RESEARCH ARTICLE

Using different methods to process forced expiratory volume in one second (FEV₁) data can impact on the interpretation of FEV₁ as an outcome measure to understand the performance of an adult cystic fibrosis centre: A retrospective chart review [version 1; referees: 1 approved]

Zhe Hui Hoo, Muhaned S.A. El-Gheryani, Rachael Curley, Martin J. Wildman

1School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, S1 4DP, UK
2Sheffield Adult Cystic Fibrosis Centre, Northern General Hospital NHS Trust, Sheffield, S5 7AU, UK

Abstract

Background: Forced expiratory volume in one second (FEV₁) is an important cystic fibrosis (CF) prognostic marker and an established endpoint for CF clinical trials. FEV₁ is also used in observation studies, e.g. to compare different centre’s outcomes. We wished to evaluate whether different methods of processing FEV₁ data can impact on a centre’s outcome.

Methods: This is a single-centre retrospective analysis of routinely collected data from 2013-2016 which included 208 adults with CF. Year-to-year %FEV₁ change was calculated by subtracting best %FEV₁ at Year 1 from Year 2 (i.e. negative values indicate %FEV₁ decline), and compared using Friedman test. Three methods were used to process %FEV₁ data. First, %FEV₁ calculated with Knudson equation was extracted directly from spirometer machines. Second, FEV₁ volume were extracted then converted to %FEV₁ using clean height data and Knudson equation. Third, FEV₁ volume were extracted then converted to %FEV₁ using clean height data and GLI equation. In addition, %FEV₁ decline calculated using GLI equation was adjusted for baseline %FEV₁ to understand the impact of case-mix adjustment.

Results: There was a trend of reduction in %FEV₁ decline with all three data processing methods but the magnitude of %FEV₁ decline differed. Median change in %FEV₁ for 2013-2014, 2014-2015 and 2015-2016 was −2.0, −1.0 and 0.0 respectively using %FEV₁ in Knudson equation whereas the median change was −1.1, −0.9 and −0.3 respectively using %FEV₁ in the GLI equation. A statistically significant p-value (0.016) was only obtained when using %FEV₁ in Knudson equation extracted directly from spirometer machines.

Conclusions: Although the trend of reduction in %FEV₁ decline was robust, different data processing methods yielded varying results when %FEV₁ decline
was compared using a standard related group non-parametric statistical test. Observational studies with %FEV₁ decline as an outcome measure should carefully consider and clearly specify the data processing methods used.

Keywords
Cystic fibrosis, epidemiology, patient outcome assessment, forced expiratory volume

Corresponding author: Martin J. Wildman (martin.wildman@sth.nhs.uk)

Author roles:
- Hoo ZH: Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Validation, Visualization, Writing – Original Draft Preparation
- El-Gheryani MSA: Data Curation, Investigation, Writing – Review & Editing
- Curley R: Data Curation, Formal Analysis, Investigation, Writing – Review & Editing
- Wildman MJ: Conceptualization, Methodology, Project Administration, Supervision, Visualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Hoo ZH, El-Gheryani MSA, Curley R and Wildman MJ. Using different methods to process forced expiratory volume in one second (FEV₁) data can impact on the interpretation of FEV₁ as an outcome measure to understand the performance of an adult cystic fibrosis centre: A retrospective chart review [version 1; referees: 1 approved] F1000Research 2018, 7:691 (doi: 10.12688/f1000research.14981.1)

Copyright: © 2018 Hoo ZH et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: The author(s) declared that no grants were involved in supporting this work.

First published: 01 Jun 2018, 7:691 (doi: 10.12688/f1000research.14981.1)
Introduction

Cystic fibrosis (CF) is a multi-system genetic condition but the two main affected organs are lungs (resulting in recurrent infections and respiratory failure) and gastrointestinal tract (resulting in fat malabsorption and poor growth). Median survival has improved to 45 years, in part because of improvement in care quality. An important quality improvement initiative is benchmarking, which involves identifying high-performing centres and the practices associated with outstanding performance. Since forced expiratory volume in one second (FEV$_1$) is an important CF prognostic marker, it is often used as an outcome measure for benchmarking.

Different statistical methods of analysing FEV$_1$ data can yield different results, but there is scant attention paid to the methods of processing FEV$_1$ data. We previously reported a statistically significant reduction in %FEV$_1$ decline for our CF centre from 2013–2016. We now set out to understand the impact of using different FEV$_1$ data processing methods on our CF centre’s outcome.

Methods

This is a single-centre retrospective analysis of routinely collected clinical data from 2013–2016. Regulatory approval for the analysis was obtained from NHS Health Research Authority (IRAS number 210313). All adults with CF diagnosed according to the UK CF Trust criteria aged ≥16 years were included, except those with lung transplantation or on ivacaftor. These treatments have transformative effects on %FEV$_1$, thus may affect the interpretation of %FEV$_1$ decline.

Demographic data (age, gender, genotype, pancreatic status, CF related diabetes, *Pseudomonas aeruginosa* status), body mass index (BMI) and FEV$_1$ data were collected by two investigators (HZH and RC / HZH and MEG) independently reviewing paper notes and electronic records. Where data from the two investigators differ, the original data from paper notes or electronic records were reviewed to by both investigators to ensure the accuracy of abstracted data. This process ensures the accuracy of abstracted data and helps avoid potential bias from inaccurate or inconsistent data collection. FEV$_1$ data were processed with three different methods prior to analysis. First, %FEV$_1$ readings (calculated with Knudson equation and available in whole numbers) were directly extracted from spirometer machines. Second, FEV$_1$ volumes (in litres, to two decimal places) were extracted and clean height data were used to calculate %FEV$_1$ (as whole numbers) with Knudson equation. Third, FEV$_1$ volumes (in litres, to two decimal places) were extracted and clean height data were used to calculate %FEV$_1$ with GLI equation using an Excel Macro (Microsoft Excel 2013).

Best %FEV$_1$, i.e. the highest %FEV$_1$ reading in a calendar year for each study subject was used for analysis since it is most reflective of the true baseline %FEV$_1$. Year-to-year %FEV$_1$ change was calculated by subtracting best %FEV$_1$ at Year 1 from Year 2 (i.e. negative values indicate %FEV$_1$ decline and positive values indicate increase in %FEV$_1$). In addition to calculating year-to-year %FEV$_1$ change using three different FEV$_1$ data processing methods, %FEV$_1$ change calculated with GLI equation was also adjusted for baseline %FEV$_1$ using reference values from Epidemiologic Study of CF (ESCF). The ESCF study found median %FEV$_1$ change of −3%/year, −2%/year and −0.5%/year for baseline %FEV1 ≥100%, 40–99.9% and <40 respectively. Adjusted %FEV$_1$ change was calculated by subtracting median ESCF %FEV$_1$ change from actual %FEV$_1$ change. Thus, an adjusted %FEV$_1$ change >0 meant the subject’s %FEV1 decline was less than expected (indicating better health outcome) whilst an adjusted %FEV$_1$ change <0 meant the subject’s %FEV$_1$ decline was more than expected (indicating worse health outcome). %FEV$_1$ change from 2013–2014 to 2015–2016 calculated using different FEV$_1$ data processing methods were compared using Friedman test. Analyses were performed using SPSS v24 (IBM Corp) and p-value <0.05 was considered statistically significant.

Results

This analysis included 208 adults, with 147 adults providing data for all four years. Overall, the cohort was ageing but baseline %FEV$_1$ increased from 2014 onwards (see Table 1).

The %FEV$_1$ increase was in part due to younger adults with higher %FEV$_1$, transitioning from paediatric care because %FEV$_1$ tended to decline from year to year (see Table 2). However, different %FEV$_1$ decline results were obtained with different FEV$_1$ data processing methods. There was statistically significant reduction in the rate of %FEV$_1$ decline using %FEV$_1$ readings as recorded in spirometer machines (p=0.016). Cleaning of height data and standardisation of %FEV$_1$ calculation with Knudson equation did not alter the magnitude of %FEV$_1$ decline, but the p-value was no longer statistically significant (p=0.062). The use of GLI equation altered the magnitude of %FEV$_1$ decline although the trend of reduction in %FEV$_1$ decline persisted (p=0.135). Adjustment for baseline %FEV$_1$ further increased the p-value (p=0.210).

Discussion

We demonstrated that different centre-level %FEV$_1$ decline results were obtained using different FEV$_1$ data processing methods. In particular, year-on-year %FEV$_1$ decline was smaller in magnitude when %FEV$_1$ was calculated using GLI equation instead of Knudson equation. This is in part due to the demographic of our centre which has a relatively young adult population. A previous study found a near-linear %FEV$_1$ decline from childhood to adulthood with GLI equation, whereas there was accelerated %FEV$_1$ decline during adolescence and young adulthood when %FEV$_1$ was calculated with Knudson equation. One advantage of using the GLI equation, which is seamless across all ages, is that it improves the interpretation of %FEV$_1$ decline. Another advantage is that %FEV$_1$ decline can be adjusted for baseline %FEV$_1$ using ESCF reference values (since the ESCF values for %FEV$_1$ decline were calculated using the GLI equation).

Dataset 1. Sheffield forced expiratory volume in one second (FEV$_1$) data

http://dx.doi.org/10.5256/f1000research.14981.d205603
Table 1. Characteristics of study subjects from 2013 to 2016.

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excluded Lung transplantation, n</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>On ivacaftor, n</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Included, n</td>
<td>166</td>
<td>170</td>
<td>185</td>
<td>186</td>
</tr>
<tr>
<td>Age in years, median (IQR)</td>
<td>25 (19–31)</td>
<td>26 (20–32)</td>
<td>27 (20–34)</td>
<td>27 (21–34)</td>
</tr>
<tr>
<td>Female, n (%),</td>
<td>76 (45.8)</td>
<td>80 (47.1)</td>
<td>87 (47.0)</td>
<td>90 (48.4)</td>
</tr>
<tr>
<td>Genotype status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1 unknown mutation(s), n (%)</td>
<td>11 (6.6)</td>
<td>13 (7.6)</td>
<td>16 (8.6)</td>
<td>15 (8.1)</td>
</tr>
<tr>
<td>≥1 class IV-V mutation(s), n (%)</td>
<td>26 (15.7)</td>
<td>29 (17.1)</td>
<td>36 (19.5)</td>
<td>34 (18.3)</td>
</tr>
<tr>
<td>Homozygous class I-III, n (%)</td>
<td>129 (77.7)</td>
<td>128 (75.3)</td>
<td>133 (71.9)</td>
<td>137 (73.7)</td>
</tr>
<tr>
<td>Pancreatic insufficient, n (%)</td>
<td>137 (82.5)</td>
<td>135 (79.4)</td>
<td>142 (76.8)</td>
<td>145 (78.0)</td>
</tr>
<tr>
<td>CF related diabetes, n (%)</td>
<td>39 (23.5)</td>
<td>42 (24.7)</td>
<td>42 (22.7)</td>
<td>54 (29.0)</td>
</tr>
<tr>
<td>P. aeruginosa status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No P. aeruginosa, n (%)</td>
<td>60 (36.1)</td>
<td>57 (33.5)</td>
<td>74 (40.0)</td>
<td>78 (41.9)</td>
</tr>
<tr>
<td>Intermittent P. aeruginosa, n (%)</td>
<td>37 (22.3)</td>
<td>36 (21.2)</td>
<td>31 (16.8)</td>
<td>29 (15.6)</td>
</tr>
<tr>
<td>Chronic P. aeruginosa, n (%)</td>
<td>69 (41.6)</td>
<td>77 (45.3)</td>
<td>80 (43.2)</td>
<td>79 (42.5)</td>
</tr>
<tr>
<td>BMI, median (IQR)</td>
<td>22.3 (19.7–24.6)</td>
<td>22.7 (20.0–25.0)</td>
<td>23.0 (20.3–26.0)</td>
<td>23.2 (20.4–26.0)</td>
</tr>
<tr>
<td>Best %FEV₁, median (IQR)</td>
<td>78.7 (54.1–92.5)</td>
<td>76.6 (54.4–89.7)</td>
<td>77.8 (60.4–89.0)</td>
<td>78.5 (58.5–89.6)</td>
</tr>
</tbody>
</table>

1 Genotype status as defined by international consensus. Homozygous class I–III mutations indicate ‘severe genotype’.
2 Pancreatic insufficiency was diagnosed by the clinical team on the basis of ≥2 faecal pancreatic elastase levels <200µg/g stool and symptoms consistent with malnutrition and malabsorption, in accordance to the UK Cystic Fibrosis (CF) Trust guideline.
3 CF related diabetes was diagnosed by the clinical team on the basis of oral glucose tolerance test and continuous subcutaneous glucose monitoring results, in accordance to the UK CF Trust guideline.
4 Pseudomonas aeruginosa status was determined according to the Leeds criteria.

Table 2. Discrepancies in %FEV₁ decline with different methods of processing forced expiratory volume in one second (FEV₁) data.

<table>
<thead>
<tr>
<th>Methods of processing FEV₁ data:</th>
<th>Change in %FEV₁, median (IQR)</th>
<th>Friedman test p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) %FEV₁ (calculated with Knudson equation) extracted from spirometer machines used for analysis</td>
<td>-2.0 (–6.0 to 1.0)</td>
<td>-1.0 (–3.3 to 2.0)</td>
</tr>
<tr>
<td>(2) FEV₁ (volume in L) extracted and height data were cleaned, then %FEV₁ calculated using Knudson equation</td>
<td>-2.0 (–5.0 to 1.0)</td>
<td>-1.0 (–4.0 to 1.0)</td>
</tr>
<tr>
<td>(3) FEV₁ (volume in L) extracted and height data were cleaned, then %FEV₁ calculated using GLI equation</td>
<td>-1.1 (–4.6 to 1.5)</td>
<td>-0.9 (–3.2 to 1.5)</td>
</tr>
<tr>
<td>(4) FEV₁ (volume in L) extracted and height data were cleaned, then %FEV₁ calculated using GLI equation, then change %FEV₁ adjusted for baseline %FEV₁ using ESCF reference values</td>
<td>0.7 (–2.4 to 3.6)</td>
<td>1.1 (–1.4 to 3.5)</td>
</tr>
</tbody>
</table>

ESCFS - Epidemiologic Study of Cystic Fibrosis

1 The vast majority of the %FEV₁ data were from spirometer machines at the Sheffield Adult cystic fibrosis (CF) centre, which were calculated with Knudson equation in whole numbers. Some %FEV₁ data were from spirometer machines at the Pulmonary Function Unit which operationalised the Knudson equation differently; by calculating age to one decimal place to determine the predicted FEV₁. These spirometer machines also provided %FEV₁ to two decimal places, but this was rounded to whole numbers for the purpose of analysis. These results were presented at the 2017 North American CF Conference and were published as an abstract in Pediatric Pulmonology.

2 FEV₁ volumes were available in litres to two decimal places from spirometer machines. Height data were also extracted to allow the calculation of predicted FEV₁. This led us to uncover the inconsistency recording of height, which affected 30–40% of the study subjects and would have introduced erroneous variability to the %FEV₁, because all equations for predicted %FEV₁ are dependent on height. Height data were cleaned to weed out error. Where there was uncertainty regarding the height, the higher value was used to obtain a conservative estimate of %FEV₁. To replicate calculation process of the spirometer machines at the Sheffield Adult CF centre, age was rounded down to a whole number and predicted FEV₁ in volume were calculated to two decimal places using Knudson equation. This was used to derive the %FEV₁, which was then rounded to whole numbers for the purpose of analysis.

3 %FEV₁ and height data were extracted as above. %FEV₁ was calculated using the GLI equation using an Excel Macro available at the European Respiratory Society website.

4 %FEV₁, calculated using the GLI equation as described above, then adjusted for baseline %FEV₁ as described in the ‘Methods’ section. An adjusted %FEV₁ change of >0 meant the subject’s %FEV₁ decline was less than expected for his/her baseline %FEV₁, indicating better health outcomes.
The limitation for all single-centre analysis is the potential lack of generalisability. Another limitation of our analysis is that the ESCF reference values used to adjust %FEV₁ decline were derived using a cohort from around 15 years ago, and may not represent the current population. Our results nonetheless highlighted that %FEV₁ decline can be extremely sensitive to the FEV₁ data processing methods. This is one of the challenges of using %FEV₁ decline to infer quality of care. Another challenge is that %FEV₁ lacks sensitivity as an outcome measure. A recent sample size estimation using the UK CF registry data suggests that 273 adults per centre are needed to detect a 5% FEV₁ difference at the 95% significance level. The sensitivity of measures used to detect variations in care quality is particularly pertinent to CF because a relatively small population is spread across many centres. Indeed, only 6/28 (21.4%) of all UK adult CF centres have ≥273 adults. That means process measures, e.g. medication adherence, is important to detect variations in quality of CF care. Mant & Hicks previous demonstrated that measuring processes of care proven in randomised controlled trials to reduce death allows detection of meaningful differences in care quality for myocardial infarction with just 75 cases, whereas 8179 cases would be needed if mortality was used as the quality indicator.

Given the limitations of FEV₁ as an outcome measure in CF, results of centre comparisons based on FEV₁ data should be carefully interpreted. Observational studies with %FEV₁ decline as an outcome measure should carefully consider and clearly specify the data processing methods used.

Ethical considerations

Regulatory approval for the analysis was obtained from NHS Health Research Authority (IRAS number 210313).

Data availability

Dataset 1: Sheffield forced expiratory volume in one second (FEV₁) data 10.5256/f1000research.14981.d205603

Competing interests

No competing interests were disclosed.

Grant information

The author(s) declared that no grants were involved in supporting this piece of work.

References

24. Lee TW, Brownlee KG, Conway SP, et al.: Evaluation of a new definition for...
PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Data Source
Open Peer Review

Current Referee Status: ✔️

Version 1

Referee Report 06 July 2018
doi:10.5256/f1000research.16309.r34828

Edward McKone
Department of Respiratory Medicine, St Vincent’s Hospital, Dublin, Ireland

FEV1 as a percent of predicted is widely used as an outcome measure in patients with cystic fibrosis and is one of the metrics used to compare centres or countries in benchmarking exercises. This manuscript presents data showing that differences in data processing and the use of different reference equations used to estimate FEV1 as a percent predicted can result in varying estimates of lung disease changes and potentially impact comparisons of centres/countries.

The paper supports the standardization of FEV1 collection and reference equations which is currently in development by CF International Registries. It also highlights that different approaches to data collection can impact the interpretation of statistical analyses.

Comments:

Differences in FEV1 percent predicted using different equations is well known (Rosenfeld et al and more recently in the cited UK/US comparison study). For this reason, the GLI have been recently accepted as the standard for most CF registries.

Although year to year subtraction is a method of looking at longitudinal changes, regression methodology is preferable to analyse these changes, especially, as in this case, where you have 3 time points. This also allows to adjust for baseline factors such as lung disease severity.

The method of adjustment for baseline lung function is a bit crude. The medians subtracted are from a US population over 10 years ago and are likely to overestimate lung function decline in this population. In the Morgan et al, J Pediatr 2016 paper cited, the benefits of using this type of adjustment was shown using regression.

Did their statistical approach factor in that these were repeated measures in the same patients?

Bland & Altman plots comparing different reference equations could be considered.

The results suggest that height inaccuracy is impacting the results. As this is a single centre study, it is difficult to determine is this is a more universal problem.

References

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com