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Abstract
Human malaria is a complex disease that can show a wide array of clinical
outcomes, from asymptomatic carriage and chronic infection to acute disease
presenting various life-threatening pathologies. The specific outcome of an
infection is believed to be determined by a multifactorial interplay between the
host and the parasite but with a general trend toward disease attenuation with
increasing prior exposure. Therefore, the main burden of malaria in a
population can be understood as a function of transmission intensity, which
itself is intricately linked to the prevalence of infected hosts and mosquito
vectors, the distribution of infection outcomes, and the parasite population
diversity. Predicting the long-term impact of malaria intervention measures
therefore requires an in-depth understanding of how the parasite causes
disease, how this relates to previous exposures, and how different infection
pathologies contribute to parasite transmission. Here, we provide a brief
overview of recent advances in the molecular epidemiology of clinical malaria
and how these might prove to be influential in our fight against this important
disease.
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Background
Malaria is caused by the mosquito-transmitted protozoan  
parasite Plasmodium spp. There are five species known to infect 
humans: P. falciparum, P. vivax, P. malariae, P. ovale, and  
P. knowlesi, of which P. falciparum malaria is the most virulent 
form, causing the most morbidity and mortality in humans, and 
thus will be the focus here. Despite continual control efforts 
over the last 50 years or more, the burden of disease is still  
substantial, and recent estimates put the annual number of  
malaria cases in the region of more than 200 million, leading to 
over 400,000 deaths, predominantly in young children living in 
sub-Saharan Africa1. The first licensed malaria vaccine (RTS,S) 
has shown limited efficacy2 and currently is introduced as only a 
pilot scheme in a few settings in sub-Saharan Africa. The main  
disease intervention therefore still relies on drug treatment of 
patients and prevention of exposure by (insecticide-treated) bed 
nets, spraying of houses with insecticides, and other general  
mosquito control measures. Following a large scale-up of vector 
control in combination with artemisinin combination therapy, 
there has been an overall reduction in the number of malaria 
cases over the last decade3. However, this reduction does  
not always correspond well with known control measures4 and  
shows significant geographic variations. For example, big  
reductions have been achieved in Southeast Asia and the  
Western Pacific, whereas several regions in the Americas and  
Africa have experienced no change or even an increase in cases  
in recent years1,5.

The challenges in malaria control are manifold, and, even in  
regions where a drastic reduction has been achieved and where  
local elimination is theoretically possible, maintaining a disease-
free state without achieving a similar reduction in neighboring 
regions will be difficult. Underlying these challenges is a lack of 
understanding of the basic biology of malaria transmission and 
its relationship to the epidemiological patterns of infection and  
disease in different transmission settings. In particular, not all 
infections cause severe clinical symptoms, and most infections  
contributing to transmission in a given location cause only 
mild illness or are classified as asymptomatic (but see 6 for a  
critical discussion on the terminology of “asymptomatic” malaria). 
Intervention-induced changes in parasite transmission therefore 
will incur shifts in the age distributions of particular age- and 
exposure-dependent disease manifestations in complex ways7,8.  
Predicting the epidemiological outcome of control measures  
therefore requires a more in-depth knowledge of the factors  
responsible for severe malaria as well as a better understanding  
of who is currently infected and who contributes to transmission.

What causes severe malaria?
Malaria infections are initiated by the bite of an infectious  
mosquito, which releases sporozoites into the bloodstream that  
subsequently travel to, and undergo differentiation into mero-
zoites in, the liver. After multiple rounds of multiplication within  
infected liver cells, merozoites are released into the bloodstream, 
starting a cycle of repeated invasion and multiplication within 
red blood cells (RBCs) that leads, both directly and indirectly, 
to considerable cell destruction. In addition to anemia as a direct  
result of RBC loss, splenic clearance of uninfected RBCs, and 

reduced RBC production, malaria pathology is often caused by 
parasites sequestering in the deep vasculature, leading to local  
inflammation, hemorrhages, tissue damage, and obstruction of 
blood flow. Sequestration itself is the result of infected RBCs 
(iRBCs) adhering to a number of different host endothelial cell  
receptors9–12 through highly polymorphic parasite proteins called 
PfEMP113 that are encoded by the var multigene family14 and 
inserted into the surface of iRBCs. The prominent expression of 
these proteins on the surface of iRBCs makes them key targets 
for adaptive immune responses, which the parasite escapes by  
exploiting the enormous sequence variation of var genes both 
between multiple variant var gene copies within individual 
parasites and between repertoires of var genes within parasite  
populations. In one of the most sophisticated immune-evasion 
strategies studied, the parasite can switch between different  
PfEMP1 types during infection in a process referred to as  
clonal antigenic variation15,16.

Despite its diversity, PfEMP1 plays a central role as a target 
of naturally acquired immunity (NAI). Over years of repeated  
infections, individuals living in malaria-endemic areas acquire a 
repertoire of PfEMP1 variant-specific immune responses through 
repeated infections that are believed to confer protection from 
life-threatening disease (reviewed in 17). In a clear illustration 
of the importance of PfEMP1 as immune targets, women in their 
first pregnancy who have grown up in malaria-endemic areas and 
who have gained immunity to severe malaria temporarily lose 
this immunity because their placentas open up a novel niche for  
parasite sequestration. This is exploited by a single functionally 
and immunologically distinct PfEMP1 type, VAR2CSA (see 
below), which is present in every parasite genome and to which  
immunity is rapidly gained18.

So far, the high diversity of PfEMP1 has precluded this fam-
ily of molecules from being considered a serious vaccine target.  
However, the discovery that certain disease manifestations are 
associated with the expression of restricted subsets of PfEMP1  
variants has opened up the debate of whether an anti-disease or 
anti-virulence vaccine in fact might be a feasible option19. One 
of the first and so far most robust examples is the involvement 
of a particular PfEMP1 variant in pregnancy-associated malaria,  
mediated by the binding of VAR2CSA-expressing iRBCs to  
placental chondroitin sulfate A (CSA)20. The fact that this  
protein appears unusually conserved is now being exploited in 
the design of the first placental malaria vaccines that are currently  
undergoing clinical tests21,22.

This functional subdivision of var genes can be extended to  
those that are involved in childhood malaria. For example, 
based on upstream promoter sequence (Ups), var genes can be  
divided into three groups—UpsA, UpsB, and UpsC—of which 
UpsA genes are frequently found to be upregulated during  
severe infection, particularly in young children. Although sequence 
diversification within this UpsA group of genes appears to be 
more restricted than others, they are still too diverse as a whole 
to be considered potential vaccine targets. As such, the recent 
discovery that a much smaller gene subset, those containing  
specific domain types called CIDRα1, and their binding to the 
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endothelial protein C receptor (EPCR) appeared to be associated  
with cerebral malaria caused great excitement23–26. In fact,  
confidence in the importance of this interaction underlying  
severe infection outcomes is such that it is now being promoted  
as a potential anti-disease vaccine target19.

However, the crux of the problem is that, in most cases,  
findings are based on observed associations between pathological  
outcomes and the proportional expression of gene variants 
within the infecting parasite population sampled from peripheral  
blood rather than directly from parasites that are sequestered 
in tissues. The issues with these kinds of studies are further  
compounded by the enormous technical challenge of fully  
taking into account individuals’ exposure histories and therefore 
their immune status at the time of infection. This means that  
caution has to be exercised when trying to infer causality, which 
was recently re-emphasized by Azasi et al., who found that  
in vitro iRBC binding to endothelial cells is often independent 
of EPCR and can easily be interrupted under flow conditions27. 
Approaches to gain a better understanding of the host–parasite 
interaction in capillaries include (1) improved understanding  
of the parasites actually responsible for pathology through 
direct sampling of sequestered parasites in different tissues by 
either using skin biopsies in patients28 or sampling from tissues  
post-mortem29; (2) improved assessment of parasite sequestration  
in tissues through direct observation of parasites within  
capillaries through mucosal surfaces to correlate capillary 
congestion with disease outcome30; (3) seeking associations  
between peripheral parasite gene expression levels and direct 
measures of sequestration through malarial retinopathy25,31; and 
(4) improved understanding of the role of NAI in shaping the  
infecting parasite population by seeking associations between 
peripheral parasite gene expression levels and pre-existing  
antibody responses in controlled human infections of volunteers 
with differing levels of natural exposure to infection32.

Who is infected and who contributes to transmission?
As the outcome of an infection is partially determined by an 
individual’s exposure history to the parasite, elucidating the  
clinical epidemiology of malaria requires an understanding of 
a region’s (spatially and time-varying) transmission intensity 
and therefore knowledge of who is currently infected, who  
contributes to transmission, and how much. However, measuring 
disease prevalence and relating this prevalence to transmission 
remain important challenges that can be severely hampered 
by the relatively high proportion of clinically silent and low- 
parasite density infections, especially in highly endemic settings. 
With the improvement of molecular methods for parasite  
detection, it has become increasingly clear that microscopy— 
still the gold standard for diagnosis in many places— 
systematically misses a large number of low-density infections. 
Microscopy detects parasite densities in the blood of greater 
than about 100 parasites per microliter, a detection threshold  
similar to that of rapid diagnostic tests, but misses an average  
of half of all malaria infections compared with standard 
polymerase chain reaction (PCR)33. Paradoxically, this appears  
to be the case regardless of transmission setting or exposure/ 
immunity, and a higher fraction of submicroscopic infections  

occur in low-transmission settings. Indeed, it has been estimated 
that in areas with less than 10% prevalence by PCR, 88% of 
infections would not be detected by microscopy33. Recent  
ultrasensitive PCR techniques34 have lowered this detection 
limit even further to 22 parasites per milliliter, which has led to  
researchers confirming the substantial reservoir of low-density 
infections. In the absence of molecular methods for routine 
surveillance, understanding the relationship between clinical 
cases (which form the basis of surveillance in most endemic 
countries) and overall prevalence of infection remains a key  
challenge.

The prevalence of infection is not the only consideration for  
defining transmission, however. Many infections are composed 
of multiple parasite clones, and new infections often occur and 
cause new episodes of disease against the backdrop of ongoing  
asymptomatic parasitemia. This means that even with accurate 
estimates of the fraction of infected people, we are still unable 
to describe the incidence or force of infection, which is related 
to the number of new infections over time. The enormous 
genomic diversity of the parasite, coupled with the frequency of  
low-density infections, makes it difficult to detect how many  
clones each infection is composed of, and there are few robust 
strain markers with which to follow chains of transmission.  
Recently, new sequencing methods and accompanying analytical 
tools have shed light on the extent of superinfection, revealing 
substantial “complexity of infection”, particularly in high- 
transmission settings like Uganda where individuals can harbor 
up to 20 clones35. One result of these findings is a move toward 
the concept of using the molecular force of infection (molFOI),  
which measures the number of new genotypes acquired by  
individuals over time36, to define transmission settings. An 
added value of these highly sensitive diagnostic tools is that  
they allow tracking of the genetic relatedness between parasites 
or infections and, with it, the identification of transmission  
chains and focal transmission areas. The latter will be particularly  
important for regions that are nearing malaria elimination 
and where the monitoring and characterization of residual  
transmission will be key for sustained malaria control.

The surveillance issues described above are all designed to  
measure asexual parasites in the blood, which cause the clinical 
manifestations of malaria but cannot be transmitted to mosquitoes.  
This means that quantifying the infectious reservoir requires  
different approaches. Only a small fraction of blood-stage  
parasites develop into male and female gametocytes, the sexual  
parasite stages that are taken up during a blood meal and  
underlie infectiousness. The molecular pathways responsible  
for the switch to sexual development and the dynamics of  
gametocytes in the body, as well as their relationship to trans-
mission, are still mysterious37. Furthermore, early notions that 
directly relate asexual parasitemia with infectivity, which implied 
that young individuals suffering from severe disease are by far 
the highest contributor to malaria transmission, have also been 
put into question by revealing that asymptomatic infections 
contribute significantly more to transmission than previously  
thought38–40. For example, a recent study in Ethiopia used  
mosquito blood-feeding experiments to establish that only 15% 
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of P. falciparum-infected individuals were infectious and that  
asexual parasitemia was not correlated with infectiousness40.  
Earlier findings that gametocytes are not homogeneously  
distributed within the blood and may cluster under the skin to 
promote transmission41,42, plus the considerable uncertainties  
associated with the determinants of parasite fitness in the  
mosquito as it transitions from sexual gametocytes to infectious  
sporozoites, mean that there are still some outstanding  
difficulties in quantitatively linking standard measures of  
prevalence with transmission intensity.

Going forward
The identification of EPCR-binding phenotypes and their  
potential involvement in cerebral malaria has caused excitement 
and raised some optimism about the possibility of developing an  
anti-disease vaccine. However, for a convincing case to be made, 
one still needs to unambiguously demonstrate the causal link  
between host receptor binding and specific disease manifestations.  
A crucial point here is that every parasite contains in its rep-
ertoire most, if not all, of these “disease-causing”, or rather  
disease-associated, variants. That is, if the parasite has the  
freedom to express its entire PfEMP1 antigenic repertoire  
during infection, what determines the actual outcome? It has been 
shown that PfEMP1 expression is hierarchical43,44 and that host  
immune responses have an influence on what variants are 
expressed during infection32,45. However, this alone cannot explain 
why an infection causes cerebral malaria in one child but severe  
malarial anemia in another. Furthermore, the observed hierarchical  
expression of var genes may be due simply to the existence of 
alternative molecular strategies used by the parasites to evade  
immune responses in individuals of different levels of immu-
nity. There are reported examples of asymptomatic infections 
that exhibit high levels of expression of group A-like var genes 
previously found to be associated with severe malaria, which  
suggests that the PfEMP1 antigens they encode can play a role 
in the maintenance of chronic infections46. At this point, more 
integrated (that is, systems and -omics) approaches should be  
able to offer more detailed information about the specific 
immunological and parasitological processes involved in the  
progression toward disease, especially when taking into  
consideration the composition of the infecting parasite popula-
tion in relation to the host’s immune history (see 47 and 48 for  
recent examples).

More advanced approaches are also required for improving our 
understanding of NAI to malaria. Crucially, this necessitates  
(1) a clear definition of what constitutes protection and (2) robust 
and measurable correlates of protection, neither of which are 
straightforward. As mentioned above, NAI has to be considered 
as a multi-stage process or even a continuum whereby infection  
severity generally attenuates with cumulative exposure to  
infection. Numerous studies have tried to find correlates of 
protection by means of prospective cohort studies in which  
individuals’ immune responses to predefined panels of antigens 
are correlated with the incidence of clinical episodes. One of  
the main problems with these studies is the often small effect 
size, leading to contradictory findings and poor reproducibility 
(reviewed in 49). This is further complicated by the lack of  
reliable measures of how often an individual has been  

challenged in the past, which is an essential consideration given 
that the needle of protective responses and the haystack of  
non-protective responses, as well as NAI itself, all increase with 
cumulative exposure to infection. Furthermore, condensing this  
multifaceted process into a binary phenotype (protected or not) 
bypasses some of the aforementioned complexities underlying 
malaria pathology and NAI and thus is unlikely to provide a  
comprehensive picture of the myriad of processes involved.

In that respect, it is also imperative to embrace more sophisticated  
methods to analyze increasingly complex datasets. Machine 
learning approaches offer a number of advantages over more  
traditional, univariate analyses in their ability to extract  
non-linear relationships and interactions from high-dimensional 
data in a hypothesis-free manner. For example, in a recent study, 
we used a machine learning approach to identify predictive  
signatures of clinical protection from protein microarray 
data containing thousands of measured immune markers50. In 
another study, Helb et al. used a predictive framework based on  
machine learning to estimate recent exposure to the malaria 
parasite51. However, these powerful methods crucially rely on  
detailed and robust datasets that permit appropriate cross- 
validation and verification of research findings. One important 
step forward in that direction is the use of ensemble datasets 
across a wide range of studies, as was recently advocated in  
order to better define the infectious reservoir and measure  
transmission more accurately52.

Finally, a more improved understanding of the biology of  
mosquito–human and human–mosquito transmission needs to  
include better knowledge of local vector ecologies. Surprisingly, 
we still know relatively little about how changes in mosquito 
abundance and species distributions over the last few years  
and decades—some of the most important determinants of  
malaria epidemiology—might have not only influenced but  
actively shaped some of the observed changes in malaria  
incidence. Unfortunately, detailed and long-term surveillance 
data on vector distribution are scarce and are available for only 
a small number of vector species and epidemiological settings.  
Therefore, large-scale vector sequencing initiatives, such as 
the malariaGEN 1000 genomes project53, together with more 
detailed investigations into the behavioral and ecological factors  
underlying this part of the transmission cycle, will have a  
central role to play in developing a fine-grained and holis-
tic understanding of malaria epidemiology that incorporates  
the Plasmodium parasite, the human host, and the mosquito  
vector.

Competing interests
The authors declare that they have no competing interests.

Grant information
MR is supported by the Medical Research Council (grant MR/
M003906/1). 

The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

Page 5 of 8

F1000Research 2018, 7(F1000 Faculty Rev):1159 Last updated: 15 AUG 2018



References F1000 recommended

1. WHO Malaria Report: World malaria report 2017. 2017.  
Reference Source

2.  Olotu A, Fegan G, Wambua J, et al.: Seven-Year Efficacy of RTS,S/AS01 
Malaria Vaccine among Young African Children. N Engl J Med. 2016; 374(26): 
2519–29.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

3.  Bhatt S, Weiss DJ, Cameron E, et al.: The effect of malaria control on 
Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 
526(7572): 207–11.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

4.  Snow RW, Sartorius B, Kyalo D, et al.: The prevalence of Plasmodium 
falciparum in sub-Saharan Africa since 1900. Nature. 2017; 550(7677): 515–8. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

5.  Nkumama IN, O'Meara WP, Osier FHA: Changes in Malaria Epidemiology 
in Africa and New Challenges for Elimination. Trends Parasitol. 2017; 33(2): 
128–40.  
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

6.  Chen I, Clarke SE, Gosling R, et al.: “Asymptomatic” Malaria: A Chronic 
and Debilitating Infection That Should Be Treated. PLoS Med. 2016; 13(1):  e1001942.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

7.  Mogeni P, Williams TN, Fegan G, et al.: Age, Spatial, and Temporal 
Variations in Hospital Admissions with Malaria in Kilifi County, Kenya: A 25-
Year Longitudinal Observational Study. PLoS Med. 2016; 13(6): e1002047.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

8. Roca-Feltrer A, Carneiro I, Smith L, et al.: The age patterns of severe malaria 
syndromes in sub-Saharan Africa across a range of transmission intensities 
and seasonality settings. Malar J. 2010; 9: 282.  
PubMed Abstract | Publisher Full Text | Free Full Text 

9. Barnwell JW, Asch AS, Nachman RL, et al.: A human 88-kD membrane 
glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand 
on Plasmodium falciparum-infected erythrocytes. J Clin Invest. 1989; 84(3): 
765–72.  
PubMed Abstract | Publisher Full Text | Free Full Text 

10. Berendt AR, Simmons DL, Tansey J, et al.: Intercellular adhesion molecule-1 is 
an endothelial cell adhesion receptor for Plasmodium falciparum. Nature. 1989; 
341(6237): 57–9.  
PubMed Abstract | Publisher Full Text 

11. David PH, Handunnetti SM, Leech JH, et al.: Rosetting: a new cytoadherence 
property of malaria-infected erythrocytes. Am J Trop Med Hyg. 1988; 38(2): 
289–97.  
PubMed Abstract | Publisher Full Text 

12. Oquendo P, Hundt E, Lawler J, et al.: CD36 directly mediates cytoadherence 
of Plasmodium falciparum parasitized erythrocytes. Cell. 1989; 58(1): 95–101. 
PubMed Abstract | Publisher Full Text 

13. Baruch DI, Ma XC, Singh HB, et al.: Identification of a region of PfEMP1 that 
mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: 
conserved function with variant sequence. Blood. 1997; 90(9): 3766–75.  
PubMed Abstract 

14. Su XZ, Heatwole VM, Wertheimer SP, et al.: The large diverse gene family 
var encodes proteins involved in cytoadherence and antigenic variation 
of Plasmodium falciparum-infected erythrocytes. Cell. 1995; 82(1): 89–100. 
PubMed Abstract 

15. Roberts DJ, Craig AG, Berendt AR, et al.: Rapid switching to multiple antigenic 
and adhesive phenotypes in malaria. Nature. 1992; 357(6380): 689–92.  
PubMed Abstract | Publisher Full Text | Free Full Text 

16. Scherf A, Lopez-Rubio JJ, Riviere L: Antigenic variation in Plasmodium 
falciparum. Annu Rev Microbiol. 2008; 62: 445–70.  
PubMed Abstract | Publisher Full Text 

17. Langhorne J, Ndungu FM, Sponaas AM, et al.: Immunity to malaria: more 
questions than answers. Nat Immunol. 2008; 9(7): 725–32.  
PubMed Abstract | Publisher Full Text 

18. Salanti A, Dahlbäck M, Turner L, et al.: Evidence for the involvement of VAR2CSA 
in pregnancy-associated malaria. J Exp Med. 2004; 200(9): 1197–203.  
PubMed Abstract | Publisher Full Text | Free Full Text 

19.  Lennartz F, Lavstsen T, Higgins MK: Towards an anti-disease malaria 
vaccine. Emerg Top Life Sci. 2017; 1(6): 539–45.  
Publisher Full Text | F1000 Recommendation 

20. Fried M, Duffy PE: Adherence of Plasmodium falciparum to chondroitin sulfate 
A in the human placenta. Science. 1996; 272(5267): 1502–4.  
PubMed Abstract | Publisher Full Text 

21.  Fried M, Duffy PE: Designing a VAR2CSA-based vaccine to prevent 
placental malaria. Vaccine. 2015; 33(52): 7483–8.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

22. Pehrson C, Salanti A, Theander TG, et al.: Pre-clinical and clinical development 
of the first placental malaria vaccine. Expert Rev Vaccines. 2017; 16(6): 613–24. 
PubMed Abstract | Publisher Full Text 

23.  Turner L, Lavstsen T, Berger SS, et al.: Severe malaria is associated with 
parasite binding to endothelial protein C receptor. Nature. 2013; 498(7455): 
502–5.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

24.  Tuikue Ndam N, Moussiliou A, Lavstsen T, et al.: Parasites Causing Cerebral 
Falciparum Malaria Bind Multiple Endothelial Receptors and Express EPCR 
and ICAM-1-Binding PfEMP1. J Infect Dis. 2017; 215(12): 1918–25.  
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

25.  Shabani E, Hanisch B, Opoka RO, et al.: Plasmodium falciparum EPCR-
binding PfEMP1 expression increases with malaria disease severity and is 
elevated in retinopathy negative cerebral malaria. BMC Med. 2017; 15(1): 183. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

26.  Bernabeu M, Smith JD: EPCR and Malaria Severity: The Center of a Perfect 
Storm. Trends Parasitol. 2017; 33(4): 295–308.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

27.  Azasi Y, Lindergard G, Ghumra A, et al.: Infected erythrocytes expressing 
DC13 PfEMP1 differ from recombinant proteins in EPCR-binding function. Proc 
Natl Acad Sci U S A. 2018; 115(5): 1063–8.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

28. Moxon CA, Wassmer SC, Milner DA Jr, et al.: Loss of endothelial protein C 
receptors links coagulation and inflammation to parasite sequestration in 
cerebral malaria in African children. Blood. 2013; 122(5): 842–51.  
PubMed Abstract | Publisher Full Text | Free Full Text 

29. Montgomery J, Mphande FA, Berriman M, et al.: Differential var gene expression 
in the organs of patients dying of falciparum malaria. Mol Microbiol. 2007; 65(4): 
959–67.  
PubMed Abstract | Publisher Full Text | Free Full Text 

30.  Dondorp AM, Ince C, Charunwatthana P, et al.: Direct in vivo assessment of 
microcirculatory dysfunction in severe falciparum malaria. J Infect Dis. 2008; 
197(1): 79–84.  
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

31. Abdi AI, Kariuki SM, Muthui MK, et al.: Differential Plasmodium falciparum 
surface antigen expression among children with Malarial Retinopathy. Sci Rep. 
2015; 5: 18034.  
PubMed Abstract | Publisher Full Text | Free Full Text 

32. Abdi AI, Hodgson SH, Muthui MK, et al.: Plasmodium falciparum malaria parasite 
var gene expression is modified by host antibodies: longitudinal evidence 
from controlled infections of Kenyan adults with varying natural exposure. 
BMC Infect Dis. 2017; 17(1): 585.  
PubMed Abstract | Publisher Full Text | Free Full Text 

33. Okell LC, Bousema T, Griffin JT, et al.: Factors determining the occurrence 
of submicroscopic malaria infections and their relevance for control. Nat 
Commun. 2012; 3: 1237.  
PubMed Abstract | Publisher Full Text | Free Full Text 

34.  Imwong M, Hanchana S, Malleret B, et al.: High-throughput ultrasensitive 
molecular techniques for quantifying low-density malaria parasitemias. J Clin 
Microbiol. 2014; 52(9): 3303–9.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

35. Chang HH, Worby CJ, Yeka A, et al.: THE REAL McCOIL: A method for the 
concurrent estimation of the complexity of infection and SNP allele frequency 
for malaria parasites. PLoS Comput Biol. 2017; 13(1): e1005348.  
PubMed Abstract | Publisher Full Text | Free Full Text 

36. Mueller I, Schoepflin S, Smith TA, et al.: Force of infection is key to 
understanding the epidemiology of Plasmodium falciparum malaria in Papua 
New Guinean children. Proc Natl Acad Sci U S A. 2012; 109(25): 10030–5. 
PubMed Abstract | Publisher Full Text | Free Full Text 

37. Nilsson SK, Childs LM, Buckee C, et al.: Targeting Human Transmission Biology 
for Malaria Elimination. PLoS Pathog. 2015; 11(6): e1004871.  
PubMed Abstract | Publisher Full Text | Free Full Text 

38.  Gonçalves BP, Drakeley C, Bousema T: Infectivity of Microscopic and 
Submicroscopic Malaria Parasite Infections in Areas of Low Malaria 
Endemicity. J Infect Dis. 2016; 213(9): 1516–7.  
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

39.  Vantaux A, Samreth R, Piv E, et al.: Contribution to Malaria Transmission of 
Symptomatic and Asymptomatic Parasite Carriers in Cambodia. J Infect Dis. 
2018; 217(10): 1561–8.  
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

40.  Tadesse FG, Slater HC, Chali W, et al.: The Relative Contribution of 
Symptomatic and Asymptomatic Plasmodium vivax and Plasmodium 
falciparum Infections to the Infectious Reservoir in a Low-Endemic Setting in 
Ethiopia. Clin Infect Dis. 2018; 66(12): 1883–91.  
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

41. Chardome M, Janssen PJ: [Inquiry on malarial incidence by the dermal method 
in the region of Lubilash, Belgian Congo]. Ann Soc Belg Med Trop (1920). 1952; 
32(3): 209–11.  
PubMed Abstract 

Page 6 of 8

F1000Research 2018, 7(F1000 Faculty Rev):1159 Last updated: 15 AUG 2018

http://apps.who.int/iris/bitstream/handle/10665/259492/9789241565523-eng.pdf;jsessionid=3B3F704DCC42B7710E5C2FE88DDF3EE0?sequence=1
https://f1000.com/prime/726470484
http://www.ncbi.nlm.nih.gov/pubmed/27355532
http://dx.doi.org/10.1056/NEJMoa1515257
http://www.ncbi.nlm.nih.gov/pmc/articles/4962898
https://f1000.com/prime/726470484
https://f1000.com/prime/725792092
http://www.ncbi.nlm.nih.gov/pubmed/26375008
http://dx.doi.org/10.1038/nature15535
http://www.ncbi.nlm.nih.gov/pmc/articles/4820050
https://f1000.com/prime/725792092
https://f1000.com/prime/731966460
http://www.ncbi.nlm.nih.gov/pubmed/29019978
http://dx.doi.org/10.1038/nature24059
http://www.ncbi.nlm.nih.gov/pmc/articles/5660624
https://f1000.com/prime/731966460
https://f1000.com/prime/727098102
http://www.ncbi.nlm.nih.gov/pubmed/27939610
http://dx.doi.org/10.1016/j.pt.2016.11.006
https://f1000.com/prime/727098102
https://f1000.com/prime/727575976
http://www.ncbi.nlm.nih.gov/pubmed/26783752
http://dx.doi.org/10.1371/journal.pmed.1001942
http://www.ncbi.nlm.nih.gov/pmc/articles/4718522
https://f1000.com/prime/727575976
https://f1000.com/prime/726469107
http://www.ncbi.nlm.nih.gov/pubmed/27352303
http://dx.doi.org/10.1371/journal.pmed.1002047
http://www.ncbi.nlm.nih.gov/pmc/articles/4924798
https://f1000.com/prime/726469107
http://www.ncbi.nlm.nih.gov/pubmed/20939931
http://dx.doi.org/10.1186/1475-2875-9-282
http://www.ncbi.nlm.nih.gov/pmc/articles/2992028
http://www.ncbi.nlm.nih.gov/pubmed/2474574
http://dx.doi.org/10.1172/JCI114234
http://www.ncbi.nlm.nih.gov/pmc/articles/329717
http://www.ncbi.nlm.nih.gov/pubmed/2475784
http://dx.doi.org/10.1038/341057a0
http://www.ncbi.nlm.nih.gov/pubmed/3354764
http://dx.doi.org/10.4269/ajtmh.1988.38.289
http://www.ncbi.nlm.nih.gov/pubmed/2473841
http://dx.doi.org/10.1016/0092-8674(89)90406-6
http://www.ncbi.nlm.nih.gov/pubmed/9345064
http://www.ncbi.nlm.nih.gov/pubmed/7606788
http://www.ncbi.nlm.nih.gov/pubmed/1614515
http://dx.doi.org/10.1038/357689a0
http://www.ncbi.nlm.nih.gov/pmc/articles/3731710
http://www.ncbi.nlm.nih.gov/pubmed/18785843
http://dx.doi.org/10.1146/annurev.micro.61.080706.093134
http://www.ncbi.nlm.nih.gov/pubmed/18563083
http://dx.doi.org/10.1038/ni.f.205
http://www.ncbi.nlm.nih.gov/pubmed/15520249
http://dx.doi.org/10.1084/jem.20041579
http://www.ncbi.nlm.nih.gov/pmc/articles/2211857
https://f1000.com/prime/732448840
http://dx.doi.org/10.1042/ETLS20170091
https://f1000.com/prime/732448840
http://www.ncbi.nlm.nih.gov/pubmed/8633247
http://dx.doi.org/10.1126/science.272.5267.1502
https://f1000.com/prime/725852971
http://www.ncbi.nlm.nih.gov/pubmed/26469717
http://dx.doi.org/10.1016/j.vaccine.2015.10.011
http://www.ncbi.nlm.nih.gov/pmc/articles/5077158
https://f1000.com/prime/725852971
http://www.ncbi.nlm.nih.gov/pubmed/28434376
http://dx.doi.org/10.1080/14760584.2017.1322512
https://f1000.com/prime/718017789
http://www.ncbi.nlm.nih.gov/pubmed/23739325
http://dx.doi.org/10.1038/nature12216
http://www.ncbi.nlm.nih.gov/pmc/articles/3870021
https://f1000.com/prime/718017789
https://f1000.com/prime/730934559
http://www.ncbi.nlm.nih.gov/pubmed/28863469
http://dx.doi.org/10.1093/infdis/jix230
https://f1000.com/prime/730934559
https://f1000.com/prime/731989770
http://www.ncbi.nlm.nih.gov/pubmed/29025399
http://dx.doi.org/10.1186/s12916-017-0945-y
http://www.ncbi.nlm.nih.gov/pmc/articles/5639490
https://f1000.com/prime/731989770
https://f1000.com/prime/727098103
http://www.ncbi.nlm.nih.gov/pubmed/27939609
http://dx.doi.org/10.1016/j.pt.2016.11.004
http://www.ncbi.nlm.nih.gov/pmc/articles/5376506
https://f1000.com/prime/727098103
https://f1000.com/prime/732499230
http://www.ncbi.nlm.nih.gov/pubmed/29339517
http://dx.doi.org/10.1073/pnas.1712879115
http://www.ncbi.nlm.nih.gov/pmc/articles/5798336
https://f1000.com/prime/732499230
http://www.ncbi.nlm.nih.gov/pubmed/23741007
http://dx.doi.org/10.1182/blood-2013-03-490219
http://www.ncbi.nlm.nih.gov/pmc/articles/3731936
http://www.ncbi.nlm.nih.gov/pubmed/17617167
http://dx.doi.org/10.1111/j.1365-2958.2007.05837.x
http://www.ncbi.nlm.nih.gov/pmc/articles/2170262
https://f1000.com/prime/1097623
http://www.ncbi.nlm.nih.gov/pubmed/18171289
http://dx.doi.org/10.1086/523762
https://f1000.com/prime/1097623
http://www.ncbi.nlm.nih.gov/pubmed/26657042
http://dx.doi.org/10.1038/srep18034
http://www.ncbi.nlm.nih.gov/pmc/articles/4677286
http://www.ncbi.nlm.nih.gov/pubmed/28835215
http://dx.doi.org/10.1186/s12879-017-2686-0
http://www.ncbi.nlm.nih.gov/pmc/articles/5569527
http://www.ncbi.nlm.nih.gov/pubmed/23212366
http://dx.doi.org/10.1038/ncomms2241
http://www.ncbi.nlm.nih.gov/pmc/articles/3535331
https://f1000.com/prime/718479953
http://www.ncbi.nlm.nih.gov/pubmed/24989601
http://dx.doi.org/10.1128/JCM.01057-14
http://www.ncbi.nlm.nih.gov/pmc/articles/4313154
https://f1000.com/prime/718479953
http://www.ncbi.nlm.nih.gov/pubmed/28125584
http://dx.doi.org/10.1371/journal.pcbi.1005348
http://www.ncbi.nlm.nih.gov/pmc/articles/5300274
http://www.ncbi.nlm.nih.gov/pubmed/22665809
http://dx.doi.org/10.1073/pnas.1200841109
http://www.ncbi.nlm.nih.gov/pmc/articles/3382533
http://www.ncbi.nlm.nih.gov/pubmed/26086192
http://dx.doi.org/10.1371/journal.ppat.1004871
http://www.ncbi.nlm.nih.gov/pmc/articles/4472755
https://f1000.com/prime/726175519
http://www.ncbi.nlm.nih.gov/pubmed/26908734
http://dx.doi.org/10.1093/infdis/jiw044
https://f1000.com/prime/726175519
https://f1000.com/prime/732595981
http://www.ncbi.nlm.nih.gov/pubmed/29394367
http://dx.doi.org/10.1093/infdis/jiy060
https://f1000.com/prime/732595981
https://f1000.com/prime/732404559
http://www.ncbi.nlm.nih.gov/pubmed/29304258
http://dx.doi.org/10.1093/cid/cix1123
https://f1000.com/prime/732404559
http://www.ncbi.nlm.nih.gov/pubmed/12976890


42. Pichon G, Awono-Ambene HP, Robert V: High heterogeneity in the number of 
Plasmodium falciparum gametocytes in the bloodmeal of mosquitoes fed on 
the same host. Parasitology. 2000; 121(Pt 2): 115–20.  
PubMed Abstract | Publisher Full Text 

43. Cham GK, Turner L, Lusingu J, et al.: Sequential, ordered acquisition of 
antibodies to Plasmodium falciparum erythrocyte membrane protein 1 
domains. J Immunol. 2009; 183(5): 3356–63.  
PubMed Abstract | Publisher Full Text 

44. Cham GK, Turner L, Kurtis JD, et al.: Hierarchical, domain type-specific 
acquisition of antibodies to Plasmodium falciparum erythrocyte membrane 
protein 1 in Tanzanian children. Infect Immun. 2010; 78(11): 4653–9.  
PubMed Abstract | Publisher Full Text | Free Full Text 

45. Bull PC, Pain A, Ndungu FM, et al.: Plasmodium falciparum antigenic variation: 
relationships between in vivo selection, acquired antibody response, and 
disease severity. J Infect Dis. 2005; 192(6): 1119–26.  
PubMed Abstract | Publisher Full Text 

46. Warimwe GM, Recker M, Kiragu EW, et al.: Plasmodium falciparum var gene 
expression homogeneity as a marker of the host-parasite relationship under 
different levels of naturally acquired immunity to malaria. PLoS One. 2013; 
8(7): e70467.  
PubMed Abstract | Publisher Full Text | Free Full Text 

47.  Rono MK, Nyonda MA, Simam JJ, et al.: Adaptation of Plasmodium 
falciparum to its transmission environment. Nat Ecol Evol. 2018; 2(2): 377–87. 
PubMed Abstract | Publisher Full Text | F1000 Recommendation 

48.  Tonkin-Hill GQ, Trianty L, Noviyanti R, et al.: The Plasmodium falciparum 
transcriptome in severe malaria reveals altered expression of genes involved 
in important processes including surface antigen-encoding var genes. PLoS 
Biol. 2018; 16(3): e2004328.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

49. Fowkes FJ, Richards JS, Simpson JA, et al.: The relationship between anti-
merozoite antibodies and incidence of Plasmodium falciparum malaria: A 
systematic review and meta-analysis. PLoS Med. 2010; 7(1): e1000218.  
PubMed Abstract | Publisher Full Text | Free Full Text 

50.  Valletta JJ, Recker M: Identification of immune signatures predictive of 
clinical protection from malaria. PLoS Comput Biol. 2017; 13(10): e1005812. 
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

51.  Helb DA, Tetteh KK, Felgner PL, et al.: Novel serologic biomarkers provide 
accurate estimates of recent Plasmodium falciparum exposure for individuals 
and communities. Proc Natl Acad Sci U S A. 2015; 112(32): E4438–47.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

52.  malERA Refresh Consultative Panel on Characterising the Reservoir 
and Measuring Transmission: malERA: An updated research agenda for 
characterising the reservoir and measuring transmission in malaria 
elimination and eradication. PLoS Med. 2017; 14(11): e1002452.  
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation 

53. MalariaGEN: Ag1000G.  
Reference Source

Page 7 of 8

F1000Research 2018, 7(F1000 Faculty Rev):1159 Last updated: 15 AUG 2018

http://www.ncbi.nlm.nih.gov/pubmed/11085230
http://dx.doi.org/10.1017/S0031182099006277
http://www.ncbi.nlm.nih.gov/pubmed/19675168
http://dx.doi.org/10.4049/jimmunol.0901331
http://www.ncbi.nlm.nih.gov/pubmed/20823214
http://dx.doi.org/10.1128/IAI.00593-10
http://www.ncbi.nlm.nih.gov/pmc/articles/2976311
http://www.ncbi.nlm.nih.gov/pubmed/16107968
http://dx.doi.org/10.1086/432761
http://www.ncbi.nlm.nih.gov/pubmed/23922996
http://dx.doi.org/10.1371/journal.pone.0070467
http://www.ncbi.nlm.nih.gov/pmc/articles/3726600
https://f1000.com/prime/732650139
http://www.ncbi.nlm.nih.gov/pubmed/29255304
http://dx.doi.org/10.1038/s41559-017-0419-9
https://f1000.com/prime/732650139
https://f1000.com/prime/732833050
http://www.ncbi.nlm.nih.gov/pubmed/29529020
http://dx.doi.org/10.1371/journal.pbio.2004328
http://www.ncbi.nlm.nih.gov/pmc/articles/5864071
https://f1000.com/prime/732833050
http://www.ncbi.nlm.nih.gov/pubmed/20098724
http://dx.doi.org/10.1371/journal.pmed.1000218
http://www.ncbi.nlm.nih.gov/pmc/articles/2808214
https://f1000.com/prime/732028896
http://www.ncbi.nlm.nih.gov/pubmed/29065113
http://dx.doi.org/10.1371/journal.pcbi.1005812
http://www.ncbi.nlm.nih.gov/pmc/articles/5669498
https://f1000.com/prime/732028896
https://f1000.com/prime/725678799
http://www.ncbi.nlm.nih.gov/pubmed/26216993
http://dx.doi.org/10.1073/pnas.1501705112
http://www.ncbi.nlm.nih.gov/pmc/articles/4538641
https://f1000.com/prime/725678799
https://f1000.com/prime/732202087
http://www.ncbi.nlm.nih.gov/pubmed/29190279
http://dx.doi.org/10.1371/journal.pmed.1002452
http://www.ncbi.nlm.nih.gov/pmc/articles/5708619
https://f1000.com/prime/732202087
https://www.malariagen.net/projects/ag1000g


 

Open Peer Review

    Current Referee Status:

Editorial Note on the Review Process
 are commissioned from members of the prestigious   and are edited as aF1000 Faculty Reviews F1000 Faculty

service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees
provide input before publication and only the final, revised version is published. The referees who approved the
final version are listed with their names and affiliations but without their reports on earlier versions (any comments
will already have been addressed in the published version).

The referees who approved this article are:
Version 1

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact   research@f1000.com

 Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy andPatrick E Duffy
Infectious Diseases, NIH, Rockville, MD, USA 

 No competing interests were disclosed.Competing Interests:

1

 Environmental Health and Ecological Sciences Thematic group, Ifakara Health Institute, DarGerry F. Killeen
es Salaam, Tanzania; Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK 

 No competing interests were disclosed.Competing Interests:

2

 Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute,Melissa Penny
Basel, 4051, Switzerland 

 No competing interests were disclosed.Competing Interests:

3

 Department of Epidemiology and Biostatistics,Malaria Elimination Initiative, Global HealthRoly Gosling
Group, University of California San Francisco, San Francisco, California, USA 

 No competing interests were disclosed.Competing Interests:

4

Page 8 of 8

F1000Research 2018, 7(F1000 Faculty Rev):1159 Last updated: 15 AUG 2018

http://f1000research.com/collections/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty

