to address:
- The workflow in Figure 1 assumes that the data set is only imported once into an external repository. However, there are many scenarios in which data sets will have to be updated or extended, e.g. in long-running investigations where interim evaluations are already being carried
out. Snapshots of shared data must be saved for verification purposes.

- Some years ago, there has been an EMA draft policy on publication and access to clinical-trial data [1]. I'm not sure about the current status but it would be interesting to include the effort in this paper.

- Page 6, section 2.3.2 “Include request for broad consent for data sharing in informed consent documents.” The term broad consent might require a more detailed definition, because in Germany consent is always contextual and without specific and the ethics committees are looking into this.

- Metadata (sections 2.5, 5.4, 7.1) should not be limited to semantics and discovery. Another important topic for metadata is provenance metadata (measurement conditions, data quality, algorithms for calculated data)

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 16 Apr 2018

Christian Ohmann, ECRIN, Germany

Our answer in bold and italics.

In this paper, Ohmann et. al. perform a detailed analysis of steps required to share patient microdata from clinical trials with the research community. They provide a process diagram describing the workflow of preparing, transferring and maintaining the data and metadata to an external repository. The main part of the work consists of a comprehensive list of all sub-processes, the involved actors and services or tools. They also elaborate on scope and depth.
of the services or tools and give examples.

The valuable contribution of this work lies in the sequential structuring of data sharing tasks. Especially study groups who want (or have to) actively provide data have a checklist at hand, which gives them the opportunity to assess each sub-task in its complexity and to put together suitable persons or teams for implementation. This prevents important stakeholders from being overlooked or partial steps from being insufficiently taken into account, particularly with regard to regulatory issues.

The article focuses on aspects of data sharing in clinical trials, addressing a relevant problem of academic research, namely the long-term availability of research results in an environment that has only a limited lifespan due to project funding. It shows the complexity of the topic and every research group should already think about it during the project planning phase. Additionally, it is also relevant for other types of research projects, such as clinical registries, epidemiological cohorts or studies in health care research, with minor modifications.

I particularly liked the fact that aspects of providing analysis environments were also addressed, e.g. with special Docker containers that bring the evaluation algorithms to the data instead of releasing data.

The weak part of the paper is that even with a detailed listing of the sub-processes and the relevant tools, most researchers will find it difficult to design a concrete implementation strategy or to check whether the implementation meets the state of the art. Notes such as “Provide sample documents”, “Assess risk of re-identification” or “Select suitable metadata schemas for object discovery” are simply too vague to be a real help. At this point, a knowledge base must be built up that provides researchers with concrete guidelines, implementation guidelines and example scenarios for successful projects.

The purpose of the study was better explained at the end of the introduction. It was the objective to identify all processes/sub-processes involved in data sharing and to provide a classification of tools/services needed to support the processes. It is ground structuring work and it was not intended to provide specific help for data sharing (e.g. guidelines, examples). In a later stage of the CORBEL project concrete and specific tools/services to support data sharing will be made available.

Points to address:

- The workflow in Figure 1 assumes that the data set is only imported once into an external repository. However, there are many scenarios in which data sets will have to be updated or extended, e.g. in long-running investigations where interim evaluations are already being carried out. Snapshots of shared data must be saved for verification purposes.

This is a relevant point and was included in the figure under 3) : Preparation of data sharing (after data collected or data update).

- Some years ago, there has been an EMA draft policy on publication and access to clinical-trial data[1]. I’m not sure about the current status but it would be interesting to include the effort in this paper.

The EMA policy 70 is effective since January 2015 and applies to new drugs.
approved by the EMA after that date, thus only on a subset of trials testing pharmacological interventions. Moreover, the policy is only dealing with clinical study reports, i.e. aggregate data. Currently, the EMA is discussing the possibility of sharing individual participant data (IPD) from clinical trials. One EMA expert was included in our consensus exercise and one author of the current paper (CO) was invited to attend an EMA-workshop on anonymisation, 30.11.-1.12.2017. This publication could be used as input to an update of the EMA data sharing policy.

This comment is added to the discussion.

- Page 6, section 2.3.2 “Include request for broad consent for data sharing in informed consent documents.” The term broad consent might require a more detailed definition, because in Germany consent is always contextual and without specific and the ethics committees are looking into this.

The concept of broad consent has been discussed in detail in the BMJ Open paper published by the group in 2017 and was not tackled in this manuscript.

- Metadata (sections 2.5, 5.4, 7.1) should not be limited to semantics and discovery. Another important topic for metadata is provenance metadata (measurement conditions, data quality, algorithms for calculated data)

Yes, provenance data are very important and an essential part of the metadata. We have added provenance metadata in 4.2.2 and 4.2.4.

Competing Interests: No competing interests were disclosed.

Referee Report 19 March 2018

https://doi.org/10.5256/f1000research.14988.r31482

Matthew R. Sydes

MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK

This process-orientated manuscript covers a lot of ground in some detail. I have some specific comments:

Major

1. **Section: General**
 Comment: The process of reaching these recommendations is unclear to me. Perhaps these are opinions? I don’t think there is primary evidence to underpin them. Should there be?

2. **Section: General**
 Comment: This is comprehensive, but also sets out a substantial burden on organisations. I wonder for what proportion of trials this work is proportionate effort.

3. **Section: General**
 Comment: This does not address my previous concerns about recognition of effort of the original
researchers or issues about self-identification by patients, but perhaps that is outside of the scope of the paper. It would helpful to remind the reader that these are key, unresolved issues and point to places where they might be considered further.

Moderate

1. Section: Table 1
 Text ref: "1.2 Clarify own institution’s requirements for data sharing"
 Comment: This is pretty vague. I don’t know how to use this row.

2. Section: Table 1
 Text ref: "2.1.2 Check funder requirements for data sharing"
 Comment: Which takes priority and when? 2.1.2 vs 1.2.

3. Section: Table 1
 Text ref: "2. Plan for data sharing, in the context of a specific trial"
 Comment: When should this be developed? 2.2.2 suggests before the protocol is finalised; but I suspect 2.2.2 would generally be done before 2.2.1. What is the ordering of the rows?

4. Section: Table 1
 Text ref: "3.1 Decide upon strategy for data preparation for sharing"
 Comment: 3.1.1 and 3.1.2 seem to be in the wrong order.

5. Section: Table 1
 Text ref: Section 3 or 4
 Comment: Somewhere, perhaps, one should advertise the timelines for making data available. It's unlikely to be during the trial; how long after primary analyses? Useful to manage expectations?

6. Section: Table 1
 Text ref: "5.1 Maintain highly granular access control to IPD, that can be changed rapidly"
 Comment: Changed on what basis?

7. Section: Table 1
 Text ref: "5.5 Provide an expert advisory panel"
 Comment: Is this a Data Access Committee or something different? Is there independent membership?

8. Section: Table 1
 Text ref: "5.7 Provide data use agreement templates"
 Comment: Possibly wishful thinking. Agreements are never as straightforward as one might hope. Is this a suggestion for global templates, institution templates or trial templates?

9. Section: Table 1
 Text ref: "6.1.2 Assess the reasonableness of the request and the ability of the requesters to draw sensible conclusions"
 Comment: Where is the independence in this process? Is there a duty from the sponsor and TMG to work fairly? Who judges what is reasonable?

10. Section: Table 1
 Text ref: :: "6.2.1 Repository makes appropriate request forms available on-line"
Comment: Why? This will just encourage false positive submissions. Better for applicants to talk to the trial team before getting a form, so the applicant really understands whether the data set is suitable and timely. (Very often, it really won’t be.)

11. Section Table 1
 Text ref: "7.2 Agree an ID generation scheme for data objects"
 Comment: Also, what if the same dataset is given to two separate people: does this get the same ID?

12. Section: Table 1
 Text ref: "8. Publishing results of re-use"
 Comment: Who checks that the secondary use of the data is done well?

13. Section: Table 1
 Text ref: "8. Publishing results of re-use"
 Comment: What to do if there is discrepancy in findings between original and subsequent findings? Could undermine trust. Probably needs rows about “dispute” resolution.

14. Section: Table 2
 Text ref: "2. Locator services. Locator service for data sharing resources"
 Comment: Will this be a familiar term to readers? I’m not sure what it means.

Trivial/Minor

1. Section: Table 1
 Comment: Would be quickly for each actor to find the role if this column was broken into separate columns, one per actor type, with the ticks for whether it is relevant.

2. Section: Table 1
 Text ref: "7.2 Agree an ID generation scheme for data objects"
 Comment: “Data objects” needs a clear definition before the table. Perhaps a Glossary with the Abbreviations?

Is the work clearly and accurately presented and does it cite the current literature?

Partly

Is the study design appropriate and is the work technically sound?

Yes

Are sufficient details of methods and analysis provided to allow replication by others?

No

If applicable, is the statistical analysis and its interpretation appropriate?

I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?

No source data required

Are the conclusions drawn adequately supported by the results?

Yes
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical trials and clinical trial methodology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 16 Apr 2018

Christian Ohmann, ECRIN, Germany

Response to reviewer in bold and italics

This process-orientated manuscript covers a lot of ground in some detail. I have some specific comments:

Major

1. Section: GeneralComment: The process of reaching these recommendations is unclear to me. Perhaps these are opinions? I don’t think there is primary evidence to underpin them. Should there be?

 Principles and recommendations on data sharing were developed in the BMJ Open paper. In this study a framework based upon these principles and recommendations was proposed, characterising processes/subprocesses as well as tools/services needed for data sharing. The following methodological approach was followed. The basic concepts and definitions were adapted from the business process model and notation (BPMN) and applied to our analysis. Recommendations and principles from the data sharing consensus document were analysed in detail and individual processes/subprocesses identified and linked to actors and possible services/tools by a small group of experts (CO, SC, RB, WK, SB). The decision-making process was based on a facilitator (CO) providing initial and updated versions of the document and iterative rounds of written feedback from the team members. The process was continued until final agreement was achieved. The process took place between October 2017 and January 2018, four different versions were provided and approved in sequential order (24 November 2017, 7 and 11 December 2017, 15 January 2018). Due to the good relationship between the team members and long-term involvement in common projects, a comprehensive and detailed point of reference, the consensus document, and clear objectives with milestones and time lines, agreement could be achieved by the team without applying a normative model of decision-making. As suggested by another reviewer, this paper can be classified as qualitative research, although we applied a semi-formal collaborative small group decision-making approach and not formal methodology such as interviews or focus groups. We revised the methodological section of the manuscript and adapted it as much as possible to the COREQ guidelines for qualitative research.

2. Section: GeneralComment: This is comprehensive, but also sets out a substantial burden on organisations. I wonder for what proportion of trials this work is proportionate effort.
This is difficult to estimate. The empirical assessment of the benefit of data sharing in comparison to the effort and resources needed is an area, where much more research is needed. This issue has been explored in more detail in the BMJ Open publication but was not tackled in this paper.

3. Section: General Comment: This does not address my previous concerns about recognition of effort of the original researchers or issues about self-identification by patients, but perhaps that is outside of the scope of the paper. It would helpful to remind the reader that these are key, unresolved issues and point to places where they might be considered further.

These aspects have been discussed in detail in the BMJ open publication and are outside the scope of this paper. As suggested, readers are reminded that the points raised by the reviewer are key unsolved issues and initiatives dealing with these issues are referred to.

Moderate

1. Section: Table 1 Text ref: "1.2 Clarify own institution’s requirements for data sharing" Comment: This is pretty vague. I don’t know how to use this row.

This was split into two subprocesses and a comment was added in the table. The order of 1.2 and 1.3 was reversed.

2. Section: Table 1 Text ref: "2.1.2 Check funder requirements for data sharing" Comment: Which takes priority and when? 2.1.2 vs 1.2.

Certainly a reasonable question but so far no priorities have been defined and the timely order of processes has only be lightly tackled in the figure. The work is part of ongoing research in the CORBEL project. A comment about "clarification of legal responsibilities" has been added in 2.1.2.

3. Section: Table 1 Text ref: "2. Plan for data sharing, in the context of a specific trial" Comment: When should this be developed? 2.2.2 suggests before the protocol is finalised; but I suspect 2.2.2 would generally be done before 2.2.1. What is the ordering of the rows?

Correct, the order of 2.2.1 and 2.2.2 has been reversed.

4. Section: Table 1 Text ref: "3.1 Decide upon strategy for data preparation for sharing" Comment: 3.1.1 and 3.1.2 seem to be in the wrong order.

We have not changed that because from our viewpoint this seems to be the right order.

5. Section: Table 1 Text ref: Section 3 or 4 Comment: Somewhere, perhaps, one should advertise the timelines for making data available. It’s unlikely to be during the trial; how long after primary analyses? Useful to manage expectations?

This is an important issue, which has also been discussed in the BMJ Open paper. We have included a reference to timelines in 3.1.
6. Section: Table 1 Text ref: "5.1 Maintain highly granular access control to IPD, that can be changed rapidly" Comment: Changed on what basis?
 We removed the reference to "rapid change" as it seems to be confusing.

7. Section: Table 1 Text ref: "5.5 Provide an expert advisory panel" Comment: Is this a Data Access Committee or something different? Is there independent membership?
 The reference was changed to a Data Access Committee. We also re-organised the processes in section 5 to make them (I hope) easier to read and understand, though the content is almost exactly the same. 5.3 and 5.4 were split up into sub-processes, 5.5 – 5.7 made subprocesses of a new 5.5, and 5.6 (was 5.8) expanded to include 2 subprocesses of reporting / feedback

8. Section: Table 1 Text ref: "5.7 Provide data use agreement templates" Comment: Possibly wishful thinking. Agreements are never as straightforward as one might hope. Is this a suggestion for global templates, institution templates or trial templates?
 We agree that in practice there will be no agreed templates. Therefore we added a phrase that the templates may be starting points for negotiated, specific agreements.

9. Section: Table 1 Text ref: "6.1.2 Assess the reasonableness of the request and the ability of the requesters to draw sensible conclusions" Comment: Where is the independence in this process? Is there a duty from the sponsor and TMG to work fairly? Who judges what is reasonable?
 Yes, a critical issue. This is the reason why we prefer data sharing via trusted repositories with defined and transparent governance. In 6.1 processes are specified for the use case of access via direct contact with the sponsor/PI. Here an independency of processes is usually not given.

10. Section: Table 1 Text ref: "6.2.1 Repository makes appropriate request forms available on-line" Comment: Why? This will just encourage false positive submissions. Better for applicants to talk to the trial team before getting a form, so the applicant really understands whether the data set is suitable and timely. (Very often, it really won't be.)
 We are supporting the view that data sharing and re-use should be possible without the (mandatory) involvement of data generators. False positive submission may be reduced if the data available are fully described. According to the suggestions of another reviewer, a relation between data requester and data generator named « optional collaboration » has been added to the figure. In our consensus exercise (BMJ Open paper) we formulated the following recommendation (no. 33):
 « Collaboration between data providers and secondary data users could be an added value in data sharing. However, it should not be a pre-requisite for data sharing. ». Therefore we marked the relation with « optional ».

11. Section Table 1 Text refL "7.2 Agree an ID generation scheme for data objects" Comment: Also, what if the same dataset is given to two separate people: does this get the same ID?
Yes, the ID is fixed with the clinical trial objects. 7.2. is now split into two related subprocesses, as is 7.3. 7.1. and 7.5 simplified by removal of subprocess.

12. Section: Table 1 Text ref: "8. Publishing results of re-use"Comment: Who checks that the secondary use of the data is done well?

Yes, this is a critical issue. There is no standard procedure foreseen for this. The best strategy is to make the re-analysis fully open and transparent. (see 8.1.1). In that case the scientific community (including the data generators) can check the validity of the re-analysis. Nevertheless, monitoring compliance (in general) is an open issue but not impossible. FDAA Trial Tracker is a good example of monitoring compliance to regulation in trial registry and Ben Goldacre’s group is also chasing and publishing non-compliance.

13. Section: Table 1 Text ref: "8. Publishing results of re-use"Comment: What to do if there is discrepancy in findings between original and subsequent findings? Could undermine trust. Probably needs rows about “dispute” resolution.

Yes, also very important and difficult to solve. Replication is very important in science (https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970) and given that the replication of complex and expensive experiments such as trials is not very much feasible, replication of the analysis is fundamental. We cannot think of any formal structure, to ‘referee’ disputes, that would be applicable here – any dispute would need to be played out in the literature, and each is likely to have different characteristics. We have restructured section 9 to add a row about the need to monitor disputes, as well as other possible consequences.

14. Section: Table 2 Text ref: "2. Locator services. Locator service for data sharing resources"Comment: Will this be a familiar term to readers? I’m not sure what it means.

We have tried to reword section 2 to make the meaning clearer.

Trivial/Minor
1. Section: Table 1 Comment: Would be quickly for each actor to find the role if this column was broken into separate columns, one per actor type, with the ticks for whether it is relevant.

Table 1 ordered according to actor is an interesting proposal but according to our approach (list all processes/sub-processes following the clinical workflow) it would mean to add another table. We would not prefer to do that to keep the paper as simple as possible.

2. Section: Table 1 Text ref: "7.2 Agree an ID generation scheme for data objects"Comment: “Data objects” needs a clear definition before the table. Perhaps a Glossary with the Abbreviations?

Yes, a glossary with some main terms (defined as used in this paper) was added at the bottom of table 1.
Competing Interests: No competing interests were disclosed.

Referee Report 01 March 2018

https://doi.org/10.5256/f1000research.14988.r31016

Florian Naudet

CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), University of Rennes 1, Rennes, France

The manuscript Classification of processes involved in sharing individual participant data from clinical trials by Ohmann C, Canham S, Banzi R, Kuchinke W and Battaglia S\(^1\) is more than useful for all stakeholders interested in data sharing. It must be accepted with, in my opinion, a few (and minor) edits.

In my experience as a researcher interested in the impact of data sharing policies\(^2\), I have identified that a major practical barrier to implementation of full data sharing of randomised controlled trials was the great heterogeneity across different trial groups: "getting prepared and preplanning for data sharing still seems to be a challenge for many trial groups; data sharing proved to be novel for some authors who were unsure how to proceed". Therefore the description and classification of processes involved in sharing IPD from clinical trials will surely helps all stakeholders to get prepared. It is welcome and this manuscript will be very useful.

I have a few suggestions that may help to write it better. Please note that I'm not an expert in qualitative research. Therefore these are only suggestion that I don't want to enforce strongly.

First, as it is presented as a research paper and because it is very qualitative by nature, I would suggest to use, or better adapt the reporting guidelines for qualitative research\(^3\) to this specific paper as most points won't directly apply since the study presented is not a typical qualitative research.

More specifically, I would welcome more details on authors in the main text:

- Who are they? Were they from different background (e.g. data managers, statisticians, trialists, patients, etc...; Master degree, MD, PhD, PharmD... etc.). Please clearly state that they were involved in the initial initiative that was used for this paper\(^4\). Please also detail how it could have affected their judgement.

- What is their background for conducting such a qualitative synthesis?

- Was there a protocol registered for this analysis?

Please specify why the processes were derived from only one initiative\(^4\) and not from a systematic assessment of other papers/initiatives. Any limitations of the initial paper should be discussed here. The process of analysis should be made as transparent as possible. How the different authors were involved in the process? Were there some leaders during the phone meetings? Were verbatim from written correspondence used? Was there a good agreement between expert (for what parts the agreement was less good ?)? The researchers’ own position should also clearly be stated. A critical
examination of their own role, possible bias, and influence on the research would be welcome.

I have also identified very practical points that could be addressed in a new version of the manuscript:

- In my very practical experience, figure 1 could be overly simple for being accurate. I think that one important point was missed. Adoption of data sharing in biomedical research not only implies to provide and re-use the data. It implies to adopt a collaborative approach. It means that when one want to re-use the data of another team, one sometimes must directly contact the other team to have information and to have the data in the appropriate format. Sharing data for a re-analysis of safety outcomes involves sharing the cases report forms while re-using data for some IPD meta-analysis may only rely on sharing data at a later analytical stage (e.g. analysable data). This implies that step 3 is very linked with step 6. I think that the figure will be better (if it is not too complex) by adding such kind of relationship.

- Table 1, section 1.1.1 / 2.3.1: patients are an important actors/leverages and must be involved in my opinion in these aspects;

- Table 1, in general avoid abbreviations such as "SOP" in 1.3;

- Table 1, section 2 and 3.1: Ethic committees have a strong role to play at all these parts. They have, in my opinion to judge wether the de-identification plan is adapted to the specific study;

- Table 1, section 3.2.1: data manager and statisticians must ensure that the code that will be shared works for the de identified data sets. Practical finding from my experience (in one case, de-identification was made after the analysis and labels were different between the two datasets: therefore the shared code didn't worked).

- Table 1, section 4.1.1: this should be explored before in my opinion (at step 3), when one decide of the data sharing plan.

- Table 2 very interesting, but I would suggest to add an hyperlink to some concrete examples when possible in section 3.

In general the tables should be checked for majuscule and minuscule: eg. table 2, section 3 "during" must be During.

A last suggestion would be to add more practical information for clinicians and to cite the ICJME recomendations.

It is again a very great manuscript and I hope that these comment will be able to improve it.

I'm not competent to review the English, and please excuse my English.

References
3. Tong A, Sainsbury P, Craig J: Consolidated criteria for reporting qualitative research (COREQ): a

Abstract

Abstract

Is the work clearly and accurately presented and does it cite the current literature?

Yes

Is the study design appropriate and is the work technically sound?

Yes

Are sufficient details of methods and analysis provided to allow replication by others?

Partly

If applicable, is the statistical analysis and its interpretation appropriate?

Not applicable

Are all the source data underlying the results available to ensure full reproducibility?

Partly

Are the conclusions drawn adequately supported by the results?

Yes

Competing Interests: I have completed the ICMJE uniform disclosure form at http://www.lcmje.org/coi_disclosure.pdf (available on request from the referee) and declare that (1) I have no support from any company for the submitted work; (2) I had relationships (travel/accommodations expenses covered/reimbursed) with Servier, BMS, Lundbeck, and Janssen who might have an interest in the work submitted in the previous three years. (3) My spouse, partner, or children don't have any financial relationships that could be relevant to the submitted work; and (4) I have no non-financial interests that could be relevant to the submitted work. My post doctoral fellowship was funded by Laura and John Arnold Foundation and I received grants from La Fondation Pierre Deniker, Rennes University Hospital, France (CORECT: COmité de la Recherche Clinique et Translationelle) and Agence Nationale de la Recherche (ANR).

Reviewer Expertise: Meta-research

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Response to the reviewer in bold and italics

The manuscript Classification of processes involved in sharing individual participant data from clinical trials by Ohmann C, Canham S, Banzi R, Kuchinke W and Battaglia S is more than useful for all stakeholders interested in data sharing. It must be accepted with, in my opinion, a few (and minor) edits.

In my experience as a researcher interested in the impact of data sharing policies, I have identified that a major practical barrier to implementation of full data sharing of randomised controlled trials was the great heterogeneity across different trial groups: “getting prepared and preplanning for data sharing still seems to be a challenge for many trial groups; data sharing proved to be novel for some authors who were unsure how to proceed”. Therefore the description and classification of processes involved in sharing IPD from clinical trials will surely help all stakeholders to get prepared. It is welcome and this manuscript will be very useful.

I have a few suggestions that may help to write it better. Please note that I’m not an expert in qualitative research. Therefore these are only suggestions that I don’t want to enforce strongly.

First, as it is presented as a research paper and because it is very qualitative by nature, I would suggest to use, or better adapt the reporting guidelines for qualitative research to this specific paper as most points won’t directly apply since the study presented is not a typical qualitative research.

More specifically, I would welcome more details on authors in the main text:

- Who are they? Were they from different background (e.g. data managers, statisticians, trialists, patients, etc..., Master degree, MD, PhD, PharmD... etc.). Please clearly state that they were involved in the initial initiative that was used for this paper. Please also detail how it could have affected their judgement.

- What is their background for conducting such a qualitative synthesis?

- Was there a protocol registered for this analysis?

Please specify why the processes were derived from only one initiative and not from a systematic assessment of other papers/initiatives. Any limitations of the initial paper should be discussed here.

The process of analysis should be made as transparent as possible. How the different authors were involved in the process? Were there some leaders during the phone meetings? Were verbatim from written correspondence used? Was there a good agreement between expert (for what parts the agreement was less good)? The researchers’ own position should also clearly be stated. A critical examination of their own role, possible bias, and influence on the research would be welcome.

We agree with the reviewer that this paper can be classified as qualitative research, although we applied a semi-formal collaborative small group decision-making approach and not a formal methodology such as interviews or focus groups. We revised the manuscript and adapted it as much as possible to the COREQ guidelines. However, as
expected, many COREQ items are clearly not applicable. We hope this revision had improved the paper reporting.

I have also identified very practical points that could be addressed in a new version of the manuscript:

- In my very practical experience\textcopyright, figure 1 could be overly simple for being accurate. I think that one important point was missed. Adoption of data sharing in biomedical research not only implies to provide and re-use the data. It implies to adopt a collaborative approach. It means that when one want to re-use the data of another team, one sometimes must directly contact the other team to have information and to have the data in the appropriate format. Sharing data for a re-analysis of safety outcomes involves sharing the cases report forms while re-using data for some IPD meta-analysis may only rely on sharing data at a later analytical stage (e.g. analysable data). This implies that step 3 is very linked with step 6. I think that the figure will be better (if it is not too complex) by adding such kind of relationship.

According to the suggestions of the reviewer, a relation between data requester and data generator named « optional collaboration » has been added to the figure. In our consensus exercise (BMJ Open paper) we formulated the following recommendation (no. 33) : « Collaboration between data providers and secondary data users could be an added value in data sharing. However, it should not be a pre-requisite for data sharing. ». Therefore we marked the relation with « optional ».

- Table 1, section 1.1.1 / 2.3.1: patients are an important actors/leverages and must be involved in my opinion in these aspects ;

Added patient groups to list of actors for 1.1.1, 2.3.1 and 2.3.2

- Table 1, in general avoid abbreviations such as "SOP" in 1.3 ;

A brief definition has been added to the glossary of at the bottom of table 1.

- Table 1, section 2 and 3.1: Ethic committees have a strong role to play at all these parts. They have, in my opinion to judge wether the de-identification plan is adapted to the specific study ;

We are not sure if the exact role of ethics committees in data sharing has been clarified, though if the proposals are in the protocol and the participant information sheet (etc.) they would be scrutinised by an ethics committee. Not sure if this needs to be added explicitly as part of the workflow unless ECs are given a formal role.

- Table 1, section 3.2.1: data manager and statisticians must ensure that the code that will be shared works for the de identified data sets. Practical finding from my experience (in one case, de-identification was made after the analysis and labels were different between the two datasets : therefore the shared code didn't worked).

An extra subprocess has been added as 3.2.2.

- Table 1, section 4.1.1: this should be explored before in my opinion (at step 3), when one decide of the data sharing plan.
We are not so sure. This will never be a simple linear process, so the order in the table does not imply a similar ordering of workflow. We have changed 4.1. so that it is either a selection or a confirmation of an earlier repository selection.

- Table 2 very interesting, but I would suggest to add an hyperlink to some concrete examples when possible in section 3.

Table 1 and 2 were improved, taken the comments from the reviewer into consideration.

In general the tables should be checked for majuscule and minuscule: eg. table 2, section 3 "during" must be During.

Checked.

A last suggestion would be to add more practical information for clinicians and to cite the ICJME recommandations.

The activity of ICMJE was cited.

It is again a very great manuscript and I hope that these comment will be able to improve it.

I'm not competent to review the English, and please excuse my English.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com