FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

METHOD ARTICLE

'.) Check for updates

META-pipe Authorization service[version 2; referees: 2

approved]

Inge Alexander Raknes1, Lars Ailo Bongo 2

1Department of Chemistry, UiT - The Arctic University of Norway, Tromsg, 9037, Norway

2Department of Computer Science, UiT - The Arctic University of Norway, Tromsg, 9037, Norway

v2 First published: 09 Jan 2018, 7(ELIXIR):32 (doi:
10.12688/f1000research.13256.1)
Latest published: 01 Jun 2018, 7(ELIXIR):32 (doi:
10.12688/f1000research.13256.2)

Abstract

We describe the design, implementation, and use of the META-pipe
Authorization service. META-pipe is a complete workflow for the analysis of
marine metagenomics data. We will provide META-pipe as a web based data
analysis service for ELIXIR users. We have integrated our Authorization service
with the ELIXIR Authorization and Authentication Infrastructure (AAl) that allows
single sign-on to services across the ELIXIR infrastructure. We use the
Authorization service to authorize access to data on the META-pipe storage
system and jobs in the META-pipe job queue. Our Authorization server was
among the first SAML2 service providers that integrated with ELIXIR AAI. The
code is open source at: hitps://gitlab.com/uit-sfb/AuthService?2.

Keywords
ELIXIR AAI, SAML, OAuth 2.0, Authorization, Authentication

o
EIM This article is included in the ELIXIR gateway.

Open Peer Review

Referee Status: +" +'

Invited Referees

1 2
W v
version 2 report report
published
01Jun 2018
version 1 ? ?
published report report

09 Jan 2018

1 Mikael Linden , CSC - IT Center for

Science, Finland

2 Frank Oliver Gléckner , Max Planck

Institute for Marine Microbiology, Germany

Discuss this article

Comments (0)

Page 1 of 12

https://f1000research.com/articles/7-32/v2
https://orcid.org/0000-0002-7544-2482
https://gitlab.com/uit-sfb/AuthService2
https://f1000research.com/gateways/elixir
https://f1000research.com/gateways/elixir
https://f1000research.com/articles/7-32/v2
https://f1000research.com/articles/7-32/v1
https://orcid.org/0000-0002-3634-3756
https://orcid.org/0000-0001-8528-9023
http://dx.doi.org/10.12688/f1000research.13256.1
http://dx.doi.org/10.12688/f1000research.13256.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.13256.2&domain=pdf&date_stamp=2018-06-01

FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

Corresponding author: Lars Ailo Bongo (larsab@cs.uit.no)

Author roles: Raknes IA: Conceptualization, Methodology, Software, Validation, Writing — Original Draft Preparation, Writing — Review & Editing;
Bongo LA: Project Administration, Supervision, Writing — Original Draft Preparation, Writing — Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Funding was provided from ELIXIR and ELIXIR-Norway. ELIXIR received funding from the European Union’s Horizon 2020
research and innovation program (ELIXIR- EXCELERATE, grant agreement 676559). ELIXIR-Norway is funded by the Research Council of

Norway through the ELIXIR.NO project (grant number 208481).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Raknes IA and Bongo LA. This is an open access article distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated
with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CCO 1.0 Public domain dedication).

How to cite this article: Raknes IA and Bongo LA. META-pipe Authorization service [version 2; referees: 2 approved] F1000Research
2018, 7(ELIXIR):32 (doi: 10.12688/f1000research.13256.2)

First published: 09 Jan 2018, 7(ELIXIR):32 (doi: 10.12688/f1000research.13256.1)

Page 2 of 12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.13256.2
http://dx.doi.org/10.12688/f1000research.13256.1

| REVISED | Amendments from Version 1

We have improved our paper with suggestions, clarifications, and
corrections from the Reviewers. Our improvements include the
following:

1. We discuss in the introduction why we did a “from scratch”
implementation, and we discuss alternative approaches
including OpenlID Connect, Shibboleth, and Keycloack.

2. Inthe methods we clarify how we store tokens, and how we
use Galaxy with our Authorization service. We also discuss
some potential security issues.

3. The use cases describe that user login is via META-pipe
web application and that the web application is run only in
the browser.

4. In future work we describe how the URl is built after the
client obtains an access token from the Authorization
service.

See referee reports

Introduction

ELIXIR brings together and coordinates European life science
resources, including databases, software tools, training materials,
cloud storage, and supercomputers. One of the resources devel-
oped in the ELIXIR-EXCELERATE project is META-pipe', an
automated pipeline for annotation and analysis of metagenomic
and genomic sequence data that is targeted for marine metagen-
omics. We will provide META-pipe as a web based data analysis
service for ELIXIR users.

The ELIXIR Compute Platform builds distributed cloud,
compute, storage, and access services for the life-science research
community. An important part of the cloud platform is the
geographically distributed Authentication & Authorization Infra-
structure (ELIXIR AAI) that provides services for identification,
authentication, and authorization of ELIXIR end users. We have
integrated our META-pipe Authorization service with the ELIXIR
AAI, such that our users can use the single sign-on used across
all ELIXIR services. Most users can sign-on using their home
institution credentials; the remaining users can use Google,
LinkedIn, or ORCID credentials. Our Authorization server was
among the first services that integrated with ELIXIR AAIL

In this paper, we describe the design, implementation, and use of
the META-pipe Authorization service. It limits which services and
users are authorized to access and modify META-pipe datasets
and job results. It authenticates users using ELIXIR AAI, and it
authorizes access to data on the META-pipe storage system
and jobs in the META-pipe job queue. We therefore use it as
ad-hoc authentication for our own services.

We designed the META-pipe authorization service with three main
design goals:

1. Keep it simple and stupid; especially for creating new
services.

2. Separation of concerns. Keep authentication and
authorization separate from the other META-pipe backend
services.

F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

3. Stable interface to avoid doing the same work multiple
times. We therefore use existing standards in the
interaction between services as these are assumed to be
reasonably defined and stable.

Our solution is an external application decoupled from the rest
of our services. It contains all the integration code needed to
integrate with an external authentication service such as ELIXIR
AAIL and it can be further be improved independent of the
other META-pipe services. We also wanted it to be simple
enough such that our small development team could implement it
from scratch. We follow standards so we can re-use existing
libraries and use proven, stable interfaces.

Existing out-of-the-box solutions did not fulfill our requirements
at the time of implementation. For example, OpenlD Connect,
Shibboleth, and Keycloack are large standards with many
mandatory parts that we do not need for our service. We therefore
chose standards, libraries, and tools that are simple and developer
friendly, and that can easily be incorporated in any framework/
programming language combination as our services use Scala
and Go, and Java. Today, ELIXIR AAI provides an OpenlD
connect provider that is an OAuth2 authorization server. It may
be possible to use it instead of our Authorization service. We
believe our service have advantages in development and testing
since it can act as a middle authenticator that is easy to import in
JavaScript. It is also a simple out-of-box-solution that we believe
is a good introduction to OAuth2 and ELIXIR AAI. However,
even if we use libraries such as Spring Security, we still have a
small code base that we must maintain, and we have some
missing features found in for example Shibboleth.

The rest of this paper describes the design and implementation
of the server, how it is used by end-users and our backend
services, and it gives an overview of the standards and libraries
we have used. Finally, we outline ongoing and future work.

Methods

This section summarizes the implementation and usage of the
META-pipe authorization service. Additional details are in
The META-pipe Authorization service design document.

Design

The authorization service fits into the context of the META-pipe
backend that has two Clients: the web application and the
Galaxy tool. In addition, the context has several services, including
storage and job management services. We have integrated our
Authorization server with the ELIXIR AAI, which provides user
identities from the ELIXIR federated IDP for European educa-
tional and research institutions, Google, LinkedIn, and ORCID.
Users therefore use the single sign on ELIXIR web interface, and we
rely on ELIXIR AAI to maintain (the federated) user databases.

Since some external IDPs, such as the Norwegian Feide that is
one of the federated ELIXIR AAI IDPs, requires single sign-out
we needed a way to revoke tokens on a short notice. This requires
a central service for validating tokens and is one of the reasons
we chose to use Token Introspection over JWT Bearer Tokens
(RFC-7523).

Page 3 of 12

https://www.elixir-europe.org/services/compute/aai
http://openid.net/connect/
https://www.keycloak.org/
https://projects.spring.io/spring-security/
https://docs.google.com/document/d/1dlq23Q5N9xNLKjgolxug2hTRtI0zuZzHKuX_xfUo7Uo/edit
https://metapipe.uit.no/
https://galaxy-uit.bioinfo.no/
https://www.feide.no/
https://tools.ietf.org/html/rfc7523

The authorization server implements the Authorization Code
Grant in the OAuth 2.0 Authorization Framework (REC-6749)
(Figure 1). The server uses OAuth 2.0 Bearer Tokens (RFC-6750)
as the access tokens since the Bearer Tokens are well supported
by software libraries and they are required by the Token Intro-
spection specification. In addition, the server implements an
OAuth 2.0 Token Introspection (RFC-7662) endpoint that the
Resource Servers can use to introspect the tokens, whereby
getting information about what can be accessed and if the token is
still valid.

Our Meta-pipe web application stores the Access Tokens and
Refresh Tokens in the browser’s local storage since the tokens
must be accessible from JavaScript. Using local storage is
common, but it may expose our server to some Cross-site
attacks. We are therefore considering alternatives.

In OAuth 2.0 the Access Token Scope is defined by the Authori-
zation server. Since we use a REST architecture for our services,
each resource has its own URI. We have defined the Access
Token Scope such that a Resource Server can determine if a
request is authorized by comparing the Access Token Scope with
the requested URI and method.

Integration with ELIXIR AAI

We have integrated the META-pipe Authorization service
with ELIXIR AAIL. We use the QAuth 2.0 Authorization Code
Grant since it is flexible enough to isolate the integration to the
authorization server. We can therefore implement our Clients
without them having to know neither about SAML nor ELIXIR
AAI We cannot use standards such as RFC-7522 (Security
Assertion Markup Language (SAML) 2.0 Profile for OAuth2.0
Client Authentication and Authorization Grants) and the more
general RFC-7521 (Assertion Framework for OAuth 2.0 Client
Authentication and Authorization Grants), since these require

F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

the Client to directly interact with the Issuer and hence both the
Client and the Authorization server need to know SAML and
how to interact with the ELIXIR AAI Another benefit of the
Authorization Code Grant is that it has very good software library
support.

A client using the OAuth 2.0 Authorization Code Grant redirects
the User Agent to the Authorization Endpoint and then, after the
Resource Owner has authorized the request, the User Agent is
redirected to a URI defined by the Client where an Authoriza-
tion Code is included in the URI query parameter. The Client
can then exchange this Authorization Code for an Access Token
and a Refresh Token by querying the Token Endpoint.

While RFC-6749 specifies how the Client interacts with the
Authorization Server, it does not specify how the Authorization
Endpoint obtains an authorization from the Resource Owner;
this is left to the implementer of the Authorization Endpoint.
Therefore, once the User Agent has been redirected to the
Authorization Endpoint we can perform the authentication proc-
ess that is required by the ELIXIR AAI (including any Use Agent
interactions/redirects) if we are able to redirect the User Agent
to the URI specified by the Client after the user has been
authenticated.

Integration with ELIXIR-Norway Galaxy/Feide

ELIXIR-Norway uses Galaxy as a common GUI for the
analysis services provided for Norwegian users: https://nels.
bioinfo.no/. The Galaxy users must be authenticated using the
Feide authentication infrastructure (Feide technical guide, Feide
integration guide) that is used by all Norwegian universities,
even if Feide is one of the federated IdP’s in ELIXIR AAIL We
have integrated our ELIXIR-Norway Galaxy using an Apache
HTTPD reverse proxy with AuthMemcookie and SimpleSAM-
LPHP. The Apache HTTPD proxies authenticated requests to the

End user
;—OKutFZ.O_ ________ - 1|
| |
Elixir Al |samL20 ' [Auth !
: Web A
'l service €0 App I
| |
| |
| |
| |
| META-pipe |
| REST API |

Figure 1. META-pipe Authorization service used by the META-pipe web application. The web application is an OAuth2 Client. The META-
pipe REST API is the OAuth2 resource server, and it represents the META-pipe storage server and job manager server. The Authorization
Service is an OAuth2 authorization server. The Authorization service is integrated with ELIXIR AAI. It is implemented to isolate the integration
to the authorization server. We expose a REST API for the clients. The clients do not know about ELIXIR AAI.

Page 4 of 12

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7521
https://tools.ietf.org/html/rfc6749
https://nels.bioinfo.no/
https://nels.bioinfo.no/
https://www.feide.no/
https://www.feide.no/sites/feide.no/files/documents/feide_technical_guide.pdf
https://www.feide.no/sites/feide.no/files/documents/feide_integration_guide.pdf
https://www.feide.no/sites/feide.no/files/documents/feide_integration_guide.pdf

Galaxy web application with an HTTP header used to specify
who is logged in.

The Galaxy tool has a user account on our Authorization
Service, and it acts on behalf of all Feide users logged in Galaxy.
The Client makes sure that Feide user data is protected from
each other. The META-pipe Authorization service therefore
does not directly rely on both Feide and ELIXIR AAI for user
authentication. A Galaxy toolis defined by an XML file that describes
how to launch a process and how the process’ arguments should be
presented in the Galaxy GUI. The tool developer maps every
relevant parameter to a command line that Galaxy executes
when the user runs the tool. The parameters include parameters
selected by the user in the web GUI as well as a few contextual
parameters, like the user’s email address that is retrieved from
Feide when the user authenticates.

Software components coupling and limitations

The Authorization Server must know about ELIXIR AAI, the
SAML protocol and the AAI specific attributes that provides
information about a user. It must also have knowledge about which
users are authorized to use which resources.

The Client must support OAuth 2.0 (RFC-6749) and Bearer
Token Usage (RFC-6750).

The Resource server must support Bearer Token Usage
(REC-6750) and OAuth 2.0 Token Introspection (RFC-7662). It
must also know how to interpret a Scope in the correct context of
the application.

Implementation

We have implemented the authorization service in the
Dropwizard web framework. Dropwizard is a lightweight Java web
framework aimed at creating micro services. It uses Apache Oltu
for handling the OAuth protocol, and it stores all its state in a
PostgreSQL database using Hibernate ORM. Apache Oltu is a
library for implementing OAuth 2.0 servers in Java. It manages
the OAuth 2.0 protocol and helps serializing responses and parsing/
validating requests. Hibernate is an Object Relational Mapper.

We have implemented the META-pipe web application (Client)
in JavaScript using the Client OAuth 2.0 library for interfacing
with the authorization server and the Resource Servers. Client
Oauth 2 (mulesoft/js-client-oauth2) is a JavaScript library for
obtaining an authorization from an OAuth 2.0 Authorization
server and for making authorized requests to a Resource Server.
Client OAuth 2 supports several Authorization Grants includ-
ing the Resource Owner Password Credentials Grant and
Authorization Code Grant. It also supports Bearer Token usage
(REC-6750). Client OAuth 2 can be used from a web browser or
from within NodelJS.

OAuth 2.0 Token Introspection is not yet widely supported by
software libraries, so we had to implement this from scratch.
The specification is only 17 pages and it is very easy to implement.

F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

Our library implementation for Resource Servers is therefore
only 176 lines of Go code.

Standards

We here list the standards that we used and that are useful for
others that are developing a similar service. These contain key
definitions, abstraction, and representations:

e The OAuth 2.0 Authorization Framework (RFC-6749)
standard for performing authorization describes the
Acces Token, which is a key abstraction in OAuth 2
that provides an abstraction layer, replacing different
authorization constructs (such as username and password)
with a single token understood by the resource server.

e The The Oauth2.0 Authorization Framework: Bearer
Token Usage (RFC-6750) defines the Bearer Token that is
passed directly to the Resource Server when performing an
authorized request.

e The JSON Web token (JWT) (RFC-7519) standard describes
a compact, URL-safe means of representing claims
transferred between two parties.

e The OAuth 2.0 Token Introspection (RFC-7662) defines a
method for inspecting a token.

Use cases

Here we describe the request flow for three use cases:
META-pipe web application, command line, and Galaxy. In
addition, we describe the request flow for the REST API used to
submit jobs for these three uses cases, and we discuss limitation
for downloading of META-pipe results using the browser.

The criteria for a user to be authorized to access the storage and
compute resources needed to execute a META-pipe job is that
the user has an account in one of the identify providers in the
federated ELIXIR AAI. Once authorized the user will only have
access to their own files and information about their own jobs.
We plan to use the country of the user’s home institution to grant
access to specific compute resources.

User login via META-pipe web application
To authorize an end-user to run META-pipe analyses:

1. The end-user (Resource Owner) clicks “Log in with
ELIXIR AAI” in the META-pipe web application that is
implemented in JavaScript and therefore runs in the users
browser.

2. The end-user is redirected to the Authorization
Endpoint as defined by the Authorization Code Grant
and then to the ELIXIR AAI using SAML web SSO.

3. The end-user logs in via one of the IDPs that are supported
by the ELIXIR AAI and is then redirected back to the web
application via the authorization server where it obtains an
Authorization Code.

4. The web application obtains an Access Token by contacting
the Token Endpoint with the Authorization Code.

Page 5 of 12

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7662
http://www.dropwizard.io/1.2.1/docs/
https://oltu.apache.org/
http://hibernate.org/orm/
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7662
https://metapipe.uit.no/

Command line tool

We provide a command line tool to a few power users so they
can submit multiple jobs simultaneously. The tool obtains an
Access Token by using the Client Credentials Grant.

Galaxy tool login

When the META-pipe Galaxy tool (Client) is called by Galaxy
the end user will already be authenticated using the Galaxy/Feide
integration at https://galaxy-uit.bioinfo.no/.

1. The Galaxy tool will get the user's email address as a
command line parameter.

2. The Galaxy tool will be trusted to access all users’ data
and will obtain an Access Token and a Refresh Token using
the Client Credentials Grant (RFC-6749) with a Scope
that is limited to the requesting user’s resources that are
necessary to run a job.

3. The Galaxy Tool will hold the Access Token and
Refresh Token in memory for subsequent API requests
until the job has completed, and the tool terminates. No
authorization state will be persisted between multiple tool
invocations.

API request to Resource Server

The above three use-cases use the META-pipe REST API to
either submit jobs or monitor their progress. When a Client contacts
an API endpoint (Resource Server) the following happens:

1. The Client provides the Bearer Access Token in the
Authorization header to the API endpoint (RFC-6750).

2. When the Resource Server receives the request, it will
query the Introspection Endpoint to get the Scope of the
Access Token and verify that it is still valid.

3. If the Access Token is valid the Resource Server will
compare the Access Token' Scope (as returned by the
Introspection Endpoint) to the scope required to process
the request. If the request is authorized it will process
the request, otherwise it will respond with an appropriate
error code (RFC-6750).

Summary

We have described the design, implementation, and use of the
META-pipe Authorization service. We use the Authorization
service to authorizes access to data on the META-pipe storage
system and jobs in the META-pipe job queue. Our Authorization
server was among the first services that integrated with ELIXIR
AAL

References

F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

Future work

When downloading a data set (META-pipe result) from our
storage service via the browser it is necessary to provide a
direct link to the downloadable content while at the same time
provide an Access Token to access the data. RFC-6750 allows for
the use of an “access_token” URI query parameter containing
a Bearer Token for authorization. We must use the URI since
it is built by the Client after obtaining an access token from the
Authorization service. This URI is used by the browser to
download files. We do not have a better way to do this. A potential
issue with this approach is that if a user shares a download link
with other users they will get the wuser’s access token.
A solution to this is to limit the access token’s Scope to only have
read access to that particular resource, thus mitigating the risk
of users inadvertently giving access to their account.

We plan to add an admin group for META-pipe administrators
to a configuration file in the Authorization server. Another
solution is to create a group in an Virtual Organization provided
by ELIXIR AAL

‘We would also like end-users to be able to add client credentials,
when for example adding new users to the META-pipe
Command Line Interface.

Software and data availability
No data is needed to use the Authorization service.

The code is source at:

AuthService2.

open https://gitlab.com/uit-sfb/

Archived code at time of publication is: https://doi.org/10.5281/
zenodo.10589952

The software is licensed under The MIT License.

A user guide is at: https://gitlab.com/uit-stb/AuthService?2.

Competing interests
No competing interests were disclosed.

Grant information

Funding was provided from ELIXIR and ELIXIR-Norway. ELIXIR
received funding from the European Union’s Horizon 2020
research and innovation program (ELIXIR- EXCELERATE,
grant agreement 676559). ELIXIR-Norway is funded by the
Research Council of Norway through the ELIXIR.NO project
(grant number 208481).

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

1. Robertsen EM, Kahlke T, Raknes IA, et al.: META-pipe - Pipeline Annotation, Analysis
and Visualization of Marine Metagenomic Sequence Data. ArXiv160404103 Cs. 2016.
Reference Source

2. Raknes |A, Bongo LA: META-pipe authorization service (Version Tag:
Zenodo-F1000). Zenodo. 2017.
Data Source

Page 6 of 12

https://galaxy-uit.bioinfo.no/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://gitlab.com/uit-sfb/AuthService2
https://gitlab.com/uit-sfb/AuthService2
https://dx.doi.org/10.5281/zenodo.1058995
https://dx.doi.org/10.5281/zenodo.1058995
https://opensource.org/licenses/MIT
https://gitlab.com/uit-sfb/AuthService2
https://arxiv.org/ftp/arxiv/papers/1604/1604.04103.pdf
http://dx.doi.org/10.5281/zenodo.1058995

FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

Open Peer Review

Current Referee Status: v v

Referee Report 15 June 2018

doi:10.5256/f1000research.16449.r34601

v

Mikael Linden
CSC - IT Center for Science, Espoo, Finland

The authors have implemented OAuth2 authorisation server to manage user access to META-Pipe and to
isolate the authentication and authorisation to a dedicated system component. The paper is a good
presentation of the design.

Competing Interests: META-Pipe relies on ELIXIR AAl service that | have been developing.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 08 June 2018

doi:10.5256/f1000research.16449.r34600

v

Frank Oliver Gléckner
Mi-cro-bial Ge-n-om-ics and Bioin-form-at-ics Re-search Group, Max Planck Institute for Marine
Microbiology, Bremen, Germany

| guess it is now clear that at the time when META-pipe was developed an "from scratch" implementation
of an Authentication system was necessary.

If this holds true for now is a matter to be decided by the community.

In any case META-pipe can be used as an good example.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Referee Report 07 March 2018

doi:10.5256/f1000research.14381.r31273

Page 7 of 12

http://dx.doi.org/10.5256/f1000research.16449.r34601
http://orcid.org/0000-0002-3634-3756
http://dx.doi.org/10.5256/f1000research.16449.r34600
http://orcid.org/0000-0001-8528-9023
http://dx.doi.org/10.5256/f1000research.14381.r31273

FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

? Frank Oliver Gléckner
Mi-cro-bial Ge-n-om-ics and Bioin-form-at-ics Re-search Group, Max Planck Institute for Marine
Microbiology, Bremen, Germany

| agree with the authors that adding META-pipe to the ELIXIR AAIl system is a useful invention. Since they
were the first ones to add this feature to their pipeline | also appreciate the pioneering character of their
work.

To separate the META-pipe software from the authentication-server makes fully sense to me and
supports the reusability of the authentication server for other projects.

Nevertheless, | have two main questions/concerns where | did not find the answer in the manuscript:

1. Security: Although | am not an expert in this field | got the information that saving the Token in the
local storage of the browser might be a risk. Since AAl is a security relevant component in every
software system | would recommend consulting an expert in this field to check if the mode of
implementation can be in general regarded as save.

2. From scratch implementation: It is rather unclear for me why the authors have decided to go for a
“from scratch” implementation of their authorisation server? On page two they briefly state that
existing out-of-the box solutions did not fulfil all requirements or are too heavy weight for their
application, but only OpenID Connect is given as an example. From our experiences several open
source authentication-servers exist, that can do the job pretty well e.g. Keycloak, GLUU, hydra,
Shibboleth Identity Provider, with the last one is already used in the ELIXIR environment. To make
the advantages of a new implementation clear | would recommend adding a paragraph and a table
where the different servers are compared and the reasons why going for a fresh implementation
are explained in detail. Sticking with a well-established implementation might have also had
advantages with respect to potential security issues. A rather comprehensive list of SSO
implementations can be found here
https://en.wikipedia.org/wiki/List_of_single_sign-on_implementations.

Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Page 8 of 12

http://orcid.org/0000-0001-8528-9023
https://en.wikipedia.org/wiki/List_of_single_sign-on_implementations

FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Lars Ailo Bongo, University of Tromso, Norway

Thank you for your comments and remarks. We have improved the paper as follows:

> | got the information that saving the Token in the local storage of the browser might be a risk.
Since AAl is a security relevant component in every software system | would recommend
consulting an expert in this field to check if the mode of implementation can be in general regarded
as safe.

We could not find clear guidelines for the where to store the access token and refresh. It does not
seem unusual to store the token in the browser local storage. We agree that this may expose our
Authorization server to some attacks (such as cross-site attacks). We have therefore added a
comment to the Design section that this may be unsafe, and we are considering alternatives for our
server.

> It is rather unclear for me why the authors have decided to go for a “from scratch” implementation
of their authorisation server?

We have added a discussion of the ELIXIR AAI Open ID Connect, Shibboleth, and Keycloak in the
introduction. It was not an option when we started our implementation, but is clearly an alternative
today. We still believe the simplicity of our server has some advantages for development and
testing purposes. In addition, we use many libraries for the implementation such as Spring security.
We also believe the simplicity, combined with this paper, makes it a good introduction to OAuth2
and ELIXIR AAl.

Competing Interests: No competing interests were disclosed.

Referee Report 22 January 2018

doi:10.5256/f1000research.14381.r29637

?

Mikael Linden
CSC - IT Center for Science, Espoo, Finland

The paper is a useful description on how Meta-Pipe relies on OAuth2 framework for authorising access to
the Meta-Pipe storage and job queue.

What is the criteria the authorisation server uses to authorise the user to a certain resource? Based on
what criteria is the authorisation granted to a user? Is it that users can only access their own files? Or are
there also other criteria e.g. who in general can access the META-Pipe?

Page 9 of 12

http://dx.doi.org/10.5256/f1000research.14381.r29637
http://orcid.org/0000-0002-3634-3756

FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

ELIXIR AAI provides an OpenlD Connect provider that is an OAuth2 authorisation server. Could you use it
instead of developing your own server?

Does the Meta-Pipe web application run in a user's browser or in a server?

What is the relation of Feide and ELIXIR AAl in the context of Meta-Pipe? What is the relation of
Meta-Pipe authorisation server and Feide? Does the Meta-Pipe authorisation server rely on them both for
user authentication?

In the end of Standards section on page 4 you refer to RFC 7522 as a spec you used but on the previous
page you say you couldn't use that spec.

You could improve figure 1 by clearly indicating where are the OAuth2 authorisation server, client and
resource server. Perhaps you could also introduce another drawing where the OAuth2 messages are
presented. That would make it easier for the reader to follow how you have mounted OAuth2 for your

deployment.

Clients other than Meta-pipe Web app are missing in the Figure 1. What is the service behind the
Meta-pipe REST API (from other sections | learn they are the job submission/management and storage
services)?

In the future work section; instead of displaying the user a URL with an embedded access token, why
can't you protect the URI with OAuth2, triggering the client to obtain the Access token from the
Authorisation server directly and then presenting it to the storage server.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: Meta-Pipe relies on ELIXIR AAl service that | have been developing.

Page 10 of 12

FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Lars Ailo Bongo, University of Tromso, Norway

Thank you for your insightful remarks. We have made the following improvements to our paper to
address the raised concerns:

> What is the criteria the authorisation server uses to authorise the user to a certain resource?
> Based on what criteria is the authorisation granted to a user?

> [s it that users can only access their own files?

> Or are there also other criteria e.g. who in general can access the META-Pipe?

We added an explanation in the “Use cases” that all users with an ELIXIR AAl supported account
have access to (only) their files and job information in META-pipe.

> ELIXIR AAl provides an OpenlD Connect provider that is an OAuth2 authorisation server. Could
you use it instead of developing your own server?

We added a discussion of the ELIXIR AAI Open ID Connect to the introduction. It was not an option
when we started our implementation. We still believe the simplicity of our server has some
advantages for development and testing purposes. For example as an introduction to OAuth2 and
ELIXIR AAL.

> Does the Meta-Pipe web application run in a user's browser or in a server?

We now specify in Use Cases; User login via META-pipe web application that the web application
is run only in the browser.

> What is the relation of Feide and ELIXIR AAl in the context of Meta-Pipe?
> What is the relation of Meta-Pipe authorisation server and Feide? Does the Meta-Pipe
authorisation server rely on them both for user authentication?

We added explanations in Methods; Integration with ELIXIR-Norway Galaxy/ Feide that we must
use Feide for Galaxy. We also describe how the Galaxy tool has an account on the Authorization
service, and acts on behalf of all Feide users logged in Galaxy. The Authorization service therefore
do not directly rely on both for user authentication.

> In the end of Standards section on page 4 you refer to RFC 7522 as a spec you used but on the
previous page you say you couldn't use that spec.

It is correct that we do not use RFC 7522, so we have removed it from the list.

> You could improve figure 1 by clearly indicating where are the OAuth2 authorisation server, client
and resource server. Perhaps you could also introduce another drawing where the OAuth2
messages are presented. That would make it easier for the reader to follow how you have mounted
OAuth2 for your deployment.

Page 11 of 12

FIOOOResearch F1000Research 2018, 7(ELIXIR):32 Last updated: 25 OCT 2018

> Clients other than Meta-pipe Web app are missing in the Figure 1. What is the service behind the
Meta-pipe REST API (from other sections | learn they are the job submission/management and
storage services)?

We have added an explanation to the figure caption that the web application is an OAuth2 Client,
the META-pipe REST API is the OAuth2 resource server, and the Authorization Service is an
OAuth2 authorization server. We chose not to make changes to the figure since we try to keep it
simple for illustration purposes, and since more detailed figures for the OAuth2 messages can be
found in the standard documentation.

We also added a description to the figure caption that the META-pipe servers are represented by
the REST API box.

> In the future work section; instead of displaying the user a URL with an embedded access token,
why can't you protect the URI with OAuth2, triggering the client to obtain the Access token from the
Authorisation server directly and then presenting it to the storage server.

Misunderstanding? Is in line with OAuth2 specification.

We added an explanation in Future Work that the URI is built after the client obtains an access
token from the Authorization service. We do not know of a better way to do this.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

® Your article is published within days, with no editorial bias

® You can publish traditional articles, null/negative results, case reports, data notes and more
® The peer review process is transparent and collaborative

® Your article is indexed in PubMed after passing peer review

® Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com F]m Resea rCh

Page 12 of 12

