RESEARCH NOTE

Association between intermittent administration of parathyroid hormone 1-34 and ectopic calcification in rats [version 1; referees: awaiting peer review]

Israa Ahmed Radwan, Nahed Sedky Korany, Bassant Adel Ezzat

Department of Oral Biology, Cairo University, Cairo, Egypt

Abstract

The present study was conducted to determine the association between parathyroid hormone 1-34 administration and ectopic calcification in rats with glucocorticoid induced osteoporosis. A total of 18 rats were used in the current study. Osteoporosis was induced in all rats via dexamethasone administration, then rats were randomly distributed into Control and Forteo groups and were sacrificed 4 weeks after initiation of drug administration. Hemi-mandibles were decalcified followed by routine histological analysis. Among the Forteo group rats, three rats displayed the presence of ectopic calcification. True pulp stone, intra-pulpal calcified structure with entrapped cells and intra periodontal bone-like calcified structure with entrapped cells were observed while no ectopic calcification was noticed in the control group.

Keywords

ectopic calcification, pulp stone, denticles, recombinant parathyroid hormone 1-34.

Corresponding author: Israa Ahmed Radwan (esraa.ahmed@dentistry.cu.edu.eg)

Author roles: Radwan IA: Data Curation, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation; Sedky Korany N: Conceptualization, Supervision, Writing – Review & Editing; Adel Ezzat B: Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2018 Radwan IA et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Radwan IA, Sedky Korany N and Adel Ezzat B. Association between intermittent administration of parathyroid hormone 1-34 and ectopic calcification in rats [version 1; referees: awaiting peer review] F1000Research 2018, 7:1553 (doi: 10.12688/f1000research.16298.1)

Introduction
Ectopic calcification is pathologic deposition of minerals within soft tissues as dental pulp or periodontal ligaments (PDL)\(^\text{13,14}\). Pulpal ectopic calcification may manifest as generalized, linear calcification, or as circumscribed calcification (also known as pulp stones or denticles). Pulp stones can be seen free within the pulp tissues, partially associated with dentin wall or completely embedded in dentin. They may manifest as false concentric calcification or true pulp stones\(^\text{3}\). The etiology of pulp calcification may be idiopathic\(^\text{1}\), although it may also be associated with pulp injury or degeneration\(^\text{1}\), orthodontic or physical forces\(^\text{8-10}\) or chemical stimuli\(^\text{11,12}\). Its incidence tends to increase with age\(^\text{11,11}\).

Parathyroid hormone (PTH) is a naturally occurring hormone, important for calcium homeostasis\(^\text{12,13}\). Its level in the blood dictates its effect on the skeletal system, with bone catabolic effect upon chronic increase in PTH level associated with hyperparathyroidism\(^\text{13,14}\) and bone anabolic effect upon administration of small intermittent dosage\(^\text{13,15}\). PTH secreted by the parathyroid gland (native PTH) is a polypeptide chain composed of 84 amino acids (PTH 1-84). While PTH 1–34, is a fragment of PTH molecule “synthesised through recombinant DNA technology using a strain of Escherichia coli bacteria”\(^\text{16}\). Intermittent PTH 1–34 administration, owing to its bone anabolic effect, is successfully used for the management of osteoporosis\(^\text{19-22}\). Its bone anabolic effect has been linked to elevated osteoblast differentiation, number and activity\(^\text{23-29}\).

Methods
This research was conducted as a part of a study examining the effect of PTH 1–34 on microarchitecture of alveolar process of osteoporotic rats.

Animals
In the current research, 18 male Wistar rats of the species *Rattus norvegicus* weighing 175–200 gm, aged between 3 to 4 months were used. The animals were acquired from and maintained in the Animal House, Faculty of Medicine, Cairo University under the care of a specialized veterinarian. Each animal was kept in a separate cage. They were maintained under controlled temperature at 25±2°C with 12 h light/dark cycle and had *ad libitum* access to standard rats’ chow and water. This study was approved by the Research Ethics committee faculty of Dentistry, Cairo University (approval number 151028).

Osteoporosis induction and treatment
Osteoporosis was induced in all experimental animals (n=18) by five weekly doses, of 7 mg/kg body weight dexamethasone sodium phosphate (Decadron\(^\text{®}\) 4 mg/ml, Eipico Egypt), administered intramuscularly\(^\text{0,31}\). The animals were then randomly distributed by random sequence generator program (randomizer.org) into two groups each including 9 animals, matching of the animals with the numbers was done blindly through the primary investigator. Animals received either a daily subcutaneous injection of 60 μg/kg body weight PTH 1–34 (Forteo\(^\text{®}\); Eli lilly Pharmaceuticals) (n=9)\(^\text{32}\) or an equal volume of saline (control group) (n=9). Drugs were administered in the early morning hours (8–9 am). The body weight of the animals was measured weekly, and drug dosages were adjusted accordingly. Animals were euthanized with an intra-cardiac overdose of sodium thiopental (80 mg/kg) 4 weeks after initiation of Forteo administration. Mandibles were dissected and separated into two halves, only one hemi-mandible from each rat was utilized for histological examination. The experimental unit was the hemi-mandible of rats. The primary investigator was blinded.

Hemi-mandibles (n=18) were fixed in 10% calcium formal solution for 48 hours. The specimens were then washed and soaked in 10% EDTA for 4–5 weeks for decalcification. After decalcification was completed, the specimens were dehydrated in ascending grades of alcohol, cleaned in xylol, and then embedded in paraffin blocks. Next, 6-μm-thick paraffin sections were cut and mounted on a clean glass slide, then stained with haematoxylin and eosin stain\(^\text{1}\). The specimens were examined using Leica DM300 light microscopic (Leica Microsystems, Inc., Switzerland). Histological examination was done through blinded primary investigator. Dental pulp and surrounding periodontal ligaments of all teeth within hemimandible of both experimental groups (n=18) were examined for the presence of ectopic calcification.

Results
Upon histological examination of the Forteo group specimens, six rats showed normal pulp and periodontal ligaments with no ectopic calcifications, while ectopic calcifications were detected in three specimens (Dataset 1)\(^\text{33}\). Where true pulp stone with pre-dentin and dentin surrounding a central cavity lined by cells was detected in one specimen (Figure 1a). Another specimen showed the presence of intra-pulpal calcified structure with entrapped cells (Figure 1b). Meanwhile, one specimen displayed the presence of intra-periodontal bone-like calcified structure with entrapped cells (Figure 1c). On the other hand, no ectopic calcification was perceived in the control group specimens (Dataset 1)\(^\text{33}\), which showed normal pulp and periodontal ligaments (n=9) (Figure 1d).

Discussion
Despite the fact that PTH 1–34 can successfully lower blood calcium level, and prevent vascular calcification\(^\text{14}\), in the current work, PTH 1–34 was associated with ectopic calcifications within the pulp and PDL, while none was observed in the control group specimens.

Guimarães et al. observed increased dentin deposition rate and elevated level of serum alkaline phosphatase in PTH 1–34 treated rats\(^\text{35}\). In a subsequent research, Guimarães et al. elucidated that PTH 1–34 can regulate odontoblast like cells via protein kinase A- and protein kinase C-dependent pathways, with
increases in odontoblast-like cells proliferation upon short PTH exposure and increases in their apoptosis upon longer exposure36.

Wang \textit{et al.} demonstrated the ability of PTH to induce human PDL stem cells to differentiate into osteoblasts, which was associated with increased alkaline phosphatase activity and increased mineralization capacity37. Moreover, Li \textit{et al.} described the ability of PTH 1–34 to induce the formation of calcified nodule in cementoblast cell line, which was attributed to the ability of the drug to increase cementoblast activity, alkaline phosphatase level and subsequently calcification38.

The stimulatory effect of PTH 1–34 on odontoblast, cementoblast and osteoblasts function can help explain the findings of the current research.

Recommendations

Further research studying the effect of different dosage schemes of PTH 1–34, administered for different time periods, on dental pulp and odontoblast cells is recommended.

Data availability

Dataset 1. Images captured from each mouse in each group not shown in Figure 1. DOI: https://doi.org/10.5256/f1000research.16298.d2185233.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

6. Ertas ET, Veli i, Akin M, \textit{et al.}: Dental pulp stone formation during orthodontic...

Pubmed Abstract | Publisher Full Text

Pubmed Abstract

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text

Reference Source

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text

Publisher Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

Pubmed Abstract | Publisher Full Text

Publisher Full Text

Pubmed Abstract | Publisher Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text

Pubmed Abstract | Publisher Full Text | Free Full Text
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com