Biomimetic remineralization of acid etched enamel using agarose hydrogel model [version 1; referees: 1 approved]

Sara El Moshy, Marwa M.S. Abbass, Amal M. El-Motayam
Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 11553, Egypt

Abstract

Background: Minimally invasive dentistry aims to prevent progression of caries and treats non-cavitated lesions through non-invasive approaches to preserve the integrity of tooth structure. The aim of this research was to investigate the possible biomimetic effect of agarose hydrogel in remineralizing a human demineralized enamel model.

Methods: Mandibular third molars were distributed into three groups (G1, G2 and G3) according to the follow up time (2, 4 and 6 days respectively). Caries like lesion was prepared by applying 37% phosphoric acid gel for 1 minute and then remineralization was performed through applying agarose hydrogel on the demineralized surfaces. The specimens were placed in phosphate solution at 37˚C for 2, 4 & 6 days. Scanning electron microscope (SEM), surface microhardness (SMH) and surface roughness analysis (SR) were performed to assess the regenerated tissue.

Results: SEM revealed mineral depositions on the demineralized enamel surface that increased in density by time resulting in a relatively smooth surface in G3. SR and SMH analysis revealed significant differences between the remineralized enamel surfaces of different groups (p< 0.00001) with the highest SR in G1 and the highest SMH in G3.

Conclusions: Agarose hydrogel application is a promising approach to treat early carious lesion. Further studies are needed to clarify the stability of agarose hydrogels in clinical application.

Keywords

Remineralization, agarose, enamel, microhardness, surface roughness.

Open Peer Review

Referee Status:

Invited Referees

version 1

1 Raneem Farouk Obeid, Future University in Egypt, Egypt
Radwa ElSharkawy, Future University in Egypt, Egypt

Discuss this article

Comments (0)
Introduction

Biomimetic remineralization is a non-invasive therapeutic approach that has received great attention in the last decades. It aims to restore the dental tissues to its normal biological function and esthetics\(^1\). Although several studies have proposed different methods to remineralize enamel lesions, their clinical applications are limited because they require difficult application conditions\(^2-5\). Agarose is a natural biocompatible polysaccharide that has been proposed as a matrix for crystal formation\(^6-8\). Therefore, the purpose of this study was to investigate the possible biomimetic effect of agarose hydrogel in remineralizing a human demineralized enamel model.

Methods

Specimens preparation

The experiment was done according to the recommendations and approval of the Ethics Committee of the Faculty of Denistry, Cairo University for working on extracted human teeth (Approval no.18766). Mandibular third molars were collected after being surgically extracted due to impaction with patients’ written consents. The roots of 47 tooth were removed using diamond disk (Komet, Rock Hill, USA, K6974) in low speed under water cooling. The crowns were divided mesio-distally and each half was embedded in self-cured acrylic resin (Acrystone Co. Cairo, Egypt, 01CCP50) exposing the uncovered enamel surface. Specimens were examined under stereomicroscope (Leica S8 APO, Leica Microsystems, Switzerland) and specimens with defects (erosions, cracks, visible stains, hypo-calcification) were excluded. Specimens were distributed into three groups (n = 31/ group), according to follow up time (Table 1). Specimens were demineralized using 37% phosphoric acid gel (Super Etch, SDI Limited, Australia, 8100040) for 1 min and rinsed with de-ionized water for 60 seconds.

Remineralization

Agarose (Vivantis, USA, PC0701) hydrogel and phosphate solution were prepared as previously mentioned by Cao et al.\(^1\). Agarose hydrogel was applied on the specimen using acrylic template of 2mm thickness to adjust the thickness of the applied hydrogel. After gelation of the applied hydrogels each specimen was placed into a container filled with 20 mL of phosphate solution and placed in an incubator at 37°C. The crowns were divided mesio-distally and each half was embedded in self-cured acrylic resin (Acrystone Co. Cairo, Egypt, 01CCP50) exposing the uncovered enamel surface. Specimens were examined under stereomicroscope (Leica S8 APO, Leica Microsystems, Switzerland) and specimens with defects (erosions, cracks, visible stains, hypo-calcification) were excluded. Specimens were distributed into three groups (n = 31/ group), according to follow up time (Table 1). Specimens were demineralized using 37% phosphoric acid gel (Super Etch, SDI Limited, Australia, 8100040) for 1 min and rinsed with de-ionized water for 60 seconds.

Statistical analysis

The mean SMH values and the mean SR values were statistically analyzed. One-way ANOVA followed by Tukey’s post hoc test were performed to compare remineralizing potential at different time intervals (2, 4, 6 days). Furthermore, the same tests were used to compare enamel surfaces within the same group. The significant level was set at 0.05. Statistical analysis was performed with SPSS 18.0 for Windows (Statistical Package for Scientific Studies, SPSS, Inc., Chicago, IL, USA).

Results

SEM examination

Sound enamel has a smooth surface with some pits and scratches (Figure 1A, Figure 2A & Figure 3A). After acid etching different etching patterns were seen, most commonly type I and type II with scattered areas of type III (Figure 1B, Figure 2B & Figure 3B). After remineralization, G1 revealed partial occlusion of some rod cores with clearly thickened interprismatic substance (Figure 1C) while in G2 prismatic enamel

<table>
<thead>
<tr>
<th>Group</th>
<th>Demineralization</th>
<th>Remineralization</th>
<th>Time of application</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (n = 31)</td>
<td>37% phosphoric acid gel for 1 min.</td>
<td>Agarose hydrogel 2mm thickness</td>
<td>48 hours</td>
<td>2 days</td>
</tr>
<tr>
<td>G2 (n = 31)</td>
<td></td>
<td></td>
<td>96 hours, hydrogel changed every 48 hours.</td>
<td>4 days</td>
</tr>
<tr>
<td>G3 (n = 31)</td>
<td></td>
<td></td>
<td>144 hours, hydrogel changed every 48 hours.</td>
<td>6 days</td>
</tr>
</tbody>
</table>

G1 (2 days), G2 (4 days), G3 (6 days).

Figure 1A, Figure 2A & Figure 3A.
configurations became hidden by mineral depositions (Figure 2C). G3 revealed a relatively smooth surface with less clearly seen rod ends. Some rods’ peripheries showed complete remineralization while others were still empty (Figure 3C).

SMH analysis
The mean SMH values of enamel at different intervals (2, 4, 6 days) are presented in Table 2. In G1, significant differences were revealed between baseline, demineralized and remineralized
enamel (p<0.05) with the highest SMH at baseline. While in G2 and G3, there was a significant difference between the baseline and the demineralized enamel (p<0.05), however there wasn’t a significant difference between baseline and remineralized enamel. Furthermore, there were significant differences among the remineralized enamel surfaces of different groups (p<0.05) with the highest SMH at G3.

SR analysis
The mean SR values of enamel at different intervals (2, 4, 6 days) are presented in Table 3. In G1, there were significant differences between baseline, demineralized and remineralized enamel (p<0.05) with the highest SR at the demineralized enamel. While in G2 and G3, there was a significant difference between the baseline and the demineralized enamel (p<0.05), however there wasn’t a significant difference between baseline and the remineralized enamel. Furthermore, there were significant differences among the remineralized enamel surfaces of different groups (p<0.05) with the highest SR in G1. The differences in SR at baseline, demineralized enamel and after remineralization in different groups were obvious when inspecting the 3D images in Figure 4.

Discussion
Biomimetic synthesis of enamel like apatite structures under a physiological condition is an alternative restorative pathway. Acid etching technique was used to mimic early enamel lesions because of the simplicity and reproducibility of this technique. SEM results of the present study are in agreement with previous studies. Agarose hydrogel acted as enamel organic matrix to control the size and form of the formed hydroxyapatite crystals through the interaction between hydroxyl group of agarose and calcium. In addition, it acts as a mineral reservoir for continuing remineralization. The SR analysis results confirmed the SEM results, as the SR values were gradually decreased between different groups which revealed a smoother enamel surface. SMH results are in accordance with previous studies.

Conclusions
Agarose hydrogel model have a remineralizing potential to treat early carious lesion. Further studies are required to clarify the stability of agarose hydrogels in clinical application.

Table 2. Analysis of Surface microhardness (SMH) (Kgf/mm²).

<table>
<thead>
<tr>
<th></th>
<th>SMH-B</th>
<th>SMH-D</th>
<th>SMH-R</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (2D)</td>
<td>254.377±24.73</td>
<td>171.138±15.23</td>
<td>196.864±9.74</td>
<td>< 0.00001*</td>
</tr>
<tr>
<td>G2 (4D)</td>
<td>251±35.88</td>
<td>171.84±32.42</td>
<td>218.485±14.76</td>
<td>0.000028*</td>
</tr>
<tr>
<td>G3 (6D)</td>
<td>256.842±24</td>
<td>175±8.98</td>
<td>242.433±14.36</td>
<td>< 0.00001*</td>
</tr>
<tr>
<td>P-value</td>
<td>0.911069</td>
<td>0.918935</td>
<td>< 0.00001</td>
<td></td>
</tr>
</tbody>
</table>

Baseline (B), after demineralization (D), after remineralization (R). Different upper and lower-case superscript letters indicate significant difference between tested groups at P<0.05. Lower case superscript letters are used for comparison within the same row and upper case letters are used for comparison within each column.

Table 3. Analysis of Surface roughness (SR) (µm).

<table>
<thead>
<tr>
<th></th>
<th>SR-B</th>
<th>SR-D</th>
<th>SR-R</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (2D)</td>
<td>0.253±0.0009</td>
<td>0.274±0.0025</td>
<td>0.2663±0.002</td>
<td>< 0.00001*</td>
</tr>
<tr>
<td>G2 (4D)</td>
<td>0.256±0.0096</td>
<td>0.275±0.0026</td>
<td>0.258±0.003</td>
<td>< 0.00001*</td>
</tr>
<tr>
<td>G3 (6D)</td>
<td>0.254±0.00027</td>
<td>0.275±0.003</td>
<td>0.255±0.003</td>
<td>< 0.00001*</td>
</tr>
<tr>
<td>P-value</td>
<td>0.376997</td>
<td>0.508623</td>
<td>< 0.00001</td>
<td></td>
</tr>
</tbody>
</table>

Baseline (B), after demineralization (D), after remineralization (R). Different upper and lower-case superscript letters indicate significant difference between tested groups at P<0.05. Lower case superscript letters are used for comparison within the same row and upper case letters are used for comparison within each column.
Data availability

Dataset 1: Raw surface microhardness (SMH) and surface roughness (SR) 10.5256/f1000research.16050.d21739

Dataset 2: Raw scanning electron microscope (SEM) images 10.5256/f1000research.16050.d21739

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

Open Peer Review

Current Referee Status:

Referee Report 20 September 2018

doi:10.5256/f1000research.17529.r38418

Raneem Farouk Obeid 1, Radwa ElSharkawy 2
1 Department of Oral Biology, Future University in Egypt, New Cairo, Egypt
2 Faculty of Dentistry, Future University in Egypt, New Cairo, Egypt

Good work, but I have some comments to clarify my confusion:
1. In the Methodology: the acrylic template - why and how to use? And do you standardize the 2mm in this template?

2. In the Results:
 - In Figure 2 you mention acid etch type? Where is the reference of this classification and arrows to show the different type?
 - Picture C is hazy, please change it.
 - Figure 3: please put arrows to show us rod complete and empty one in Picture C.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
We have read this submission. We believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com