Ultrasound imaging aids the learning of the landmark technique for lumbar puncture in novice learners in a secure training environment [version 1; referees: 1 approved with reservations]

Rune Sarauw Lundsgaard
Department of Anaesthesiology, Nykøbing Falster Hospital, Nykøbing Falster, Denmark

Abstract

Background: Performing a lumbar puncture (LP) is a key skill to master for doctors in the emergency department (ED), but the level of success and rate of complications still differs considerably. Studies have shown that LP is attempted at a different level than intended in 30% of cases when the classical landmark technique is used. Ultrasound-assisted LP can reduce the risk of failed LP, possible by its ability to visualize the relevant anatomy of the spine, but only a few studies have considered its potential in learning environments with novice learners.

Methods: Medical students and first-year trainee doctors who had never performed a LP in a clinical setting were asked to locate and mark the exact location of where to insert the needle when performing a LP by first using the classical landmark technique secondly by use of ultrasound. Corrections of the marked locations were registered for each attempt. Each participant marked three different healthy volunteers in both sitting and laying positions.

Results: The accuracy in LP by landmarking as a total of correct markings (“unchanged”) vs. a total of incorrect markings (“changed”) improved significantly in both the sitting (p = 0.028) and lying positions (p=0.002). All participants were positive about the use of ultrasound when learning how to identify the correct LP marking, mostly because of improved understanding of the anatomical structures and improved confidence in the succeeding attempts.

Conclusion: Ultrasound can assist and potentially increase the learning of landmark techniques in novice learners in a secure training environment. Visualizing the underlying anatomical structures of the landmark technique in this way can add a second level of security for the learner for the future practice of LP.

Keywords
lumbar puncture, ultrasound guidance, novice learners
Introduction
Performing a lumbar puncture (LP) is a key skill to master for medical doctors in the emergency department (ED) for diagnosing severe conditions such as life-threatening meningitis or subarachnoid hemorrhage (Evans et al., 2018; Stewart et al., 2014). The standard procedure, using anatomical landmarks to identify the correct intervertebral level, has not changed since it was developed in 1891 (Doherty & Forbes, 2014). However, even though LP is a core skill, the level of success and rate of complications still differs considerably between doctors (Evans et al., 2018), and studies have shown that LP is attempted at a different level than intended in 30% of attempts when the classical landmark technique is used (Duniec et al., 2013; Evans et al., 2018).

Newer techniques to improve accuracy and rate of success when performing LP have been developed but have not yet become a new standard of care (Evans et al., 2018; Peterson et al., 2014; Stewart et al., 2014). Ultrasound-assisted LP can reduce the risk of failed LP in some cases, suggesting the ability to visualize the relevant anatomy of the spine may contribute to its success (Shaikh et al., 2013).

Consequently, interest has been growing in the use of ultrasound in LP, but its cost-effectiveness has been questioned, especially due to increasing time to perform the procedure and the need for dedicated training in the ultrasound equipment (Duniec et al., 2013; Peterson et al., 2014; Pisupati et al., n.d.; Shaikh et al., 2013).

Contrastingly, to the growing the increased attention mentioned above, only a few studies have explored the effect of using LP when teaching LP to medical students and novice medical doctors (Grau et al., 2003). Even though ultrasound has demonstrated the potential to improve learning curves in more experienced doctors performing spinal procedures (Grau et al., 2003), so far only the classic landmarks technique is taught at Danish medical schools.

This study aims to explore how the untrained use of ultrasound affects the ability of inexperienced LP performers to identify the intended intervertebral level in LP procedure using the classical landmark technique. The study focuses on novice doctors and medical students with no prior experience or training in using ultrasound.

Methods
Subjects
Medical students and first-year trainee doctors who had never performed a LP in a clinical setting were recruited by direct contact of R.S.L. in the ED of a Nykøbing Falster Hospital, a rural hospital in Eastern Denmark. Each participant performed three non-invasive sessions (drawing with a surgical pen) on three different healthy volunteers (medical professionals and students at the site). The volunteers were also recruited by direct contact of R.S.L. in the ED.

A total of six medical students and six first-year training doctors were included in the study. Each participant (learner) marked locations for LP by landmark and ultrasound on three different volunteers sitting and laying down. As the result of each marking was registered as changed or unchanged location (by ultrasound) this generated a total of 72 datasets, six for each participant (learner).

Subject direction
No specific instruction about LP procedure was given before enrolling, but participants were asked to go through to the hospital’s procedural guidelines about LP and study the relevant anatomy if needed. None of the participants had any experience in using ultrasound. The research was exempted from ethical approval by the Regional Ethics Committee, Zealand, Denmark. Participants and volunteers were verbally instructed and written informed consent was obtained on-site. Data were anonymized.

Location
Sessions were performed in an available patient room in the ED using a regular hospital bed.

Before the procedure, each participant was briefly interviewed on how to perform LP, to make sure their theoretical knowledge was solid. All participants were rated as having equivalent knowledge, and all participants expressed the intervertebral space of L3-L4 as their aim when performing the LP by landmark technique.

Landmark technique
Each participant was asked to locate and mark the exact location of where to insert the needle when performing a LP. The location was marked using a surgical marker. Each participant marked the volunteer as the volunteer was first sitting down and then lying down. Each mark was given a number and was visible during the entire session. The marks were afterward removed with 85% ethanol skin disinfectant. Each participant marked three volunteers, (e.g. A, B and C) consecutively. Volunteers were used for more than one, but not all participants due to feasibility of the study. A total of 15 volunteers were included.

Ultrasound-assisted marking
After locating the intended intervertebral level of the LP in both sitting and lying position, the participant was handed the linear probe of the Philips Sparq Ultrasound System with “Simplicity Mode” enabled. Only the linear probe (Philips L12-3) was mounted to the ultrasound workstation. On the Philips Sparq, “Simplicity Mode” was enabled as standard and only the depth setting was adjusted during the session. Adjustment of the depth setting was done by the investigator when asked for. The ultrasound workstation was placed on the opposite side of the bed then the participant and the screen was adjusted to either the left or right side of the volunteer depending on participant preference. The participant was now asked to locate the intra-vertebral space of L3-L4 using the ultrasound workstation and linear probe as a guide. An ultrasonic gel was applied to the probe before handing it to the participant. No additional instruction on reading the ultrasonic image was given (Speer et al., 2013).

The location found using ultrasound was rated as being “correct” and secondly controlled by the investigator R.S.L. R.S.L. is
an experienced clinician with more than 5 years of practice in LP. It was recorded whether the participant chose a different location for spinal access when using ultrasound ("changed") or was satisfied with the area already marked ("unchanged").

Qualitative assessment
Qualitative data in the form of spontaneous comments about the learning experience was gathered in the form of informal conversation during the sessions. Qualitative data were written down as keywords in Danish by the R.S.L. and transcribed afterward.

Statistical analysis
The sample size was calculated using ClinCal online software. Power was set to 85% and alpha 0.05; population was 70% and study group 30%. P values were calculated using Student’s t-test with Microsoft Excel (2016) software (Barath & Rosner, 1992).

Results
Success rate of identifying correct LP location
All ultrasound markings were found (by investigators control) to be at the intended intervertebral level (L3/L4).

Success rate by participants of LP markings is shown in Table 1 (sitting: S1, S2, S3 and lying down L1, L2, L3). The mean success rate of LP by landmarks only was 21%. The first attempt (S1) had a success rate of 0%.

The improvement of accuracy in LP marking is shown in Table 2 as a total of correct markings ("unchanged") vs. a total of incorrect markings ("changed") for each attempt (S1, S2, S3).

Table 1. Participants’ correction of LP markings due to use of ultrasound.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Sitting 1</th>
<th>Laying 1</th>
<th>Sitting 2</th>
<th>Laying 2</th>
<th>Sitting 3</th>
<th>Laying 3</th>
<th>Success rate using landmark only (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>17</td>
</tr>
<tr>
<td>Participant 2</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>Changed</td>
<td>17</td>
</tr>
<tr>
<td>Participant 3</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>0</td>
</tr>
<tr>
<td>Participant 4</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>17</td>
</tr>
<tr>
<td>Participant 5</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>50</td>
</tr>
<tr>
<td>Participant 6</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>0</td>
</tr>
<tr>
<td>Participant 7</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>50</td>
</tr>
<tr>
<td>Participant 8</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>17</td>
</tr>
<tr>
<td>Participant 9</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>Changed</td>
<td>17</td>
</tr>
<tr>
<td>Participant 10</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>0</td>
</tr>
<tr>
<td>Participant 11</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Changed</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>67</td>
</tr>
<tr>
<td>Participant 12</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Changed</td>
<td>Unchanged</td>
<td>0</td>
</tr>
<tr>
<td>Unchanged (n)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Changed (n)</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Unchanged (%)</td>
<td>0</td>
<td>8</td>
<td>17</td>
<td>17</td>
<td>50</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Accuracy in lumbar puncture marking.

<table>
<thead>
<tr>
<th>Volunteer</th>
<th>N</th>
<th>Unchanged</th>
<th>Changed</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting 1</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0.028</td>
</tr>
<tr>
<td>Sitting 2</td>
<td>12</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sitting 3</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Laying 1</td>
<td>12</td>
<td>1</td>
<td>11</td>
<td>0.002</td>
</tr>
<tr>
<td>Laying 2</td>
<td>12</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Laying 3</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
and L1, L2, L3). Markings of LP by landmark improved significantly in both sitting (p = 0.028) and lying positions (p<0.002).

All participants chose to change at least one of three marks when using ultrasound. Especially the marks in the first session (S1 + L1) was altered by most participants.

Participant perception

All participants expressed positivity on the use of ultrasound when learning how to identify the correct LP marking. Half of the participants would consider using ultrasound in the same manner when teaching procedures to colleagues and students in the future. The main reasons for this were: improved understanding of the anatomical structures and improved confidence in the succeeding attempts. Keywords can be found in Dataset 1 (Lundsgaard, 2018).

Discussion

The precision on marking the correct location for LP using the landmark technique only increased markedly in the novice learners between sessions. This finding complies with the finding of Grau et al. (2003), who found that ultrasound significantly improved the learning curves in spinal procedures. This study did not specifically seek to explore the possible reasons for the improved learning. However, the participants verbally expressed that the ultrasound aided their understanding of the anatomical structures and served as a “quality check” when learning the procedure. These findings are in line with previous work suggesting that one of the strengths in using ultrasound for LP is the visualization of anatomy, e.g., in complex patients, such as the elderly or patients with high BMI (Ansari et al., 2014; Peterson et al., 2014; Pisupati et al., n.d.; Shaikh et al., 2013).

The success rate of correct location by landmark technique only in our participants was lower (21%) than in studies of more experienced doctors (Duniec et al., 2013), corresponding to the low level of our participants’ clinical experience. As the participants were novices with an initial success rate of 0%, the ultrasound aided their learning from the beginning, potentially reducing the risk of forwarding failure and the need for unlearning inexpedient techniques, which is both stressful and challenging to the learner (Heydari et al., 2017; Rushmer & Davies, 2004). Using ultrasound clinically on a regular basis might be out of scope for most novice doctors, but as a simple training aid, it opens new opportunities.

This study concludes that putting an ultrasonic probe in the hand of novice learners in a secure training environment may be highly beneficial, and could add a second level of security for the learner for the future practice of the landmark LP technique.

Data availability

Dataset 1. Raw data LP markings and keywords identified during discussions surrounding use of ultrasound in lumbar puncture. Please note that keywords are in Danish. https://doi.org/10.5256/f1000research.16133.d216926 (Lundsgaard, 2018).

Grant information

The author declare that no grants were involved in supporting this work.

References

Open Peer Review

Current Referee Status: ?

Version 1

Referee Report 08 October 2018

doi:10.5256/f1000research.17618.r38407

Asoka Weerasinghe ¹, Anu Sharma ²
¹ Emergency Department, Mid Yorkshire Hospitals NHS Trust, Wakefield, UK
² Mid Yorkshire Hospitals NHS Trust, West Yorkshire, UK

Firstly I must say this is an interesting article on an emerging subject.

In respect of current literature review I think the author has included the relevant evidence.

However there are few descriptions missing in the methodology

1) It is stated that RSL recruited the participants by direct contact. Then the question is what the selection criteria was used?

2) Similarly how was the volunteers selected?

3) Although it is stated that no prior knowledge was tested, it is mentioned under 'location" that their theoretical knowledge was tested to be solid which contradicts with the previous statement. I think we need to know how was the knowledge was tested eg / questionnaire is so need a publish the same

4) The article says that the participants did not have any US exposure but managed to identify the sonoanatomy which I find quite difficult to believe. As a clinician who teachers this for different levels of clinicians, they need to be taught how to identify the sonoanatomy especially the reference point (saccrum as the flat surface on the image and the LS view should me paramedian etc) when marking the spinal levels. So I think we need more information on the same.

5) Usually these scans are done using the curvilinear probe due to depth requirement but it is stated that they used liner probe, hence again the question of the selection criteria of volunteers need to explained

6) It is stated that total of 15 volunteers used. so what the provision made to account for the difference between the volunteers scanned in the analysis ?

7) It states that RSL decided the marking as correct or not, again the reader need to have a more description re what is meant by correct position how was it determined ?
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com