SOFTWARE TOOL ARTICLE

methylvim: Targeted, robust, and model-free differential methylation analysis in R [version 1; referees: 1 not approved]

Nima S. Hejazi¹,², Rachael V. Phillips¹, Alan E. Hubbard¹, Mark J. van der Laan¹,³

¹Division of Biostatistics, University of California, Berkeley, Berkeley, CA, 94720, USA
²Center for Computational Biology, University of California, Berkeley, Berkeley, CA, 94702, USA
³Department of Statistics, University of California, Berkeley, Berkeley, CA, 94720, USA

Abstract

We present methylvim, an R package implementing an algorithm for the nonparametric estimation of the effects of exposures on DNA methylation at CpG sites throughout the genome, complete with straightforward statistical inference for such estimates. The approach leverages variable importance measures derived from statistical parameters arising in causal inference, defined in such a manner that they may be used to obtain targeted estimates of the relative importance of individual CpG sites with respect to a binary treatment assigned at the phenotype level, thereby providing a new approach to identifying differentially methylated positions. The procedure implemented is computationally efficient, incorporating a preliminary screening step to isolate a subset of sites for which there is cursory evidence of differential methylation as well as a unique multiple testing correction to control the False Discovery Rate with the same rigor as would be available if all sites were subjected to testing. This novel technique for analysis of differentially methylated positions provides an avenue for incorporating flexible state-of-the-art data-adaptive regression procedures (i.e., machine learning) into the estimation of differential methylation effects without the loss of interpretable statistical inference for the estimated quantity.

Keywords

DNA methylation, differential methylation, epigenetics, causal inference, variable importance, machine learning, targeted loss-based estimation

This article is included in the Bioconductor gateway.

This article is included in the RPackage gateway.
Introduction

DNA methylation is a fundamental epigenetic process known to play an important role in the regulation of gene expression. DNA methylation most commonly occurs at CpG sites and involves the addition of a methyl group (CH₃) to the fifth carbon of the cytosine ring structure to form 5-methylcytosine. Numerous biological and medical studies have implicated DNA methylation as playing a role in disease and development. Perhaps unsurprisingly then, biotechnologies have been developed to rigorously probe the molecular mechanisms of this epigenetic process. Modern assays, like the Illumina Infinium HumanMethylation BeadChip assay, allow for quantitative interrogation of DNA methylation, at single-nucleotide resolution, across a comprehensive set of CpG sites scattered across the genome; moreover, the computational biology community has invested significant effort in the development of tools for properly removing technological effects that may contaminate biological signatures measured by such assays [2, Dedeurwaerder et al.]. Despite these advances in both biological and bioninformatics techniques, most statistical methods available for differential analysis of data produced by such assays rely on over-simplified models that do not readily extend to such high-dimensional data structures without restrictive modeling assumptions and the use of inferentially costly hypothesis testing corrections. When these standard assumptions are violated, estimates of the population-level effect of an exposure or treatment may suffer from large bias. What’s more, reliance on restrictive and misspecified statistical models naturally leads to biased effect estimates that are not only misleading in assessing effect sizes but also result in false discoveries as these biased estimates are subject to testing and inferential procedures. Such predictably unreliable methods serve only to produce findings that are later invalidated by replication studies and add still further complexity to discovering biological targets for potential therapeutics. Data-adaptive estimation procedures that utilize machine learning provide a way to overcome many of the problems common in classical methods, controlling for potential confounding even in high-dimensional settings; however, interpretable statistical inference (i.e., confidence intervals and hypothesis tests) from such data-adaptive estimates is challenging to obtain.

In this paper, we briefly present an alternative to such statistical analysis approaches in the form of a nonparametric estimation procedure that provides simple and readily interpretable statistical inference, discussing at length a recent implementation of the methodology in the methyvim R package. Inspired by recent advances in statistical causal inference and machine learning, we provide a computationally efficient technique for obtaining targeted estimates of nonparametric variable importance measures (VIMs), estimated at a set of pre-screened CpG sites, controlling for the False Discovery Rate (FDR) as if all sites were tested. Under standard assumptions (e.g., identifiability, strong ignorability), targeted minimum loss-based estimators of regular asymptotically linear estimators have sampling distributions that are asymptotically normal, allowing for reliable point estimation and the construction of Wald-style confidence intervals [7, van der Laan and Rose]. In the context of DNA methylation studies, we define the counterfactual outcomes under a binary treatment as the observed methylation (whether Beta- or M-) values a CpG site would have if all subjects were administered the treatment and the methylation values a CpG site would have if treatment were withheld from all subjects. Although these counterfactual outcomes are, of course, impossible to observe, they do have statistical analogs that may be reliably estimated (i.e., identified) from observed data under a small number of untestable assumptions. We describe an algorithm that incorporates, in its final step, the use targeted minimum loss-based estimators (TMLE) of a given VIM of interest, though we defer rigorous and detailed descriptions of this aspect of the statistical methodology to work outside the scope of the present manuscript [9, van der Laan and Rose, van der Laan and Rose]. The proposed methodology assesses the individual importance of a given CpG site, as a proposed measure of differential methylation, by utilizing state-of-the-art machine learning algorithms in deriving targeted estimates and robust inference of a VIM, as considered more broadly for biomarkers in Bembom et al. and Tuglus and van der Laan. In the present work, we focus on the methyvim software package, available through the Bioconductor project [12, Huber et al.] for the R language and environment for statistical computing, which implements a particular realization of this methodology specifically tailored for the analysis and identification of differentially methylated positions (DMPs).

For an extended discussion of the general framework of targeted minimum loss-based estimation and detailed accounts of how this approach may be brought to bear in developing answers to complex scientific problems through statistical and causal inference, the interested reader is invited to consult van der Laan and Rose and van der Laan and Rose. For a more general introduction to causal inference, Pearl and Hernandez and Robins may be of interest.

Methods

Implementation

The core functionality of this package is made available via the eponymous methyvim function, which implements a statistical algorithm designed to compute targeted estimates of VIMs, defined in such a way that the VIMs represent parameters of scientific interest in computational biology experiments; moreover, these VIMs are defined such that they may be estimated in a manner that is very nearly assumption-free, that is, within a
fully nonparametric statistical model. The statistical algorithm consists of several major steps summarized below. Additional methodological details on the use of targeted minimum loss-based estimation in this problem setting is provided in Supplementary File 1.

1. **Pre-screening** of genomic sites is used to isolate a subset of sites for which there is cursory evidence of differential methylation. Currently, the available screening approach adapts core routines from the `limma` R package. Following the style of the function for performing screening via `limma`, users may write their own screening functions and are invited to contribute such functions to the core software package by opening pull requests at the GitHub repository: https://github.com/nhejazi/methyvim.

2. Nonparametric estimates of VIMs, for the specified target parameter, are computed at each of the CpG sites passing the screening step. The VIMs are defined in such a way that the estimated effects is of an binary treatment on the methylation status of a target CpG site, controlling for the observed methylation status of the neighbors of that site. Currently, routines are adapted from the `tmle` R package.

3. Since pre-screening is performed prior to estimating VIMs, we apply the modified marginal Benjamini and Hochberg step-up False Discovery Rate controlling procedure for multi-stage analyses (FDR-MSA), which is well-suited for avoiding false positive discoveries when testing is only performed on a subset of potential targets.

Parameters of Interest For CpG sites that pass the pre-screening step, a user-specified target parameter of interest is estimated independently at each site. In all cases, an estimator of the parameter of interest is constructed via targeted minimum loss-based estimation.

Two popular target causal parameters for discrete-valued treatments or exposures are

- The average treatment effect (ATE): The effect of a binary exposure or treatment on the observed methylation at a target CpG site is estimated, controlling for the observed methylation at all other CpG sites in the same neighborhood as the target site, based on an additive form. Often denoted \(\psi_0 = \psi(0) - \psi(\theta) \), the parameter estimate represents the additive difference in methylation that would have been observed at the target site had all observations received the treatment versus the counterfactual under which none received the treatment.

- The relative risk (RR): The effect of a binary exposure or treatment on the observed methylation at a target CpG site is estimated, controlling for the observed methylation at all other CpG sites in the same neighborhood as the target site, based on a geometric form. Often denoted, \(\psi = \frac{\psi(0)}{\psi(\theta)} \), the parameter estimate represents the multiplicative difference in methylation that would have been observed at the target site had all observations received the treatment versus the counterfactual under which none received the treatment.

Estimating the VIM corresponding to the parameters above, for discrete-valued treatments or exposures, requires two separate regression steps: one for the treatment mechanism (propensity score) and one for the outcome regression. Technical details on the nature of these regressions are discussed in Hernan and Robins\(^1\), and details for estimating these regressions in the framework of targeted minimum loss-based estimation are discussed in van der Laan and Rose\(^2\).

Class `methytmle` We have adopted a class `methytmle` to help organize the functionality within this package. The `methytmle` class builds upon the `GenomicRatioSet` class provided by the `minfi` package so all of the slots of `GenomicRatioSet` are contained in a `methytmle` object. The new class introduced in the `methyvim` package includes several new slots:

- **call** - the form of the original call to the `methyvim` function.
- **screen_ind** - indices identifying CpG sites that pass the screening process.
- **clusters** - non-unique IDs corresponding to the manner in which sites are treated as neighbors. These are assigned by genomic distance (bp) and respect chromosome boundaries (produced via a call to `bumphunter::clusterMaker`).
- **var_int** - the treatment/exposure status for each subject. Currently, these must be binary, due to the definition of the supported target parameters.
- **param** - the name of the target parameter from which the estimated VIMs are defined.
- **vim** - a table of statistical results obtained from estimating VIMs for each of the CpG sites that pass the screening procedure.
- ic - the measured array values for each of the CpG sites passing the screening, transformed into influence curve space based on the chosen target parameter.

The show method of the methytmle class summarizes a selection of the above information for the user while masking some of the wealth of information given when calling the same method for GenomicRatioSet. All information contained in GenomicRatioSet objects is preserved in methytmle objects, so as to ease interoperability with other differential methylation software for experienced users. We refer the reader to the package vignette, “methyvim: Targeted Data-Adaptive Estimation and Inference for Differential Methylation Analysis,” included in any distribution of the software package, for further details.

Operation
A standard computer with the latest version of R and Bioconductor 3.6 installed will handle applications of the methyvim package.

Use cases
To examine the practical applications and the full set of utilities of the methyvim package, we will use a publicly available example data set produced by the Illumina 450K array, from the minfiData R package, accessible via the Bioconductor project at https://doi.org/doi:10.18129/B9.bioc.minfiData.

Preliminaries: Setting up the data
We begin by loading the package and the data set. After loading the data, which comes in the form of a raw MethylSet object, we perform some further processing by mapping to the genome (with mapToGenome) and converting the values from the methylated and unmethylated channels to Beta-values (via ratioConvert). These two steps together produce an object of class GenomicRatioSet, provided by the minfi package.

```r
suppressMessages(
  # numerous messages displayed at time of loading
  library(minfiData)
)
data(MsetEx)
mset <- mapToGenome(MsetEx)
grs <- ratioConvert(mset)
grs
```

```r
## class: GenomicRatioSet
## dim: 485512 6
## metadata(0):
## assays(2): Beta CN
## rownames(485512): cg13869341 cg14008030 ... cg08265308 cg14273923
## colData names(13): Sample_Name Sample_Well ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylation450k
##   annotation: ilmn12.hg19
## Preprocessing
##   Method: Raw (no normalization or bg correction)
##   minfi version: 1.21.2
##   Manifest version: 0.4.0
```

We can create an object of class methytmle from any GenomicRatioSet object simply invoking the S4 class constructor .methytmle:

```r
library(methyvim)
```

```r
## methyvim v1.3.1: Targeted, Robust, and Model-free Differential Methylation Analysis
```

```r
grs_mtmle <- .methytmle(grs)
grs_mtmle
## class: methytmle
```
Additionally, a GenomicRatioSet can be created from a matrix with the function makeGenomicRatioSetFromMatrix provided by the minfi package.

Differential Methylation Analysis For this example analysis, we’ll treat the condition of the patients as the exposure/treatment variable of interest. The methyvim function requires that this variable either be numeric or easily coercible to numeric. To facilitate this, we’ll simply convert the covariate (currently a character):

```r
var_int <- (as.numeric(as.factor(colData(grs)$status)) - 1)
```

n.b., the re-coding process results in “normal” patients being assigned a value of 1 and cancer patients a 0.

Now, we are ready to analyze the effects of cancer status on DNA methylation using this data set. We proceed as follows with a targeted minimum loss-based estimate of the Average Treatment Effect.

```r
methyvim_cancer_ate <- methyvim(data_grs = grs, var_int = var_int, 
                                    vim = "ate", type = "Beta", filter = "limma", 
                                    filter_cutoff = 0.20, obs_per_covar = 2, 
                                    parallel = FALSE, sites_comp = 250, 
                                    tmle_type = "glm"
)
```

Note that we set the obs_per_covar argument to a relatively low value (just 2, even though the recommended value, and default, is 20) for the purposes of this example as the sample size is only 10. We do this only to exemplify the estimation procedure and it is important to point out that such low values for obs_per_covar will compromise the quality of inference obtained because this setting directly affects the definition of the target parameter.

Further, note that here we apply the glm flavor of the tmle_type argument, which produces faster results by fitting models for the propensity score and outcome regressions using a limited number of parametric models. By contrast, the sl (for “Super Learning”) flavor fits these two regressions using highly nonparametric and data-adaptive procedures (i.e., via machine learning). Obtaining the estimates via GLMs results in each of the regression steps being less robust than if nonparametric regressions were used.

We can view a table of results by examining the vim slot of the produced object, most easily displayed by simply printing the resultant object:

```r
methyvim_cancer_ate
```

class: methytmle
Finally, we may compute FDR-corrected p-values, by applying a modified procedure for controlling the False Discovery Rate for multi-stage analyses (FDR-MSA)\(^{16}\). We do this by simply applying the `fdr_msa` function.

```r
fdr_p <- fdr_msa(pvals = vim(methyvim_cancer_ate)$pval, total_obs = nrow(methyvim_cancer_ate))
```

Having explored the results of our analysis numerically, we now proceed to use the visualization tools provided with the `methyvim` R package to further enhance our understanding of the results.

Visualization of results While making allowance for users to explore the full set of results produced by the estimation procedure (by way of exposing these directly to the user), the `methyvim` package also provides three (3) visualization utilities that produce plots commonly used in examining the results of differential methylation analyses.

A simple call to `plot` produces side-by-side histograms of the raw p-values computed as part of the estimation process and the corrected p-values obtained from using the FDR-MSA procedure.
```
plot(methyvim_cancer_ate, type = "raw_pvals")
plot(methyvim_cancer_ate, type = "fdr_pvals")
```

Remark: The plots displayed above may also be generated as side-by-side histograms in a single plot object. This is the default for the `plot` method and may easily be invoked by specifying no additional arguments to the `plot` function, unlike in the above.

From the code snippets displayed above, **Figure 1** displays a histogram of raw (or uncorrected) p-values from hypothesis testing of the statistical parameter corresponding to the average treatment effect while **Figure 2** produces a histogram of p-values from the same set of hypothesis tests, correcting for multiple testing using FDR-MSA.

Figure 1. Histogram of raw/unadjusted p-values from `methyvim`.

Figure 2. Histogram of adjusted p-values using FDR-MSA from `methyvim`.

the FDR-MSA method\cite{FDR-MSA}. While histograms of the p-values may be generally useful in inspecting the results of the estimation procedure, a more common plot used in examining the results of differential methylation procedures is the volcano plot, which plots the parameter estimate along the x-axis and $-\log_{10}(p\text{-value})$ along the y-axis. We implement such a plot in the \texttt{methyvolc} function:

\begin{verbatim}
methyvolc(methyvim_cancer_ate)
\end{verbatim}

\textbf{Figure 3} above displays a volcano plot of the raw (or unadjusted) p-values against estimates of the effect of interest (by default, the average treatment effect in \texttt{methyvim}). The purpose of such a plot is to ensure that very low (possibly statistically significant) p-values do not arise from cases of low variance. This appears to be the case in the plot above (notice that most parameter estimates are near zero, even in cases where the raw p-values are quite low).

Yet another popular plot for visualizing effects in such settings is the heatmap, which plots estimates of the raw methylation effects (as measured by the assay) across subjects using a heat gradient. We implement this in the \texttt{methyheat} function:

\begin{verbatim}
methyheat(methyvim_cancer_ate, smooth.heat = TRUE, left.label = "none")
\end{verbatim}

\textbf{Remark:} Figure 4 displays the results of invoking \texttt{methyheat} in this manner produces a plot of the top sites (25, by default) based on the raw p-value, using the raw methylation measures in the plot. This uses the exceptional \texttt{superheat R} package\cite{superheat}, to which we can easily pass additional parameters. In particular, we hide the CpG site labels that would appear by default on the left of the heatmap (by setting \texttt{left.label = "none"}) to emphasize that this is only an example and \textit{not} a scientific discovery.
Summary
Here we introduce the R package methyvim, an implementation of a general algorithm for differential methylation analysis that allows for recent advances in causal inference and machine learning to be leveraged in computational biology settings. The estimation procedure produces straightforward statistical inference and takes great care to ensure computationally efficiency of the technique for obtaining targeted estimates of nonparametric variable importance measures. A detailed account of the statistical procedure, including an overview of targeted minimum loss-based estimation, is made available in Supplementary File 1. The software package includes techniques for pre-screening a set of CpG sites, controlling for the False Discovery Rate as if all sites were tested, and for visualizing the results of the analyses in a variety of ways. The anatomy of the software package is dissected and the design described in detail. The methyvim R package is available via the Bioconductor project.

Software availability
methyvim is available on Bioconductor (stable release): https://bioconductor.org/packages/methyvim

Latest source code (development version): https://github.com/nhejazi/methyvim

Archived source code as at time of publication: https://dx.doi.org/10.5281/zenodo.1401298

Documentation (development version): https://code.nimahejazi.org/methyvim

Software license: The MIT License, copyright Nima S. Hejazi

Grant information
NH was supported in part by the National Library of Medicine of the National Institutes of Health under Award Number T32-LM012417, by P42-ES004705, and by R01-ES021369. RP was supported by P42-ES004705. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the various funding sources and agencies.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Supplementary material
Supplementary File 1: Statistical procedure for identifying differentially methylated positions.
Click here to access the data.

References

Open Peer Review

Current Referee Status: ❌

Version 1

Referee Report 25 September 2018
doi:10.5256/f1000research.17526.r38070

Peter F. Hickey

Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia

This paper presents the methyvim R/Bioconductor package for differential methylation analysis, a common task in the analysis of data from DNA methylation microarrays. The method has 3 main steps:
1. A pre-screen of CpGs to identify putative differentially methylated CpGs.
2. A secondary statistical procedure to obtain "targeted" estimates of nonparametric variable importance measures (corresponding to either the average treatment effect or relative risk) for these filtered CpGs.
3. Adjustment of the results obtained in (2) using a modified Benjamini-Hochberg procedure for multi-stage analysis.

I have 3 major concerns with the paper:
1. The statistical methods are almost certainly unfamiliar to potential users of the software and that the paper does not do enough to explain or justify the use of these procedures.
2. The example dataset is not appropriate, nor is its analysis enlightening, to demonstrate to the interested reader where this method may be useful.
3. The results of the method applied to the example dataset are not compared to existing methods. Furthermore, when graphically compared to a simple analysis, the results obtained by methyvim do not look like convincing differentially methylated CpGs.

The software itself appears to be well written and documented and is available as part of Bioconductor. Its development follows good practices for open-source R packages such as use of unit tests and continuous integration, integration with existing Bioconductor packages, and code available from open-source repository (Bioconductor git server and GitHub). Below, I have also included some minor suggestions with respect to the software.

In light of these 3 major concerns, each discussed further below, I find it very difficult to assess whether methyvim is software I would be interested in using or recommending to someone analysing DNA methylation data. Consequently, I cannot approve this article at this time.

Main Concerns:

Lack of a simple explanation and justification for the statistical procedures

I came to this paper being unfamiliar with a statistical technique central to this paper, namely, 'targeted minimum loss estimators' (TMLE). Unfortunately, after carefully reading the paper several times, it's still
not clear to me the purported benefits and limitations of this method nor its appropriateness and utility for analysing DNA methylation data.

Although there are several references to books and papers that cover the "general framework of targeted minimum loss-based estimation and [detail] accounts of how this approach may be brought to bear in developing answers to complex scientific problems through statistical and causal inference", there is no simple explanation of TMLE for the reader who might care about it solely in the context of the current paper: how it is being used to identify differentially methylated loci and how this differs from existing methods.

Choice of example dataset and analysis

Please use a dataset that is suitable to demonstrate the utility and appropriateness of methyvim. The example dataset comes from the minfiData R/Bioconductor package and contains matched tumour-normal samples from 3 donors (n = 6, mistakenly referred to as n = 10 on p6). The authors admit that this is a small sample size for their method and that this "compromises the quality of inference obtained" by their method. Consequently, it seems unlikely that methyvim is going to produce new insights on this dataset nor will it exemplify the purported utility and appropriateness of the methods implemented in methyvim.

Lack of comparison to existing methods

The results obtained by methyvim need to be compared to those obtained by one of the existing tools (that are claimed to have poor performance for the types of problems methyvim seeks to address). In particular, as a reader, I was looking for the types of differentially methylated sites that this method detects that others might not and vice versa.

To satisfy my curiosity, I applied the very simple minfi::dmpFinder() to the example dataset and took the top-250 CpGs (the same number of CpGs as reported in by the example code in the paper). I then plotted methyvim's and minfi::dmpFinder()'s top-250 CpGs using minfi::plotCpg() to visually assess the quality of the differential methylation analysis. The top-250 CpGs from minfi::dmpFinder() look like real differentially methylated CpGs: large between-condition mean differences and small within-condition variances. In contrast, many of the top CpGs identified by methyvim do not look like real differentially methylated CpGs: small between-condition mean differences and/or large within-condition variances. This is exemplified by the top CpG called by methyvim (cg15703790, P = 6 x 10^-33, adjusted-P = 3 x 10^-27), which is not a called as a differentially methylated CpG by minfi::dmpFinder() (P = 0.11, Q = 0.26) and when plotted does not appear to be a real differentially methylated CpG. The code to run this comparison and the results figures are available in Result 1 (the R file containing code to generate Result 2 and Result 3), Result 2 (the methyvim output from Result 1) and Result 3 (the minfi output from Result 1) (produced using methyvim v1.3.1).

Minor Suggestions:

Some of these suggestions may be difficult to incorporate (even if desirable) while incorporating backwards compatibility.

Design of the methytmle class
The `clusters` slot could perhaps be a metadata column on the `rowRanges` slot, accessible via the `rowData()` getter/setter. That way when the object is subsettted the clusters would automatically get properly subsettted (currently the clusters slot doesn't behave when the object is subset with []).

The `screen_ind` slot could also be a metadata column on the `rowRanges` slot but would need to be a TRUE/FALSE vector (rather than a numeric vector) with the same length as the number of rows of the object.

For both of the above, you could use how spike-in genes are handled in the `SingleCellExperiment` class for inspiration.

- The `var_int` slot seems like it should just be part of the `colData` slot rather than its own slot. Again, this would ensure proper subsetting behaviour when the object is subset with `[]`.
- The `call`, `param` and `vim` slots could perhaps be elements of the `metadata` slot.
- The `vim` slot could be a `DataFrame` rather than a `data.frame`. The main advantage is that then the `show,methytmle-method` wouldn't print out as much output as it currently does (the obvious alternative would be to alter the `show()` method to prevent so much output).

Constructor function

`.methytmle()`: A period at the start of a function name typically indicates that the function is for internal use and not exported; see

https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/Extensions.html

Plots

- The colour scale and legend on the histograms (Figures 1-2) and volcano plots (Figure 3) don't seem to add anything and are a bit distracting. Are they necessary?

Is the rationale for developing the new software tool clearly explained?

No

Is the description of the software tool technically sound?

Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?

Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?

No

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?

No

Competing Interests: No competing interests were disclosed.

Referee Expertise: DNA methylation analysis, statistics, bioinformatics, Bioconductor
I have read this submission. I believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Referee Response 25 Sep 2018

Peter Hickey, Walter and Eliza Hall Institute of Medical Research, Australia

It appears the filenames of the attachments were mangled upon upload.

Result 1: The R file containing code to generate Result 2 and Result 3
Result 2: The methyvim output from Result 1.
Result 3: The minfi output from Result 1.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com