Rice cultivation reduces methane emissions in high-emitting paddies [version 1; referees: awaiting peer review]

Masato Oda, Nguyen Huu Chiem

1Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
2Department of Environmental Science, College of Environment and Natural Resources, Can Tho University, Can Tho, Vietnam

Abstract

Background: Rice is typically understood to enhance methane emissions from paddy fields. However, rice actually has two separate functions related to methane: i) emission enhancement, such as by providing emission pathways (aerenchyma) and methanogenetic substrates; and ii) emission suppression by providing oxygen pathways, which suppress methanogenesis or enhance methane oxidation. The overall role of rice is thus determined by the balance between its enhancing and suppressing functions. Although existing studies have suggested that rice enhances total methane emissions, we aimed to demonstrate that the balance between rice’s emitting and suppressing functions changes according to overall methane emission levels, which have quite a large range (16–500 kg methane ha\(^{-1}\) crop\(^{-1}\)).

Methods: Using PVC chambers, we compared methane emissions emitted by rice paddy fields with and without rice plants in rice fields in the Mekong Delta, Vietnam. Samples were analyzed by gas chromatograph.

Results: We found high overall methane emission levels and our results indicated that rice in fact suppressed methane emissions under these conditions. Emission reductions increased with the growth of rice, up to 60% of emission rate at the maximum tillering stage, then decreased to 20% after the heading stage, and finally recovering back to 60%.

Discussion: It is known that methane is emitted by ebullition when the emission level is high, and methane emission reductions in rice-planted fields are thought to be due to oxidation and methanogenesis suppression. However, although many studies have found that the contribution of soil organic matter to methanogenesis is small, our results suggested that methanogenesis depended mainly on soil organic matter accumulated from past crops. The higher the methane emission level, the lower the contribution of rice-providing substrate.

Conclusion: As a result, during the growing season, rice enhanced methane emissions in low-emission paddy fields but suppressed methane emissions in high-emission paddy fields.

Keywords

Greenhouse gases, Mekong Delta, Methane oxidation, Methanogenesis inhibition, Rice paddy, Triple cropping
Corresponding author: Masato Oda (oda.masato@affrc.go.jp)

Author roles: Oda M: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Chiem NH: Resources, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2018 Oda M and Chiem NH. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Oda M and Chiem NH. Rice cultivation reduces methane emissions in high-emitting paddies [version 1; referees: awaiting peer review] F1000Research 2018, 7:1349 (doi: 10.12688/f1000research.15859.1)

**Introduction**

The role of rice in methane (CH$_4$) emissions changes according to emission levels. Rice performs three key functions related to CH$_4$ emissions: i) providing a CH$_4$ pathway through a well-developed system of intercellular air spaces (aerenchyma), ii) providing a substrate for methanogenesis, and iii) oxidising CH$_4$ in rhizosphere by supporting O$_2$ counter-transport through aerenchyma system$^{1-4}$. The level of contribution of these functions varies with the overall emissions, and the total amount of CH$_4$ emitted to the atmosphere is thus a balance between CH$_4$ production and oxidation$^5$. To the best of our knowledge, all studies have concluded that rice enhances overall CH$_4$ emissions from paddy fields; however, these studies have mostly disregarded overall emission levels and their potential impact on the role of rice in enhancing or suppressing CH$_4$ emissions.

Cicerone and Shetter measured CH$_4$ emissions with a closed chamber on the water surface of a paddy field, and found that 4 hours after starting measurement, CH$_4$ concentration was 290 ppm over rice plants and only 4 ppm over open water$^6$. Further studies have revealed that CH$_4$ produced under methanogenesis diffuses through the soil, which is oxidised by the surface barrier before reaching the atmosphere$^7$. Rice absorbs diffused CH$_4$ from its roots and emits CH$_4$ through aerenchyma$^{3,5,7}$. Therefore, an established theory has emerged that CH$_4$ is not emitted from the soil without rice. Other recent studies have provided additional evidence that the primary source of CH$_4$ is current-season photosynthates—specifically, root exudates or decaying tissues$^{8,9}$. This results in CH$_4$ emissions that peak during the late stage of rice growth. Thus, the presence of rice plants has been determined to be the cause of CH$_4$ emissions in paddy fields.

Wassmann et al.$^{12}$ measured CH$_4$ emissions on the water surface of a paddy field amended with organic matter. They found that organic matter incorporation increased total CH$_4$ emission levels from 27–90 to 160–240 kg CH$_4$ ha$^{-1}$ crop$^{-1}$, and ebullition increased from 15–23% to 35–62%, respectively$^{12}$. Since it is known that organic matter incorporation causes CH$_4$ emissions to peak during the early stages of rice growth, when the rice is still small and the aerenchyma is not well developed, the results of Wassmann et al.$^{12}$ should be closely examined to determine whether ebullition increased with total emissions. According to the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines, CH$_4$ emissions for 100 days of rice cropping are 130 kg CH$_4$ ha$^{-1}$ crop$^{-1}$; however, emissions were observed at almost twice this value by Wassmann et al.$^{12}$ Average CH$_4$ emissions from rice paddies in Asia without and with organic matter incorporation ranged from 16 to 200 and 250 to 500, respectively$^{13}$. Although ebullition has been little studied$^{14}$, ebullition must occur at high emission levels. Furthermore, in the study by Wassmann et al.$^{12}$, twin CH$_4$ emissions peaks appeared, with an early peak corresponding to the organic matter amendment and a later peak corresponding to rice-originated substrate$^{12}$. An alternate interpretation of these results is that the twin peaks could reflect the oxidation performance of rice, since CH$_4$ oxidation is known to increase with rice growth, up to the maximum tillering stage, and then decrease$^{15}$.

We monitored CH$_4$ emissions in the paddy fields for 5 years (total 15 crops) in triple rice cropping fields in the Mekong Delta, Vietnam. The CH$_4$ emission level was an order of magnitude higher than IPCC standards. These high CH$_4$ emissions suggest that ebullition must have been occurring.

**Results and discussion**

In the present study, we compared CH$_4$ emissions on the water (soil) surface of paddy fields of with and without rice in paddy fields. Our results showed that rice decreased CH$_4$ emissions by half relative to paddy fields without rice (see Figure 1, Figure 2). Complete, unprocessed data are available on figshare$^{46}$. There was no marked CH$_4$ emissions peak in the

![Figure 1. Seasonal CH$_4$ emissions in paddy fields. Average CH$_4$ emissions of rice-planted areas and no-rice-planted areas in a triple cropping rice field in Mekong Delta. Winter–Spring season (2017). The paddy fields did not receive rice straw incorporation. Error bars are s.d. (n = 3).](image-url)
late-stage of the rice field. This suggests that the amount of methanogenesis from rice-providing substrate was relatively small. Note the high emission levels (500–1400 kg CH$_4$ ha$^{-1}$ crop$^{-1}$). These findings suggest that total CH$_4$ emissions are reduced by oxidation or methanogenesis inhibition associated with growing the rice plant.

We also found that the reduction rate of CH$_4$ emissions increased up to 60%, at maximum tillering stage, then decreased to 20% after the heading stage, and then finally recovered to 60% (see Figure 3). The decrease around the heading stage was caused partially by an increase of emissions in rice-planted fields, and mainly by the erratic emissions in the unplanted area (see Figure 1).

No consensus has yet been reached on the extent to which methanotrophs or rice roots attenuate CH$_4$ emissions. Using the N$_2$ atmosphere technique, CH$_4$ oxidation ratios have been found to be around 40% on average and were relatively stable throughout the rice growing season. However, genuine CH$_4$ oxidation, as measured using inhibitors, tend to decrease with rice growth, and the reduction rate for total CH$_4$ emissions can reach up to 20%\textsuperscript{17}. Although, most of those studies assume plant-mediated transportation\textsuperscript{17}, in general, our results roughly matched the results using the N$_2$ atmosphere technique. This suggests that the reduction in CH$_4$ emissions was not due to genuine oxidation and was more likely to be due to methanogenesis inhibition by oxygen from aerenchyma, which lasts until harvesting\textsuperscript{18}.

We found high CH$_4$ emissions in paddy fields that were not planted with rice and did not incorporate rice straw or other organic material. Despite this lower input of methanogenesis substrate, CH$_4$ emission levels were 12 times higher than the IPCC guidelines. The emission levels remained almost stable after reaching maximum. This suggests that methanogenesis mainly depends on soil organic matter that has been accumulated from past rice crops. Prior studies have suggested that the contribution of soil organic matter to methanogenesis is small; however, these studies also indicated that higher emission levels tend to be associated with higher contribution rates of soil organic matter\textsuperscript{8-11,19}. Therefore, our results are consistent with prior studies that assume that emission levels are proportional to the amount of soil organic matter, which can be a methanogenesis substrate. Hotspots of CH$_4$ emissions, which exist widely across tropical Asia, would have huge soil organic matter stock formed by sequential rice cropping under flooded conditions.

To summarise, most studies of CH$_4$ emissions in paddy fields have been conducted in fields with low overall emission levels. Since the role of rice in CH$_4$ emissions varies according to the overall emission levels, these results cannot be appropriately generalised to rice paddies with high emission levels. The results of our study suggest that rice reduces CH$_4$ emissions in hotspot paddy fields.

**Methods**

**Study site**

Experimental fields were in Tan Loi 2 Hamlet, Thuan Hung village, Thot Not district, Can Tho city, Vietnam. Farmers conducted triple rice cropping by direct seeding and full flooding. This area receives almost 2 months of floods annually from the Mekong River. The flood decomposes rice straw underwater to the extent that it is no obstacle for seeding. Therefore, farmers start the rice cropping by levelling the fields, without incorporating rice straw. We observed CH$_4$ emissions in 18 paddy fields (26 × 17 m each) under several conditions for 5 years from September 2011. A preliminary study was conducted with the rice variety OM501 (suitable for the season) in the Summer-Autumn season of 2016 by the same methods and paddies of the main study (see Figure 4). In the present study, we used three such fields (managed with straw return under flooded conditions) for replication. We conducted the main experiment after the annual floods (4 November 2016–12 February 2017); these fields did not incorporate rice straw.

**Treatment**

We compared CH$_4$ emissions in paddy fields with and without rice. We set 2 × 2 m squares of plastic films on each field just before seeding, then carefully removed them with seeds on
the films immediately after seeding. In other plots, there was no difference with farmers’ conventional rice-growing procedures. Farmers spread 230 g m\(^{-2}\) (in dry weight) of germinated rice seed (variety Jasmine) on drained wet paddy field surfaces on 5th November. This wet condition was maintained for 7 days, then the field was kept flooded until 89 days after seeding (DAS), and the rice harvested on 100 DAS. The farmers applied fertiliser, which included 76 kg of urea on 12 November, 53 kg each of urea and NPKS (16-16-8-13), diammonium phosphate on 19 November, and 53 kg each of urea and NPKS on 15 December. The daily average water level was monitored with a water level logger (HOBO U20; Onset Computer Corporation, Bourne, Massachusetts) at the corner of the field was 2.0 cm (–0.6–6.1 cm) until drained.

**Measurement of CH\(_4\) emissions**

We set an approximately 2 m long and 0.5 m wide ladder from the centre of the shorter bund to allow measurement of CH\(_4\) without touching the paddy soil surface. This ladder was on the border of the non-planted area in each plot. We set PVC chamber bases on the paddy field of both sides of the ladder to avoid measurement perturbation. Chambers (60 \times 80 cm and 100 cm high, transparent acryl) were set on a watertight chamber base for every measurement. Measurements were taken at 8 a.m. because previous research has indicated that emissions at this time have a high correlation (ca. 90\% of average emission) with average daily emissions\(^6\). We mixed the air in the chamber with a fan for 5 min after setting the chamber, then sampled the first gas, then sampled the second gas 20 min

---

**Figure 3. Reduction rate of CH\(_4\) emissions.** Difference in CH\(_4\) emissions between rice-planted areas and no-rice-planted areas, calculated by a moving average of five values. The CH\(_4\) reduction rate was calculated by (no rice – rice)/no rice.

**Figure 4. Seasonal CH\(_4\) emission in paddy fields.** Average CH\(_4\) emissions of rice-planted areas and no-rice-planted areas in a triple cropping rice field in Mekong Delta. Summer–Autumn season (2016). The paddy fields received incorporated rice straw of the previous crop. Error bars are s.d. (n = 3).
later. We conducted the measurements once a week throughout the rice growing stage, but every 3 days for 2 weeks after seeding, heading stage, and around draining. The samples were analysed by gas chromatograph (GC-14B, Shimadze, Kyoto). The cumulative CH$_4$ emissions were calculated by linear interpolation.

**Ethics statement**
This study was conducted with the approval of the farmer.

**Statistical analysis**
Data were processed using Microsoft Excel 2016.

**References**


**Data availability**
Raw data of this article is available from figshare: https://doi.org/10.6084/m9.figshare.6916277.v1. Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CCO 1.0 Public domain dedication).

**Grant information**
The author(s) declared that no grants were involved in supporting this work.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com