RESEARCH NOTE

Investigating the dynamics of *Leishmania* antigen in the urine of patients with visceral leishmaniasis: a pilot study [version 1; referees: awaiting peer review]

Prakash Ghosh1,2, Israel Cruz3, Albert Picado3, Thomas Edwards4, Md. Anik Ashfaq Khan2, Faria Hossain2, Rajashree Chowdhury1, Emily R. Adams4, Rupen Nath2, Joseph M. Ndung'u3, Dinesh Mondal2

1Department of Formulations, Infectious Disease Research Institute, Seattle, WA, 98102, USA
2Nutrition and Clinical Services Division, International Center for Diarrhoeal Diseases Research, Dhaka, 1212, Bangladesh
3Foundation for Innovative New Diagnostics, Geneva, 1202, Swaziland
4Research Centre of Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK

Abstract

Background: Detection of *Leishmania* antigens in the urine provides a non-invasive means of diagnosis and treatment monitoring of cases of visceral leishmaniasis (VL). *Leishmania* antigen load in the urine may vary between different time-points within a day, thus influencing the performance of antigen-detection tests.

Methods: We investigated the dynamics of *Leishmania* antigen in urine collected at three different time points (08:00, 12:00 and 16:00 hours). All urine samples collected were tested with the *Leishmania* Antigen ELISA (VL ELISA) kit, produced by Kalon Biological Ltd., UK.

Results: The median concentration of *Leishmania* antigen in urine collected at 08:00 (2.7 UAU-urinary antigen units/ml) was higher than at 12:00 (1.7 UAU/ml) and at 16:00 (1.9 UAU/ml). These differences were found to be statistically significant (08:00 vs. 12:00, p=0.011; 08:00 vs. 16:00, p=0.041).

Conclusion: This pilot study indicates that the *Leishmania* antigen concentration is higher in urine samples collected in the morning, which has important implications when the VL ELISA kit or other tests to detect *Leishmania* antigen in urine are used for diagnosis of VL and treatment monitoring.

Keywords

Visceral Leishmaniasis; Leishmania Antigen; ELISA; Urine; Diagnosis; Treatment monitoring
Corresponding authors: Joseph M. Ndung’u (Joseph.Ndungu@finddx.org), Dinesh Mondal (din63d@icddrb.org)

Author roles: Ghosh P: Conceptualization, Data Curation, Formal Analysis, Investigation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Cruz I: Conceptualization, Methodology, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Picado A: Conceptualization, Methodology, Project Administration, Resources, Writing – Original Draft Preparation, Writing – Review & Editing; Edwards T: Investigation, Methodology, Resources, Writing – Review & Editing; Khan MAA: Data Curation, Investigation, Methodology, Visualization; Hossain F: Data Curation, Investigation, Methodology, Visualization; Chowdhury R: Investigation, Methodology, Visualization, Writing – Original Draft Preparation; Adams ER: Conceptualization, Funding Acquisition, Methodology, Project Administration, Resources, Writing – Review & Editing; Nath R: Investigation, Methodology, Visualization, Writing – Original Draft Preparation; Ndung’u JM: Funding Acquisition, Project Administration, Resources, Writing – Review & Editing; Mondal D: Conceptualization, Methodology, Project Administration, Resources, Supervision, Validation, Visualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by funds from the Ministry of Foreign Affairs, Government of the Netherlands (Activity Ref. Nr. 22211, Developing Innovative Diagnostics to Address Poverty-related Diseases; www.minbuza.nl). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Ghosh P et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Introduction

Visceral Leishmaniasis (VL), also known as kala-azar, is a potentially fatal vector-borne disease that, in the Indian subcontinent, is caused by *Leishmania donovani* protozoa, which are transmitted by female Phlebotomus argentipes sand flies. The number of cases of VL per year worldwide is estimated to be 0.2–0.4 million, with 20,000 to 40,000 associated deaths. Just six countries, in which the disease is transmitted as part of an anthropo- or zoono-toxonotic cycle (Ethiopia, South Sudan, Sudan), account for 90% of VL cases worldwide.

In patients presenting with VL-compatible signs, namely fever for more than two weeks plus splenomegaly and/or weight loss, VL is usually diagnosed by serology, either with a direct agglutination test or rK39 antigen-based rapid diagnostic tests. When parasite confirmation is required, the main approach is tissue aspirate microscopy (from spleen, bone marrow and to a lesser extent lymph node), which has a variable sensitivity and, because of the invasiveness of the procedure (especially spleen aspiration), requires experienced personnel and should be performed in hospitals where blood transfusion and surgical facilities are available. Besides, the accuracy of microscopic examination is influenced by the ability of the laboratory technician and the quality of the reagents and equipment used.

Parasite confirmation by tissue aspirate microscopy is also used for treatment monitoring, test-of-cure (TOC) and diagnosis of relapses, since serology is useless for this purpose, as anti-*Leishmania* antibodies may remain detectable up to several years after cure. Initial cure rates vary between 49% and 94%. Therefore, alternative, less invasive options to invasive tissue aspiration and microscopy are needed to monitor treatment responsiveness, diagnose relapses and assess cure. Although molecular methods, such as PCR, have shown to be effective in VL diagnosis and treatment monitoring using less invasive samples; unfortunately, these require sophisticated laboratory and trained personnel, and there are no standardized protocols that can be used across endemic settings, which hinders their application.

Antigen detection tests, ideally in less invasive samples such as blood, serum/plasma or urine, are an interesting option, as antigen levels should reflect the parasite load in the patient. These tests also present an advantage over antibody detection in immunocompromised patients with low antibody response, as in Leishmania/HIV coinfection.

In chronic infections, such as VL, the detection of antigens of the pathogen in blood or serum/plasma can be complicated by the presence of high levels of antibodies, circulating immune complex, serum amyloid, rheumatoid factors, and autoantibodies, all of which may mask immunologically important antigenic determinants or competitively inhibit the binding of antibodies to free antigens. Nevertheless, Gao et al. proved that it was possible to detect *Leishmania* antigen in the sera of VL patients from China with high sensitivity and specificity. However, many of the problems described above may be avoided by searching for antigens in urine. Several studies have demonstrated *Leishmania* antigens in the urine of VL patients using different approaches, such as counter-current immunoelectrophoresis, Western blot, latex agglutination test and ELISA.

Fluctuations in the quantity of *Leishmania* antigens excreted through urine might influence the sensitivity of these assays. According to the Clinical and Laboratory Standards Institute guidelines, and confirmed by other authors, urine collected in the early morning contains urinary components at the highest concentration and is more reliable for quantification of urine markers. However, there is no evidence concerning the persistence and levels of *Leishmania* antigen in urine collected in the early morning versus other time points. Therefore, given the utility of antigen detection tests in VL diagnosis and treatment monitoring, we set out to study the dynamics of *Leishmania* antigens in urine in order to determine which time point is the most appropriate to detect *Leishmania* antigens in VL patients using the *Leishmania* Antigen ELISA (VL ELISA) kit (Kalon Biological, Ltd., UK). Further, in a recent study we showed that the parasite load in relapse VL is higher than the primary VL cases. Therefore, we hypothesized that the level of *Leishmania* antigens in urine might differ in different states of VL. In our current study we compared the *Leishmania* antigens level in patients with primary VL and relapse VL.

Methods

Study sites and subjects

This study was conducted at the Emerging Infections and Parasitology Laboratory, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), between 15 March and 30 April 2016. The study population was a convenience sample of 16 patients with VL (seven primary VL, seven relapse VL and two with treatment failure) who were invited to participate in the study while hospitalized at Surya Kanta Kala-azar Research Centre (SKKRC), the only specialized hospital for VL treatment in Bangladesh. Patients were eligible if they had VL. Patients in the study were grouped as type-1 (primary VL) or type-2 (patients presenting with either relapsed disease or treatment failure). The patients were diagnosed according to the national guidelines for VL management in Bangladesh: a patient from a VL-endemic area presenting with fever for more than 2 weeks, splenomegaly and positive by rK39 rapid diagnostic test (here, Kalazar Detect™, InBios Intl., USA was used). Information on clinical and demographic characteristics of the patients is provided in Table 1.

Specimen collection

Urine samples were collected at 4-hour intervals compatible with routine activities at SKKRC from each of the 16 enrolled patients before initiation of treatment. A total of 50 ml mid-stream urine was collected in a tube containing 0.1% NaN₃ at 8:00, 12:00 and 16:00 hours. Immediately after collection, all samples were stored at -20°C in SKKRC facilities and then transported to icddr,b, maintaining the cold chain. A 2-ml aliquot of urine from each of the subjects and time points was used for this study.

Leishmania antigen ELISA

The *Leishmania* Antigen ELISA (VL ELISA) (Kalon Biological Ltd., UK) uses a set of polyclonal antibodies against non-proteic *Leishmania* antigens. As the antigens detected in urine with this kit remain largely uncharacterized, the unit Urinary Antigen Unit (UAU) is used to express the amount of *Leishmania* antigens detected. ELISA was performed
according to the manufacturer’s instructions, described elsewhere16. Briefly, samples were diluted using the assay diluent provided with the kit and a 1:20 dilution was used to determine the antigen concentration. A total of 100 µl diluted urine were tested in triplicate together with duplicates of the antigen calibrators included in the kit using 96-well ELISA plates. After incubation at room temperature optical density (OD) was read at 450 and 620 nm (Biotek, microplate reader). OD at 620 nm was subtracted from OD at 450 nm for further calculations of UAU. A four-parameter logistic standard curve was constructed for each plate using the calibrator provided with the kit. Then Leishmania antigen level in each sample was estimated from the standard curve.

Statistical analysis

The difference between antigen concentrations at three different time points of all urine samples was investigated. Based on the distribution of data, a non-parametric test (Wilcoxon matched-pairs signed Rank test) was performed to determine significant differences between medians. To find out any correlation between the antigen concentrations at different time points with participants’ age, Spearman’s test was performed. Mann-Whitney U-test was performed to investigate the difference in the antigen concentrations at different time points within sex and the difference between type-1 and type-2 patients. Statistical analyses were performed using the GraphPad Prism software version 7.03 and SPSS version 20.0.

Ethics approval and consent to participate

This study was approved by the icddr,b Ethical Review Committee, research protocol number PR-14093. Informed written consent was collected from each participant, or the legal guardian in the case of children.

Results

The median concentration of Leishmania antigens was 2.7 UAU/ml, 1.7 UAU/ml and 1.9 UAU/ml in urine samples collected at 08:00, 12:00 and 16:00, respectively (Figure 1). Most of the study subjects (9/16, 56.3%) showed highest urinary Leishmania antigen concentration at 08:00 (Table 2). The five patients presenting the highest antigen concentration at other time points had either identical or similar levels at 08:00. Only two patients (ID, 7 and 16) showed a marked decrease in antigen concentration at 08:00 compared to the 16:00. The median concentration of Leishmania antigens in urine collected at 08:00 was significantly higher than the median concentration of Leishmania antigen in urine collected at 12:00 (p=0.011) and at 16:00 (p=0.041) (Figure 1). However, we did not find significant differences in the Leishmania antigen levels between urine samples collected at 12:00 and 16:00 (p=0.820). Further, the investigation did not find any correlation between the antigen concentrations at different time points with participants’ age and sex (Table 3). In addition, the concentration of antigen in urine of primary VL cases did not differ with the antigen concentration in patients with VL relapse or treatment failure (Table 3).

Discussion

One of the antigen detection tests most widely used in VL diagnosis is the KAtex latex agglutination test (Kalon Biological, Ltd., UK). Although the first studies showed very promising results, further evaluations proved that this test returns variable sensitivity (36–100%) and specificity (64–99\%)20, which has limited its wide use for both diagnosis and treatment.
Table 2. Description of participants and antigen concentrations at different time points. Bold figures indicate highest daily concentration.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Patient VL type</th>
<th>Time of antigen concentration assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>08:00, UAU/ml</td>
</tr>
<tr>
<td>1</td>
<td>Relapse</td>
<td>0.757</td>
</tr>
<tr>
<td>2</td>
<td>Primary</td>
<td>1.016</td>
</tr>
<tr>
<td>3</td>
<td>Relapse</td>
<td>12.587</td>
</tr>
<tr>
<td>4</td>
<td>Treatment failure</td>
<td>3.103</td>
</tr>
<tr>
<td>5</td>
<td>Primary</td>
<td>6.415</td>
</tr>
<tr>
<td>6</td>
<td>Relapse</td>
<td>1.31</td>
</tr>
<tr>
<td>7</td>
<td>Primary</td>
<td>0.484</td>
</tr>
<tr>
<td>8</td>
<td>Treatment failure</td>
<td>37.292</td>
</tr>
<tr>
<td>9</td>
<td>Primary</td>
<td>28.784</td>
</tr>
<tr>
<td>10</td>
<td>Primary</td>
<td>2.383</td>
</tr>
<tr>
<td>11</td>
<td>Primary</td>
<td>6.161</td>
</tr>
<tr>
<td>12</td>
<td>Primary</td>
<td>1.915</td>
</tr>
<tr>
<td>13</td>
<td>Relapse</td>
<td>52.269</td>
</tr>
<tr>
<td>14</td>
<td>Relapse</td>
<td>4.940</td>
</tr>
<tr>
<td>15</td>
<td>Relapse</td>
<td>0.678</td>
</tr>
<tr>
<td>16</td>
<td>Primary</td>
<td>0.422</td>
</tr>
</tbody>
</table>

Mean [UAUAg] 10.03 4.62 5.60
SD [UAU] 15.05 6.17 12.63
Median [UAU] 2.7 1.7 1.9
IQR 0.8-11.04 0.6-6.8 0.9-3.45

VL, visceral leishmaniasis; UAU, urinary antigen unit.

Table 3. Correlation between participants’ age, sex and disease type with the antigen concentrations in urine collected at three different time points.

<table>
<thead>
<tr>
<th>Time points</th>
<th>Correlation between participant age and Ag concentration, r (P)</th>
<th>Difference in Ag concentration by sex</th>
<th>P value</th>
<th>Difference in Ag concentrations by Patient type</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male median (IQR)</td>
<td></td>
<td>Type 1, median (IQR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female median (IQR)</td>
<td></td>
<td>Type 2, median (IQR)</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td>-0.411 (0.114)</td>
<td>4.04 (1.1-24.73)</td>
<td>0.505</td>
<td>1.92 (0.48-6.2)</td>
<td>0.174</td>
</tr>
<tr>
<td>12:00</td>
<td>-0.441 (0.088)</td>
<td>2.81 (0.60-9.4)</td>
<td>0.721</td>
<td>1.7 (0.48-5.92)</td>
<td>0.408</td>
</tr>
<tr>
<td>16:00</td>
<td>-0.435 (0.092)</td>
<td>1.84 (0.70-6.2)</td>
<td>0.721</td>
<td>1.84 (1.03-3.11)</td>
<td>0.758</td>
</tr>
</tbody>
</table>

Type 1, Primary VL; Type 2, VL relapse or treatment failure.

Given the potential applications of Leishmania antigen detection tests, the interest in developing new approaches has been sustained and recent efforts have resulted in the development of two standardised, user-friendly, quantitative and direct ELISA tests that may prove to be useful for VL diagnosis and treatment monitoring; the Leishmania Antigen Dectect™ ELISA (InBios International Inc., USA) and the Leishmania Antigen ELISA (VL ELISA) (Kalon Biological, Ltd., UK). Moreover, strategies for VL control in the Indian subcontinent (ISC) seems to be working well, currently the main foci to be considered are South America and Eastern Africa, being VL zoonotic in the first and anthropo-zoonotic in the second. Till date, no study has yet been performed to evaluate this test for canine leishmaniasis where it might have the potential to diagnose canine leishmaniasis thereby improving surveillance of reservoirs, proper treatment, monitoring transmission and assessing the
efficacy of control activities in endemic areas including South America and the Mediterranean basin where canine leishmaniasis is an important veterinary issue.

Although these two ELISAs have the potential to be useful for treatment-monitoring in human VL, they also showed that at the same time point, especially at the day of diagnosis, the parasite load can be very different from patient to patient16. This could be due to the fact that patients are not in the same moment of the VL episode when they seek for diagnosis, or because the samples were taken at different times of the day. In this pilot study we have tried to address the second explanation, and have found that the highest level of \textit{Leishmania} antigen in urine is obtained with early-morning urine samples. A recent study explored that urine collected in the early morning improves the sensitivity of urinary lateral flow LAM assay for diagnosis of TB in HIV-infected patients, which is congruent with our study finding16.

The Kala-azar Elimination Programme in the ISC has been conducting diverse activities since 2005, with active case detection being one of the key activities to stop transmission of VL22. However, to eliminate the disease, proper follow-up of treated VL cases and prompt relapse management is no less important, since in the ISC 1–16% of treated VL patients relapse and 10–20% develop post kala-azar dermal leishmaniasis (PKDL)16,23. At present icddr,b, in collaboration with the Liverpool School of Tropical Medicine and the Foundation for Innovative New Diagnostics, is evaluating the efficacy of the \textit{Leishmania} Antigen ELISA (VL ELISA) kit for diagnosis of VL, PKDL and asymptomatic infection in Bangladesh. Thus it is critical to ensure that the urine samples are taken at a time and in conditions that increase the chances of detecting \textit{Leishmania} antigens. In this pilot study we have assessed the dynamics of \textit{Leishmania} antigens in urine from VL patients attending the SKKRC hospital in Bangladesh, and we have found that urine collected at 08:00 contains the highest amount of \textit{Leishmania} antigens. These findings can be used as a guide to ensure the best performance of the \textit{Leishmania} Antigen ELISA (VL ELISA) kit when used either for VL diagnosis or treatment monitoring, as well as for implementation of this method in endemic regions in future where this disease is zoonotic. Furthermore, prospective studies are warranted to explore the efficiency of \textit{Leishmania} Antigen ELISA (VL ELISA) kit as a predictor of VL relapse.

Conclusion

The \textit{Leishmania} antigen load in the urine of VL patients varies at different times during the day, and is highest in the morning. This should be taken into account in order to increase the sensitivity of the \textit{Leishmania} Antigen ELISA (VL ELISA) kit, and to harmonize sample collection time points during treatment follow-up, so the comparison of the measurements taken on different days can be reliably compared.

Data availability

Dataset 1. Details of patient symptoms, demographic information and results of ELISA for \textit{Leishmania} antigens. \textit{Leishmania} antigen load is not found in this Dataset, but can be found in Table 2. https://doi.org/10.5256/f1000research.16181.d21763226.

Grant information

This work was supported by funds from the Ministry of Foreign Affairs, Government of the Netherlands (Activity Ref. Nr. 22211, Developing Innovative Diagnostics to Address Poverty-related Diseases; www.minbuza.nl).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

We are grateful to all the study participants. We are also thankful to icddr,b and its core donors: GOB, UKAID, USAID and SIDA.

References

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com