RESEARCH NOTE

Sleep and BMI: Do (Fitbit) bands aid? [version 1; referees: 2 approved with reservations]

Laura McDonald¹, Faisal Mehmud², Sreeram V. Ramagopalan ¹

¹Centre for Observational Research and Data Sciences, Bristol-Myers Squibb, Uxbridge, UB8 1DH, UK
²Bristol-Myers Squibb, Uxbridge, UB8 1DH, UK

Abstract

Recent studies have used mainstream consumer devices (Fitbit) to assess sleep objectively and test the well documented association between sleep and body mass index (BMI). In order to further investigate the applicability of Fitbit data for biomedical research across the globe, we analysed openly available Fitbit data from a largely Chinese population. We found that after adjusting for age, gender, race, and average number of steps taken per day, average hours of sleep per day was negatively associated with BMI (p=0.02), further demonstrating the significant potential for wearables in international scientific research.

Keywords

sleep, BMI, fitbit, wearable

Open Peer Review

Referee Status: ??

Invited Referees

1 2

version 2

07 Sep 2018

version 1

27 Apr 2018

Discuss this article

Comments (0)
Introduction
The association between sleep and body mass index (BMI) is well known\(^1\). Recently Xu and colleagues\(^2\) showed that shorter sleep duration, as measured by a Fitbit wristband, was associated with a higher average BMI\(^2\). These results importantly show the potential value of mainstream consumer devices for scientific research by providing objective sleep and physical activity data. A limitation of the Xu et al. study however, as noted by the authors\(^2\), is the lack of diversity of ethnicity in their study population, with the majority of participants being of European descent. In order to assess the utility of wearables for global research we used data from a recently published study\(^3\) to investigate the relationship between sleep and BMI in a largely Chinese population.

Methods
Data was obtained from the study by Lim and colleagues\(^3\). In brief, this study generated Fitbit Charge heart rate (HR) data from a cohort of volunteers tracked for a median duration of 4 days\(^3\). The volunteers underwent comprehensive profiling including activity tracking (step count and sleep tracking) using the Fitbit Charge HR wearable sensor and BMI measurement at day of recruitment. From the total cohort of 233 individuals contributing data\(^1\), association analyses were conducted on subjects who had valid measurements for all metric types and who had more than one day of sleep data.

To test the association between average hours of sleep and BMI multiple linear regression analyses were conducted using the ‘\textit{statsmodels}’ package in python.

Results
Useable data was available for 212 individuals; the summary of their clinical and demographic characteristics are shown in Table 1.

A linear regression analysis showed that after adjusting for age, gender, race, and average number of steps taken per day, average hours of sleep per day was negatively associated with BMI (p=0.02): an hour increase in sleep per day was associated with approximately a 0.5 point decrease in BMI (Table 2, Figure 1).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age in Years (SD)</td>
<td>46.6 (12.1)</td>
</tr>
<tr>
<td>No. of Females (%)</td>
<td>123 (58%)</td>
</tr>
<tr>
<td>No. of Chinese (%)</td>
<td>195 (92%)</td>
</tr>
<tr>
<td>Mean Hours of Sleep (SD)</td>
<td>6.5 (1.1)</td>
</tr>
<tr>
<td>BMI (SD)</td>
<td>23.6 (4.1)</td>
</tr>
<tr>
<td>Mean daily steps (SD)</td>
<td>10826 (3865)</td>
</tr>
</tbody>
</table>

BMI: Body mass index

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>29.21</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (per year increase)</td>
<td>0.0014</td>
<td>0.95</td>
</tr>
<tr>
<td>Sex (Male vs Female)</td>
<td>1.80</td>
<td>0.001</td>
</tr>
<tr>
<td>Race (Chinese vs other)</td>
<td>-3.35</td>
<td>0.001</td>
</tr>
<tr>
<td>Steps (per 1000 steps increase)</td>
<td>0.03</td>
<td>0.64</td>
</tr>
<tr>
<td>Average Sleep (per hour increase)</td>
<td>-0.54</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Conclusions
In summary, we found that the findings of Xu and colleagues are consistent in a population of different ancestry. More generally, previous work\(^2,3\) and that described here demonstrates the significant potential for wearables in global biomedical research and further, as we used openly available data, this analysis shows the benefits of sharing observational data\(^4\).

Data availability
All data used in this study is available from the article by Lim et al. https://doi.org/10.1371/journal.pbio.2004285\(^5\)

Grant information
Bristol-Myers Squibb supported this work.

References

Figure 1. Relationship between body mass index (BMI) and average hours of sleep.
I agree with the previous reviewer about methodological remarks. While wearable devices may help in collecting data and significantly contribute to generate hypotheses or confirm results, their reliability has not been rigorously tested. An advantage of wearable devices is the possibility to collect large amount of data, which is not the case with this paper (n=212). Nevertheless, this work points to the possibility of increasingly available “big data”, especially after appropriate validation studies.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The paper confirms a weak inverse association between sleep time and BMI using a mainstream consumer activity tracker (fitbit). The aim is to demonstrate the potential for wearables in scientific research.

Because of this aim, it would be helpful to get additional information about feasibility aspects: what are the prerequisites for usability in terms of data collection, how many of the participants had useful data based on which criteria, what strategies are needed for quality control to obtain meaningful associations?

Definitions for 'useable data' should therefore be clarified.

Sensitivity analyses can provide answers to what elements are important and what factors are secondary for a meaningful data use of consumer trackers.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Referee Expertise: Lifestyle epidemiology; lifestyle interventions to prevent diabetes type 2; wearable technology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com