CASE REPORT

Case Report: Two cases of rare head injuries from Nepal
[version 1; referees: awaiting peer review]

Joe M. Das¹, Apar Pokharel², Rashmi Sapkota¹, Manish Mishra¹, Ashish Babu Aryal¹

¹Department of Neurosurgery, College of Medical Sciences - Teaching Hospital, Bharatpur - 10, Chitwan, 44200, Nepal
²Department of Otorhinolaryngology, College of Medical Sciences - Teaching Hospital, Bharatpur - 10, Chitwan, 44200, Nepal

Abstract

Background: There are a number of ways in which one can sustain a head injury. Even if you are doing simple household activities or going out for a morning walk, you cannot be sure of what type of injury awaits you. The source of injury may be a pressure cooker whistle acting as a projectile or a hailstone falling from the sky. Such injuries are common in Nepal, considering the socio-demographic and geographic conditions. In this article, we present two such very rare cases of head injury.

Case Reports: The first case is a middle-aged woman who sustained an accidental injury to the face associated with fracture of frontal sinus and frontal contusion, following the impact from a high momentum projectile in the form of the pressure regulator of a pressure cooker. She underwent craniotomy and removal of the foreign body. In the second case, an elderly man sustained minor injury to the head following the fall of hail. The abrasions and contusions produced by the hail were managed conservatively. Since he did not have any clinical evidence of head injury, other than multiple abrasions with contusions in the scalp, he did not undergo any imaging studies. He did not have any neurological deficits. The postoperative period was uneventful for the first patient and she was followed up for one month. The second patient was lost to follow-up.

Conclusion: Successful management of two very rare cases of head injuries from Nepal are reported. Proper care and maintenance of the house-hold utensils that are constantly used may protect people from head injuries. Though natural calamities cannot always be avoided, simple measures like using an umbrella while going outdoors may protect individuals from head injuries due to hailstones.

Keywords
Cranioencebral trauma, Craniotomy, Skull base, Frontal sinus, Cerebrospinal fluid, Contusions
Corresponding author: Joe M. Das (drjoemdas@gmail.com)

Author roles: Das JM: Conceptualization, Formal Analysis, Investigation, Methodology, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Pokharel A: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Supervision, Validation, Writing – Review & Editing; Sapkota R: Data Curation, Formal Analysis, Investigation, Resources, Visualization, Writing – Original Draft Preparation; Mishra M: Data Curation, Investigation, Methodology, Project Administration, Validation, Writing – Original Draft Preparation; Babu Aryan A: Data Curation, Investigation, Resources, Supervision, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2018 Das JM et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Das JM, Pokharel A, Sapkota R et al. Case Report: Two cases of rare head injuries from Nepal [version 1; referees: awaiting peer review] F1000Research 2018, 7:1483 (https://doi.org/10.12688/f1000research.16225.1)

Introduction
The pressure cooker (PC) is an essential utensil for cooking in Asian kitchens, especially in Nepal and India, and are mostly handled by women. Accidental injury from such a commonly used utensil can sometimes be grievous. Most of the reports of injuries from PCs concern burns due to sudden opening of the lid and releasing of steam under very high pressure. There is one previous report in which a mandible fracture occurred along with burns and one in which brain damage occurred due to the cooker blast. However, there are only five reports of accidental head injury due to a pressure regulator projectile to date. Ours is the sixth case, and the second producing a craniofacial injury, published in the literature, which describes successful management.

Hail is a variant of weather which can be occasionally harmful as well as dangerous. It is a form of precipitation and consists of balls or irregular lumps of ice known as hailstones. Hailstones are composed mostly of ice and measure 5–50 mm in diameter. Hail is produced by cumulonimbus clouds otherwise known as thunderstorm clouds, which are transparent ice or made up of alternating layers of transparent and translucent ice, at least 1 mm thick. Though hailstones are of small size usually, sometimes they are large enough to kill a person if it falls on the head. A previous newspaper report of a “hailstone massacre”, which occurred centuries ago details this scenario. The second case reported here is a case of mild head injury produced by falling hailstones. Surprisingly, head injury produced by hailstone has never been reported previously in the literature, to the best of our knowledge.

Case 1
A 55-year-old woman, with no known comorbidities, was cooking dal using a pressure cooker at night. The patient doubted why there was no whistling after the expected time, and so tried to gently lift the pressure regulator, which suddenly gave way and was thrust into her face, like a projectile, near the right eye. There was no history of loss of consciousness, nasal bleed or seizures, though she had one episode of vomiting. She was a chronic smoker and occasional drinker of alcohol.

When she reached our emergency room in June 2018, her vital signs were stable. She had a wound of size 4x2 cm in between the right eye and root of nose, which was deep and still had the cooker whistle lodged. There was cerebrospinal fluid (CSF) mixed with blood in the periphery of the wound and there was mechanical ptosis of right eye. The patient was conscious and oriented. Emergency X-ray of skull (Figure 1) and computed tomography (CT) of the head (Figure 2) were done, which showed the foreign body just lateral to the root of nose on the right side with the right lateral wall of the nostril fractured and pushed inside. There was fracture involving the right frontal sinus with pneumocephalus and 1x1 cm sized left frontal contusion (Figure 3).

The patient underwent emergency bifrontal craniotomy. The right frontal sinus fracture with dural tear of size 0.5x1 cm was noted and the foreign body (Figure 4) was retrieved through the fracture from the cranial aspect (Figure 5). The frontal sinus

Figure 1. Plain X-ray of skull, antero-posterior and lateral views showing the radio-opaque foreign body stuck in the anterior cranial fossa floor.

Figure 2. Plain Computed Tomogram of the face and skull (3D reconstruction) showing the foreign body and its relation to the right orbit.

Figure 3. Plain Computed Tomogram of the brain showing the left frontal contusion and metal artefact due to foreign body.
came for follow-up after one month, she was asymptomatic, the
wound had healed fully and there was no CSF leak.

Case 2
An 85-year-old man presented to our neurosurgery out-patient
department in May 2018 with complaint of headache following
falling of hailstones on his head three days previously. He was a
chronic smoker and alcoholic and did not have any comorbidities.
He had no history of previous hospital admissions.

Following the incident, the patient did not lose consciousness,
vomit, or have a seizure. He also did not have any nasal or ear
bleed. On clinical examination, he was neurologically intact and
there was no papilledema on examination of the fundus. The
patient had three healing abrasions with contusions, each the size
of around 1 × 1 cm with local tenderness. Two abrasions were
located in the left frontal region, behind hairline and one in the
right parietal region, behind hairline (Figure 6). There was no
clinical evidence of infection or skull fracture. Radiological
imaging was not warranted and he was managed with 37.5 mg
of tramadol hydrochloride and 325 mg of acetaminophen
twice a day for five days. Though he was instructed to come for
follow-up after one week, he did not turn up.

Discussion
The pressure cooker (PC), invented by the French-born British
physicist Denis Papin in 1679, is a hermetically sealed pot that
produces steam heat to cook food quickly. The PC heats water
to produce very hot steam and as a result, the temperature inside
it will increase to around 130° C, which is much higher than
the maximum heat produced by ordinary cookware. The main
advantage of this much high temperature is that it penetrates food
quickly so that cooking time is reduced without diminishing
vitamin and mineral content\(^1\). The problem faced high altitude
areas, like Nepal, is that boiling happens at low temperature due
to reduced atmospheric pressure. PCs will increase the pressure so
that cooking occurs at the appropriate temperature.

was exteriorized and packed with muscle and bone wax applied
across the defect. Anterior cranial fossa was carpeted with pedi-
cled pericranial flap and the wound was closed after replacing the
bone flap. The wound at the site of foreign body was seen by our
otorhinolaryngologist and was closed in layers. The nasal mucosa
was intact and there was no injury to nasolacrimal duct. The
fractured nasal bone was not disturbed as it could cause stenosis
of the right nostril.

The patient was started on Meropenem 2 g thrice a day, Vanco-
mycin 1 g twice a day and Metronidazole 500 mg thrice a day
as antibiotics, and levetiracetam 500 mg twice a day as anticon-
vulstant, which were continued for one week. The patient’s vision
was fully preserved. The post-operative period was uneventful.
Post-operative CT scan of brain showed resolving frontal contu-
sion and she was discharged on post-operative day 8. When she

Figure 6. Scalp contusions and abrasions in the left frontal
region produced by the impact of falling hailstones.
PCs can maintain high temperature (121°C) and proper pressure (1 kg/cm²) inside for cooking. The pressure is controlled inside by the vent weight (pressure regulator) and its spring action. Sometimes it can get by the vent weight (pressure regulator) and its spring action (1 kg/cm²), PCs can maintain high temperature (121°C) and proper pressure (1 kg/cm²) inside for cooking. The pressure is controlled inside by the vent weight (pressure regulator) and its spring action – excess steam goes out through the vent tube. Sometimes it can get by the vent weight (pressure regulator) and its spring action, which have breached the dura, to prevent inadvertent damage to vital structures. The patient had pneumocephalus with frontal sinus fracture, which was suggestive of a breach in the dura. If the foreign body is directly taken out blindly without exposing it, the patient would have been sacrificed.

The projectile of a pressure regulator will almost always be directed towards the face (especially orbit) and skull. As has been reported previously, it is always safe to perform a craniotomy followed by removal of the foreign body for all foreign bodies, which have breached the dura, to prevent inadvertent damage to vital structures. The patient had pneumocephalus with frontal sinus fracture, which was suggestive of a breach in the dura. If the foreign body is directly taken out blindly without exposing it, the patient would have been sacrificed.

The projectile of a pressure regulator will almost always be directed towards the face (especially orbit) and skull. As has been reported previously, it is always safe to perform a craniotomy followed by removal of the foreign body for all foreign bodies, which have breached the dura, to prevent inadvertent damage to vital structures. The patient had pneumocephalus with frontal sinus fracture, which was suggestive of a breach in the dura. If the foreign body is directly taken out blindly without exposing it, the patient would have been sacrificed.

Table 1. Reports of craniofacial injuries caused by pressure regulator projectile of pressure cookers to date.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Age of patient</th>
<th>Sex</th>
<th>Site of impact</th>
<th>Neurological examination</th>
<th>X-ray/CT finding</th>
<th>Structures involved</th>
<th>Procedure done</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chattopadhyay SS et al. (2010)</td>
<td>32 y</td>
<td>F</td>
<td>Right upper eye lid</td>
<td>Vision – PL GCS-13</td>
<td>Disorganized globe with impacted nozzle</td>
<td>Right globe with autoevisceration of ocular contents</td>
<td>Glass ball ocular implant was placed and scleral laceration repaired</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Gupta OP et al. (2013)</td>
<td>47 y</td>
<td>F</td>
<td>Left forehead and eye</td>
<td>Vision – No PL GCS – 13</td>
<td>Metallic foreign body inside left orbit with basifrontal contusion with pneumocephalus</td>
<td>Left orbital wall, frontal sinus and globe</td>
<td>Evisceration of left eye with removal of foreign body</td>
<td>Developed brain abscess after 1 month, which was evacuated. Final neurological outcome - good</td>
</tr>
<tr>
<td>Dobariya et al. (2014)</td>
<td>29 y</td>
<td>M</td>
<td>Left upper eye lid</td>
<td>Vision – No PL GCS – 14</td>
<td>Intruded whistle in left orbit. No fracture</td>
<td>Left globe with autoevisceration of ocular contents</td>
<td>Scleral laceration repaired</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Atreya et al. (2016)</td>
<td>62 y</td>
<td>F</td>
<td>Right parotid region</td>
<td>Right LMN facial palsy</td>
<td>Rectangular shadow over mandibular region</td>
<td>Subcutaneous tissue and facial nerve</td>
<td>Removal and primary closure</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Singh AK et al. (2016)</td>
<td>26 y</td>
<td>F</td>
<td>Between root of nose and right eye</td>
<td>Vision – No PL GCS – 15</td>
<td>Fracture of medial orbital wall with penetration of the foreign body for 3 centimetres inside the bony orbit</td>
<td>Right globe with autoevisceration and exposed uveal tissue with oedematous upper lid</td>
<td>Evisceration, suturing of sclera and conjunctiva. Skin lacerations left to heal by secondary intention</td>
<td>3 months - referred to ocularist for custom-made ocular prosthesis</td>
</tr>
<tr>
<td>Our case</td>
<td>55 y</td>
<td>F</td>
<td>Between root of nose and right eye ball</td>
<td>Vision – Normal GCS – 15</td>
<td>Foreign body just lateral to the root of nose on the right side with the right lateral wall of nostril fractured and pushed inside. There was fracture involving the right frontal sinus with pneumocephalus and 1×1 cm sized left frontal contusion</td>
<td>Right orbital wall, nasal bone, frontal sinus, frontal lobes</td>
<td>Bifrontal craniotomy and removal of foreign body followed by primary closure</td>
<td>1 month – Neurologically intact</td>
</tr>
</tbody>
</table>

CT – Computed tomogram, y – years, M – Male, F – Female, PL – Perception of light, GCS – Glasgow Coma Scale Score, LMN – Lower motor neuron
through craniotomy, there is a chance that injury can occur to the brain as well as to the bridging vein at anterior skull base, if any. This was the rationale for approaching the foreign body via cranium.

Hail is a form of frozen precipitation (hydrometeor) which originates in a thunderstorm cloud, scientifically known as cumulonimbus (thundercloud), which is composed of water droplets and ice crystals. There are upward forces in such clouds known as updrafts, and they cause raindrops upward into very cold areas of the atmosphere. In such areas, water droplets become super-cooled and freeze when coming into contact with condensation nuclei (small aerosols), thus forming small hailstones. The updraft then dissipates and these hailstones fall down. But these will be brought back into another updraft, and will be lifted up again. A layer of ice will get added to the hailstone and it grows in size with each ascent. Once a hailstone becomes too heavy to be supported by the updraft, it falls down from the cloud. The main factors present in thunderstorms that are favorable to hail formation are strong updrafts, large liquid water contents, large cloud-drop sizes, and great vertical height. Hail usually falls during severe thunderstorms in the warm season, when the temperature on the surface of the earth rises above 20 °C.

Hailstone is an individual unit of hail. By convention, any frozen precipitation having a diameter of 5 mm or more is classified as hailstone, whereas smaller particles of similar origin are known as either ice pellets or snow pellets. In the Cambridge dictionary, hailstone is defined as “a small, hard ball of ice that falls from the sky like rain.” Most of the hail storms are made up of hailstones of different sizes. Usually only the large ones pose serious risk to people caught in the open. According to the Guinness book of world records, the heaviest hailstones ever recorded weighed approximately 1 kilogram and are reported to have killed 92 people in the Gopalganj area of Bangladesh on 14 April 1986. The largest hailstone recently recovered in the USA fell in Vivian, South Dakota on June 23, 2010 with a diameter of 8 inches and a circumference of 18.62 inches. It also weighed almost 1 kilogram. One of the most lethal hailstorms in history, leading to the death of hundreds of nomads, occurred around AD 850 close to the glacial Roopkund Lake in the remote Himalayan Gahrwal region.

Even though there is a high frequency of occurrence of thunderstorms in the tropics, hail is actually less common in these regions, compared to the mid-latitudes, as the atmosphere over the tropics is warmer over a much greater height. Hail is common in mountain ranges because mountains force horizontal winds to move suddenly upwards (orographic lifting). This intensifies the updrafts within thunderstorms which makes hail more likely. Hence hail is relatively common in Nepal.

There has been no report of hail falling on the head and producing injury, though hail is known to cause widespread damage to farms, houses, animals and humans. The present case did not have any criteria for radiological imaging as per the Canadian CT rule. Moreover, the patient presented three days after the incident. In Nepal, patients may not be presenting immediately after the injury, either because they have only mild symptoms or they have to travel a long distance to reach a tertiary care hospital. The main limitation of this case is that there is no proper follow-up.

Conclusion
Head injury can occur wherever you are – it does not matter whether you are indoors or outdoors. Here this fact is stressed with the help of two different and extremely rare types of head injuries. Some simple manoeuvres, such as proper maintenance of equipment and utensils you are working with or taking an umbrella while going for a morning walk, may protect individuals from such calamities.

Consent
Written informed consent for publication of their clinical details and/or clinical images was obtained from both patients.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com