Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and whole \textit{rrn} operon

Anna Cuscó1, Carlotta Catozzi2,3, Joaquim Viñes1,3, Armand Sanchez3, Olga Francino3

1Vetgenomics, SL, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain
2Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
3Molecular Genetics Veterinary Service (SVGM), Universitat Autonoma of Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain

Abstract

\textbf{Background:} Profiling the microbiome of low-biomass samples is challenging for metagenomics since these samples often contain DNA from other sources, such as the host or the environment. The usual approach is sequencing specific hypervariable regions of the 16S rRNA gene, which fails to assign taxonomy to genus and species level. Here, we aim to assess long-amplicon PCR-based approaches for assigning taxonomy at the genus and species level. We use Nanopore sequencing with two different markers: full-length 16S rRNA (~1,500 bp) and the whole \textit{rrn} operon (16S rRNA–ITS–23S rRNA; 4,500 bp).

\textbf{Methods:} We sequenced a clinical isolate of \textit{Staphylococcus pseudintermedius}, two mock communities (HM-783D, Bei Resources; D6306, ZymoBIOMICSTM) and two pools of low-biomass samples (dog skin from either the chin or dorsal back), using the MinIONTM sequencer 1D PCR barcoding kit. Sequences were pre-processed, and data were analyzed using the WIMP workflow on EPI2ME or Minimap2 software with \textit{rrn} database.

\textbf{Results:} The full-length 16S rRNA and the \textit{rrn} operon were used to retrieve the microbiota composition at the genus and species level from the bacterial isolate, mock communities and complex skin samples. For the \textit{Staphylococcus pseudintermedius} isolate, when using EPI2ME, the amplicons were assigned to the correct bacterial species in ~98% of the cases with the \textit{rrn} operon marker, and in ~68% of the cases with the 16S rRNA gene. In both skin microbiota samples, we detected many species with an environmental origin. In chin, we found different \textit{Pseudomonas} species in high abundance, whereas in dorsal skin there were more taxa with lower abundances.

\textbf{Conclusions:} Both full-length 16S rRNA and the \textit{rrn} operon retrieved the microbiota composition of simple and complex microbial communities, even from the low-biomass samples such as dog skin. For an increased resolution at the species level, using the \textit{rrn} operon would be the best choice.
Introduction

The microbiota profile of low-biomass samples such as skin is challenging for metagenomics. These samples are prone to containing DNA contamination from the host or exogenous sources, which can overcome the DNA of interest\(^1\).\(^2\). Thus, the usual approach is amplifying and sequencing certain genetic markers that are ubiquitously found within the studied kingdom rather than performing metagenomics. Ribosomal marker genes are a common choice: 16S rRNA and 23S rRNA genes to taxonomically classify bacteria\(^3\);\(^4\); and ITS1 and ITS2 regions for fungi\(^5\).

Until now, most studies of microbiota rely on second-generation sequencing (massive parallel sequencing), and target a short fragment of the 16S rRNA gene, which presents nine hypervariable regions (V1-V9) that are used to infer taxonomy\(^6\).\(^7\). The most common choices for host-associated microbiota are V4 or V1-V2 regions, which present different taxonomic coverage and resolution depending on the taxa\(^8\). V4 region represents better the whole bacterial diversity, although it fails to amplify Cutibacterium acnes (formerly known as Propionibacterium acnes), a ubiquitous skin commensal in humans. So, when performing a skin microbiota study, the preferred choice is V1-V2 regions, although they lack sensitivity for the Bifidobacterium genus and poorly amplify the Verrucomicrobia phylum\(^9\).

Apart from the biases derived from the primer choice, short fragment strategies usually fail to assign taxonomy reliably at the genus and species level. This taxonomic resolution is particularly useful when associating microbiota to clinics such as in characterizing disease status or when developing microbiota-based products, such as pre- or pro-biotics\(^10\). For example, in human atopic dermatitis (AD) the signature for AD-prone skin when compared to healthy skin was enriched for Streptococcus and Gemella, but depleted in Dermacoccus. Moreover, nine different bacterial species were identified to have significant AD-associated microbiome differences\(^11\). In canine atopic dermatitis, Staphylococcus pseudintermedius has been classically associated with the disease. Microbiota studies of canine atopic dermatitis presented an overrepresentation of Staphylococcus genus\(^12\);\(^13\);\(^14\), but the species was confirmed when complementing the studies using directed qPCRs for the species of interest\(^15\) or using a Staphylococcus-specific database and V1-V3 region amplification\(^16\).

With the launching of third-generation single-molecule technology sequencers, these short-length associated issues can be overcome by sequencing the full-length of the 16S rRNA gene (~1,500 bp) or even the whole rrn operon (~4,500 bp). Before sequencing, bacterial DNA was amplified using nested PCR, with a first PCR to add the specific primer sets (Table 1) tagged with the Oxford Nanopore universal tag and a second PCR to add the barcodes from the barcoding kit (EXP-PBC001). Each PCR reaction included a no-template control sample to assess possible reagent contamination.

Several studies assessing the full-length 16S rRNA gene have already been performed using Nanopore sequencing to: i) characterize artificial and already characterized bacterial communities (mock community)\(^15\);\(^17\); ii) characterize complex microbiota samples, from the mouse gut\(^18\); wastewater\(^19\); microalgae\(^20\) and dog skin\(^21\); and iii) characterize the pathogenic agent in a clinical sample\(^22\);\(^23\);\(^24\). On the other hand, only two studies have been performed using the whole rrn operon to characterize mock communities\(^25\) and complex natural communities\(^26\).

Here we aim to assess the potential of Nanopore sequencing using both the full-length 16S rRNA (1,500bp) and the whole rrn operon (4,500bp) in: i) a clinical isolate of Staphylococcus pseudintermedius, ii) two bacterial mock communities; and iii) two complex skin microbiota samples.

Methods

Samples and DNA extraction

We used two DNA mock communities as simple, well-defined microbiota samples:

- HM-783D, kindly donated by BEI resources, containing genomic DNA from 20 bacterial strains with staggered ribosomal RNA operon counts (between 1,000 and 1,000,000 copies per organism per μl).
- ZymoBIOMICS™ Microbial Community DNA standard that contained a mixture of genomic DNA extracted from pure cultures of eight bacterial strains.

We also sequenced a pure bacterial isolate of Staphylococcus pseudintermedius obtained from the ear of a dog affected with otitis.

As a complex microbial community, we used two DNA sample pools from the skin microbiota of healthy dogs targeting two different skin sites: i) dorsal back (DNA from two dorsal samples from Beagle dogs); and ii) chin (DNA from five chin samples from Golden Retriever/Labrador crossed dogs). Skin microbiota samples were collected using Sterile Catch-All™ Sample Collection Swabs (Epigen Biotechnologies) soaked in sterile SCF-1 solution (50 mM Tris buffer (pH 8), 1 mM EDTA, and 0.5% Tween-20). DNA was extracted from the swabs using the PowerSoil™ DNA isolation kit (MO BIO) and blank samples were processed simultaneously (for further details on sample collection and DNA extraction see 27).

PCR amplification of ribosomal markers

There were two ribosomal markers evaluated in this study: full-length 16S rRNA gene (~1,500 bp) and the whole rrn operon (~4,500 bp). Before sequencing, bacterial DNA was amplified using nested PCR, with a first PCR to add the specific primer sets (Table 1) tagged with the Oxford Nanopore universal tag and a second PCR to add the barcodes from the barcoding kit (EXP-PBC001). Each PCR reaction included a no-template control sample to assess possible reagent contamination.

For the first PCR, we targeted the full 16S rRNA gene using 16S-27F and 16S-1492R primer set and the whole rrn operon (16S rRNA gene–ITS–23S rRNA gene) using 16S-27F and 23S-2241R primer set (Table 1).
PCR mixture for full-length 16S rRNA gene (25 μl total volume) contained 5 ng of DNA template, 5 μl of 5X Phusion® High Fidelity Buffer, 2 μl of dNTPs (2 mM), 1 μl of 16S-27F (0.4 μM), 2 μl of 16S-1492R (0.8 μM) and 0.25 μl of Phusion® Hot Start II Taq Polymerase (0.5 U) (Thermo Scientific, Vilnius, Lithuania). The PCR thermal profile consisted of an initial denaturation of 30 s at 98°C, followed by 25 cycles of 15 s at 98°C, 15 s at 51°C, 45 s at 72°C, and a final step of 7 min at 72°C.

PCR mixture for the rrn whole operon (50 μl total volume) contained 5 ng of DNA template, 10 μl 5X Phusion® High Fidelity Buffer, 5 μl dNTPs (2 mM), 5 μl each primer (1 μM) and 0.5 μl Phusion® Hot Start II Taq Polymerase (1 U). The PCR thermal profile consisted of an initial denaturation of 30 s at 98°C, followed by 25 cycles of 7 s at 98°C, 30 s at 59°C, 150 s at 72°C, and a final step of 10 min at 72°C.

The amplicons were cleaned-up with the AMPure XP beads (Beckman Coulter) to finally obtain the DNA library. The samples were quantified using Qubit™ fluorometer (Life Technologies, Carlsbad, CA) and volume was adjusted to begin the second round of PCR with 0.5 nM of the first PCR product or the whole volume when not reaching the required concentration (mostly for samples that amplified the rrn operon).

PCR mixture for the barcoding PCR (100 μl total volume) contained 0.5 nM of first PCR product, 20 μl 5X Phusion® High Fidelity Buffer, 10 μl dNTPs (2 mM), and 1 μl Phusion® Hot Start II Taq Polymerase (2 U). Each PCR tube contained the DNA, the PCR mixture and 2 μl of the specific barcode. The PCR thermal profile consisted of an initial denaturation of 30 s at 98°C, followed by 15 cycles of 7 s at 98°C, 15 s at 62°C, 45 s (for the 16S rRNA gene) or 150 s (for rrn operon) at 72°C, and a final step of 10 min at 72°C.

Again, the amplicons were cleaned-up with the AMPure XP beads (Beckman Coulter) using a 0.5X and 0.45X ratio for the 16S rRNA gene and the whole rrn operon, respectively. For each sample, quality and quantity were assessed using Nanodrop and Qubit™ fluorometer (Life Technologies, Carlsbad, CA), respectively.

In most cases, the different barcoded samples were pooled in equimolar ratio to obtain a final pool (1000–1500 ng in 45 μl) to do the sequencing library.

Nanopore sequencing library preparation

The Ligation Sequencing Kit 1D (SQK-LSK108; Oxford Nanopore Technologies) was used to prepare the amplicon library to load into the MinION™ (Oxford Nanopore Technologies), following the manufacturer’s protocol. Input DNA samples were composed of 1–1.5 μg of the barcoded DNA pool in a volume of 45 μl and 5 μl of DNA CS (DNA from lambda phage, used as a positive control in the sequencing). The DNA was processed for end repair and dA-tailing using the NEBNext End Repair/dA-tailing Module (New England Biolabs). A purification step using 1X Agencourt AMPure XP beads (Beckman Coulter) was performed.

For the adapter ligation step, a total of 0.2 pmol of the end-prepared DNA were added in a mix containing 50 μl of Blunt/TA ligase master mix (New England Biolabs) and 20 μl of adapter mix and then incubated at room temperature for 10 min. We performed a purification step using Adapter Bead Binding buffer (provided in the SQK-LSK108 kit) and 0.5X Agencourt AMPure XP beads (Beckman Coulter) to finally obtain the DNA library.

We prepared the pre-sequencing mix (14 μl of DNA library) to be loaded by mixing it with Library Loading beads (25.5 μl) and Running Buffer with fuel mix (35.5 μl). We used two SpotON Flow Cells Mk I (R9.4.1) (FLO-MIN106). After the quality control, we primed the flowcell with a mixture of Running Buffer with fuel mix (RBF from SQK-LSK108) and Nuclease-free water (575 μl + 625 μl). Immediately after priming, the nanopore sequencing library was loaded in a dropwise fashion using the SpotON port.

Once the library was loaded, we initiated a standard 48 h sequencing protocol using the MinKNOW™ software v1.15.

Data analysis workflow

The samples were run using the MinKNOW software. After the run, fast5 files were base-called and de-multiplexed using Albacore v2.3.1. A second de-multiplexing round was performed with Porechop v0.2.310, where only the barcodes that agreed with Albacore were kept. Porechop was also used to trim the barcodes and the adapters from the sequences (Figure 1).

Moreover, we removed 45 extra base pairs from each end that correspond to the length of the universal tags and custom primers. After the trimming, reads were selected by size: 1,200 bp to 1,800 bp for 16S rRNA gene; and 3,500 to 5,000 bp for the rrn

Table 1. Primer sequences for full-length 16S rRNA gene and rrn operon amplification.

<table>
<thead>
<tr>
<th>Oligo name</th>
<th>ONT Universal Tag</th>
<th>Sequence 5’ to 3’</th>
<th>Amplicon</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S-27F</td>
<td>TTTCTGTTGGTGCTGATATTGC</td>
<td>AGRGTTTGAYHTGGCTCAG</td>
<td>16S, rrn</td>
<td>28</td>
</tr>
<tr>
<td>16S-1492R</td>
<td>ACTTGCTGTCGCTCTATCTTC</td>
<td>TACCTTGTTAYGACTT</td>
<td>16S</td>
<td>29</td>
</tr>
<tr>
<td>23S-2241R</td>
<td>ACTTGCTGTCGCTCTATCTTC</td>
<td>ACCRCCCCAGTHAAACT</td>
<td>rrn</td>
<td>28</td>
</tr>
</tbody>
</table>
We mapped the sequences obtained to the rrn database using Minimap2 v2.9. Afterwards chimeras were detected and removed using yacr v0.3.

To assign taxonomy to the trimmed and filtered reads we used two strategies: 1) a mapping-based strategy using Minimap2; or 2) a taxonomic classifier using What’s in my Pot (WIMP), a workflow from EPI2ME in the Oxford Nanopore Technologies cloud (based on Centrifuge software).

For the mapping-based strategy, we performed Minimap2 again with the non-chimeric sequences. We applied extra filtering steps to retain the final results: we kept only those reads that aligned to the reference with a block larger than 1,000 bp (for 16S rRNA gene) and 3,000 bp (for the whole rrn operon). For reads that hit two or more references, only the alignments with the highest Smith-Waterman alignment score were kept. After filtering, the multimapping was mostly present in cases with entries that belonged to the same taxonomy.

The reference databases used in this study were:

- Mock database: a collection of the complete genomes that were included in each mock community, as described by the manufacturer. The HM-783D database was retrieved from NCBI using the reference accession numbers, while Zymobiomics mock community has already its database online on the Amazon AWS server.
- rrn database: sequences from the whole operon retrieved from Genbank.

For the taxonomic classification using the WIMP workflow, which uses the NCBI database, only those hits with a classification score >300 were kept.

An earlier version of this article can be found on bioRxiv (doi: https://doi.org/10.1101/450734)

Results

Quality filtering results

After Albacore basecalling and Porechop processing, we lost around 5% of the initial reads (3-13%). After length trimming step, we lost more sequences (Table 2). In general, the samples amplified using 16S rRNA marker gene recovered a higher percentage of reads after the quality control when compared to the rrn operon: 74–95% vs. 32–80%. Particularly for rrn operon, the largest percentage of reads was lost during the length trimming step: some of the reads included in that barcode presented the length of the 16S rRNA gene.
Table 2. Samples included in the study and quality control results.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Barcode</th>
<th>Marker</th>
<th>Run</th>
<th>Sample type</th>
<th>Albacore pass</th>
<th>Porechop reads</th>
<th>Length trimming</th>
<th>% seq 1st QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chin_16S_1</td>
<td>BC04</td>
<td>16S rRNA</td>
<td>FC1_1</td>
<td>Complex</td>
<td>111230</td>
<td>107840</td>
<td>97712</td>
<td>88%</td>
</tr>
<tr>
<td>Chin_16S_2</td>
<td>BC05</td>
<td>16S rRNA</td>
<td>FC1_1</td>
<td>Complex</td>
<td>104994</td>
<td>101932</td>
<td>92297</td>
<td>88%</td>
</tr>
<tr>
<td>HM_16S</td>
<td>BC06</td>
<td>16S rRNA</td>
<td>FC1_1</td>
<td>Mock</td>
<td>121319</td>
<td>116946</td>
<td>100103</td>
<td>83%</td>
</tr>
<tr>
<td>Chin_rn_1</td>
<td>BC07</td>
<td>rrn</td>
<td>FC1_1</td>
<td>Complex</td>
<td>80947</td>
<td>76538</td>
<td>38285</td>
<td>47%</td>
</tr>
<tr>
<td>Chin_rn_2</td>
<td>BC08</td>
<td>rrn</td>
<td>FC1_1</td>
<td>Complex</td>
<td>109863</td>
<td>106033</td>
<td>55369</td>
<td>50%</td>
</tr>
<tr>
<td>HM_rn</td>
<td>BC09</td>
<td>rrn</td>
<td>FC1_1</td>
<td>Mock</td>
<td>59335</td>
<td>53057</td>
<td>18933</td>
<td>32%</td>
</tr>
<tr>
<td>Skin_16S_1</td>
<td>BC06</td>
<td>16S rRNA</td>
<td>FC1_2</td>
<td>Complex</td>
<td>35644</td>
<td>34102</td>
<td>27687</td>
<td>78%</td>
</tr>
<tr>
<td>Skin_rn_1</td>
<td>BC09</td>
<td>rrn</td>
<td>FC1_2</td>
<td>Complex</td>
<td>18123</td>
<td>15842</td>
<td>7545</td>
<td>42%</td>
</tr>
<tr>
<td>Skin_16S_2</td>
<td>BC11</td>
<td>16S rRNA</td>
<td>FC1_2</td>
<td>Complex</td>
<td>21522</td>
<td>20456</td>
<td>17275</td>
<td>80%</td>
</tr>
<tr>
<td>Skin_rn_2</td>
<td>BC12</td>
<td>rrn</td>
<td>FC1_2</td>
<td>Complex</td>
<td>17473</td>
<td>16448</td>
<td>8004</td>
<td>46%</td>
</tr>
<tr>
<td>Z1_16S</td>
<td>BC04</td>
<td>16S rRNA</td>
<td>FC2</td>
<td>Mock</td>
<td>95635</td>
<td>88820</td>
<td>70780</td>
<td>74%</td>
</tr>
<tr>
<td>Z2_16S</td>
<td>BC05</td>
<td>16S rRNA</td>
<td>FC2</td>
<td>Mock</td>
<td>63736</td>
<td>61783</td>
<td>49113</td>
<td>77%</td>
</tr>
<tr>
<td>Staph_16S</td>
<td>BC06</td>
<td>16S rRNA</td>
<td>FC2</td>
<td>Isolate</td>
<td>32782</td>
<td>32072</td>
<td>31147</td>
<td>95%</td>
</tr>
<tr>
<td>Z1_rn</td>
<td>BC07</td>
<td>rrn</td>
<td>FC2</td>
<td>Mock</td>
<td>65571</td>
<td>62415</td>
<td>31694</td>
<td>48%</td>
</tr>
<tr>
<td>Z2_rn</td>
<td>BC08</td>
<td>rrn</td>
<td>FC2</td>
<td>Mock</td>
<td>96000</td>
<td>93323</td>
<td>49369</td>
<td>51%</td>
</tr>
<tr>
<td>Staph_rn</td>
<td>BC09</td>
<td>rrn</td>
<td>FC2</td>
<td>Isolate</td>
<td>18839</td>
<td>17253</td>
<td>15153</td>
<td>80%</td>
</tr>
</tbody>
</table>

Z1 and Z2 are replicates of ZymoBIOMICS™ Microbial Community DNA. HM, HM-783D mock community (BEI resources); Chin, microbiota from a pool of canine chin samples; Skin, microbiota from a pool of dorsal skin samples.

After this first quality control, we performed an alignment with the mock and the rrn databases and checked for chimeras. Chimeras detected were dependent on the database used for the alignment. As a positive control, we used mock samples with their mock database. Chimera ratio was higher for 16S rRNA gene amplicons (around ~40%) than for rrn operon (~10%), suggesting that PCR conditions for the 16S rRNA gene need to be adjusted or the PCR cycles reduced.

To conclude, the final useful sequences when amplifying for either amplicon were ~40%. In 16S rRNA gene, sequences were lost in the chimera checking step. In the rrn operon, sequences were lost in the length trimming step, probably due to the under-representation of the amplicon in the flowcell, since we ran them together with full-length 16S rRNA amplicons in the same flow-cell.

Mock community analyses

Microbial Mock Community HM-783D contained genomic DNA from 20 bacterial strains with staggered ribosomal RNA operon counts (from 1,000 to 1,000,000 copies per organism per μl). The bacterial composition detected should be proportional to the operon counts. This mock community would allow us determining if our approach reliably represents the actual bacterial composition of the community, especially considering low-abundant species.

We analyzed HM-783D mock community against its own database, which contains only the 20 representative species. On the one hand, using 16S rRNA gene we were able to detect all the bacterial species present in the mock community, even the low-abundant ones. On the other hand, using the rrn operon we were able to detect only the most abundant species (at least 10^4 operon copies) (Figure 2). This could be due to the lower sequencing depth obtained with rrn when compared with 16S rRNA, and probably due to the underrepresentation of the rrn amplicon in the flowcell when running together with the full-length 16S rRNA amplicons in the same flow-cell, as detailed above. Moreover, the relative abundances of rrn operon sequences were more biased than those obtained from 16S rRNA gene sequencing, when compared to those expected, which confirmed that the primers for rrn need to be improved for universality.

Zymobiomics mock community presents the same amount of genomic DNA from 8 different bacterial species; the expected 16S rRNA gene content for each representative is also known, so we are able to determine if our approach represents the actual bacterial composition of the community reliably.

Both 16S rRNA gene and rrn operon sequencing were able to detect 8 out of 8 bacterial species for the Zymobiomics mock community, using Minimap2 and WIMP. The “Other taxa” group in Figure 3A can indicate: i) not expected taxa (wrongly-assigned species, or previous contamination); or ii) higher taxonomic rank taxa (sequences not assigned to species level).

Using the mock community database (that contains only the 8 members of that community), we aimed to assess the biases
regarding the actual abundance profile. 16S rRNA gene better represented the bacterial composition of the mock community, when considering the abundances. The rrn operon amplification over-represented *Escherichia coli* and *Staphylococcus aureus* and under-represented *Enterococcus faecalis*.

The rrn database contains 22,351 different bacterial species, including representatives of the species in the mock community. When using the rrn database, we found that the rrn operon was a better marker than 16S rRNA: more than 98% of the sequences mapped to the corresponding species, and only <2% of the total sequences mapped to a wrong species with the rrn operon, whereas ~15% of the sequences were given the wrong taxonomy with 16S rRNA. We performed alpha diversity analyses using the same rrn database. The rrn operon hit 26 different species, whereas 16S rRNA over-estimated the actual diversity, with hits to 202 different species (Figure 3B). However, when considering abundances, the diversity values are more similar, with Shannon indices of 1.95 and 2.51, when using rrn operon and 16S rRNA, respectively (at 30,000 sequences/sample).

Using WIMP, we confirmed again the higher resolution power of rrn operon: ~70% of the sequences were assigned to the correct species compared to ~45% for the 16S rRNA gene. Among all the bacterial species included in the mock community, *Bacillus subtilis* presented the most trouble for the correct taxonomic classification. The theoretically expected abundance for *B. subtilis* is 17% using the 16S rRNA gene. When using WIMP, only 5% of the total sequences were correctly classified at the species level, another 5% was classified correctly at the genus level, and another 10% was incorrectly classified as other *Bacillus* species (Figure 3C).

Apart from the mock communities, we also sequenced an isolate of *Staphylococcus pseudintermedius* obtained from canine otitis. When using WIMP approach with rrn operon, 97.5% of the sequences were correctly assigned to the *S. pseudintermedius*. However, with the 16S rRNA gene, 68% of the sequences were correctly assigned at the species level and 13% at the genus (Table 3). The wrong assigned species for rrn operon was ~2.5%, compared to ~20% for the 16S rRNA gene. On the other hand, through mapping the sequences to rrn database using

![Figure 2. Heat map representing the HM-783D mock community when mapped to its mock database. The darkest blue represents the bacteria that were not detected (<10⁶ copies with rrn operon), whereas the darkest red represents the most abundant bacteria.](image-url)
Minimap2, we obtained no hit to *S. pseudintermedius*, since there is no representative in the *rrn* database. Instead, they were hitting mostly to *Staphylococcus schleiferi*, which is a closely related species; there were also few hits to *Staphylococcus hyicus* and *Staphylococcus agnetis*. These results highlight the need of comprehensive databases that include representatives of all the microorganisms relevant to a microbiome to correctly assign taxonomy.

Complex microbial community analyses

After the first analyses with the mock communities, we were able to detect that the taxonomic resolution was higher when using *rrn* operon; however, the abundance profile was more reliable using 16S rRNA marker gene. If a bacterial species is not present in the database, the mapping strategy will give us the closest sequence resulting to an inaccurate taxonomic profile, such as we have seen for the *Staphylococcus pseudintermedius* isolate.
Here, we aimed to taxonomically profile two complex and uncharacterized microbial communities from dog skin (chin and dorsal) using the two different markers and comparing the mapping strategy (Minimap2 and rrn database) with the WIMP workflow (NCBI database).

For chin samples of healthy dogs, we found a high abundance of *Pseudomonas* species followed by other genus with lower abundances such as *Erwinia* and *Pantoea*. Focusing on *Pseudomonas*, at the species level we were able to detect that the most abundant species was *Pseudomonas koreensis*, followed by *Pseudomonas putida* and *Pseudomonas fluorescens* (Figure 4A and Supplementary Table 1). On the other hand, dorsal skin samples were dominated by bacteria from the genera *Stenotrophomonas*, *Sanguibacter*, and *Bacillus*. We reached species level for *Stenotrophomonas rhizophila* and *Sanguibacter keddiei*. It should be noted that *Glutamicibacter arilaitensis* is the same species as *Arthrobacter arilaitensis*, but is the up-to-date nomenclature (Figure 4A and Supplementary Table 1). For both skin sample replicates, the results of the most abundant species converged and allowed for characterizing this complex low-biomass microbial community at the species level.

Finally, analyzing the dorsal skin samples, we also detected the presence of contamination from the previous nanopore run. We sequenced dorsal skin samples twice: one with a barcode previously used for sequencing the HM-783D mock community and another one with a new barcode (Table 2). We were able to detect mock community representatives within the re-used barcode (Figure 5). Some of them were found only in the sample that was using the re-used barcode (Sample_1); others were also present in the skin sample, such as *Bacillus cereus* or *Staphylococcus aureus*. In total, this contamination from the previous run was representing ~6% of the sample composition.

Discussion

Full-length 16S rRNA and the rrn operon revealed the microbiota composition of the bacterial isolate, the mock communities and the complex skin samples, even at the genus and species level. Although Nanopore sequencing has a high error rate (average accuracy for the *S. pseudintermedius* isolate: 89%), we compensated this low accuracy with longer fragments to assess the taxonomy of several bacterial communities. In general, the longer the marker, the higher the taxonomical resolution both when using mapping software, such as Minimap2, or taxonomy classifiers such as WIMP in EPI2ME cloud.

When using EPI2ME (WIMP with NCBI database), the amplifiers from the *S. pseudintermedius* isolate were assigned to the correct bacterial species in ~98% and ~68% of the cases, using rrn operon and 16S rRNA operon, respectively. In a previous study, Moon and collaborators used the full-length 16S rRNA gene for characterizing an isolate of *Campylobacter fetus* and the marker assigned the species correctly for ~89% of the sequences using EPI2ME. The ratio of success on the correct assignment at species level depends on the species itself and its degree of sequence similarity in the selected marker gene. Within the *Staphylococcus* genus, the 16S rRNA gene presents the highest similarity (around ~97%) when compared to other genetic markers. On the other hand, we observed that using the mapping strategy (through Minimap2) could lead to a wrong assigned species if the interrogated bacterium has not any representative on the chosen database. This strategy provides faster results than EPI2ME, but it needs an accurate comprehensive and representative database.

Analyses of the mock communities allowed us to detect whether our approach represented the actual bacterial composition reliably. Moreover, with the HM-783D staggered mock commu-

<table>
<thead>
<tr>
<th>Taxonomy</th>
<th>WIMP (NCBI database)</th>
<th>Minimap2 (rrn database)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16S rRNA</td>
<td>rrn operon</td>
</tr>
<tr>
<td>Staphylococcus pseudintermedius</td>
<td>65.9%</td>
<td>74.8%</td>
</tr>
<tr>
<td>Staphylococcus pseudintermedius HKU10-03</td>
<td>2.2%</td>
<td>22.8%</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>13.1%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Staphylococcus schleiferi</td>
<td>2.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>3.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Staphylococcus lutrae</td>
<td>2.7%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Staphylococcus hylcus</td>
<td>0.3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Staphylococcus agnetis</td>
<td>0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Other Staphylococcus</td>
<td>3.7%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Other species</td>
<td>6.5%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
Figure 4. Microbiota composition of complex communities: skin samples of healthy dogs. (A) Chin samples: upper part of the graphic, bar plot of the composition at the genus level using WIMP (left) and Minimap2 (right); lower part, heat map of the *Pseudomonas* species within the community (scaled at 100%). (B) Dorsal skin samples: upper part of the graphic, bar plot of the composition at the genus level using WIMP (left) and Minimap2 (right); lower part, heat map of the ten most abundant taxa within the community. N/A, taxon was not present in the database.

Figure 5. Heat map representing the HM-783D mock community contamination. Samples Skin_1 are the ones re-using the HM-783D barcode from the previous run within the same flowcell. Samples Skin_2 are using a new barcode (not used in a prior run of the same flowcell). Values within the heat map are relative abundances in percentages. The darkest blue represents the bacteria that were not detected and the darkest red the most abundant bacterial contaminants.
nity – with some low abundant species – we were able to detect the sensitivity of both approaches. When using the 16S rRNA marker gene, we were able to detect all bacterial members of both mock communities. However, when using the rrn operon, some of the low-abundant species were not detected. The likely reason is that we obtained a lower number of reads for this marker, up to one magnitude. Mock communities also allowed us to detect the potential biases of our primer sets for both markers, since some of the species detected were over- and under-represented. Actinomyces odontolyticus and Rhodobacter sphaeroides seem to not amplify properly, neither with 16S rRNA gene, nor the rrn operon. Previous studies also detected the same pattern for these specific bacteria even when using or comparing different primer sets16,21. Overall, the 16S rRNA primer set seemed less biased than rrn operon. When using the rrn operon, E. coli and S. aureus were overrepresented, whereas others were underrepresented, suggesting that the primers should be improved for universality.

Focusing on the dog chin samples, we could detect that it was mostly Pseudomonas species that colonized: P. koreensis, P. putida, and P. fluorescens were the main representatives. Recently, Meason-Smith and collaborators found Pseudomonas species associated with malodor in bloodhound dogs32. However, these were not the main bacteria found within the skin site tested, but were in low abundance, differing from what we have found here. On the other hand, Riggio and collaborators detected Pseudomonas as one of the main genera in canine oral microbiota in the normal, gingivitis and periodontitis groups34. However, the Pseudomonas species were not the same ones that we have detected here. It should be noted that we had characterized these chin samples (and others) with 16S V1-V2 amplicons in a previous study35, where we found some mutual exclusion patterns for Pseudomonadaceae family. This taxon showed an apparent “invasive pattern”, which could be mainly explained for the recent contact of the dog with an environmental source that contained larger bacterial loads before sampling33. Thus, our main hypothesis is that the Pseudomonas species detected on dog chin came from the environment, since they have been previously isolated from environments such as soil or water sources36,40.

The most abundant species in dog dorsal skin samples were Stenotrophomonas rhizophila, Bacillus cereus, Sanguibacter keddieii, Sporosarcina psychrophila, Achromobacter xylosidans and Glutamicibacter arilaitensis. None of these specific bacterial species had previously been associated with healthy skin microbiota in human or dogs. Some of them have an environmental origin, such as Stenotrophomonas rhizophila, which is mainly associated with plants41; or Sporosarcina psychrophila, which is widely distributed in terrestrial and aquatic environments35. The Bacillus cereus main reservoir is also the soil, although it can be a commensal of root plants and guts of insects, and can also be a pathogen for insects and mammals36. Overall, environmental-associated bacteria have already been associated with dog skin microbiota and are to be expected, since dogs constantly interact with the environment35.

Regarding Stenotrophomonas in human microbiota studies, Flores et al. found that this genus was enriched in atopic dermatitis patients that were responders to emollient treatment44. However, previous studies on this skin disease found Stenotrophomonas maltophilia associated to the disease rather than Stenotrophomonas rhizophila45. Achromobacter xylosidans has been mainly associated with different kind of infections, as well as skin and soft tissue infections in humans46. However, both dogs included in this pool were healthy and with representatives of both genus/species, a fact that reinforces the need to study the healthy skin microbiome before associating some species at the taxonomic level to disease. The other abundant bacteria detected on dog skin have been isolated in very different scenarios: Sanguibacter keddieii from cow milk and blood47,48; and Glutamicibacter arilaitensis (formerly Arthrobacter arilaitensis) is commonly isolated in cheese surfaces35,49.

Finally, some of the technical parameters used should be improved for better performance in future studies. In most cases we did not obtain enough DNA mass to begin with the indicated number of molecules for rrn operon amplicons. Thus, the flow-cell contained an underrepresentation of rrn operon amplicons when compared to the full-length 16S RNA gene. Moreover, in barcodes that contained rrn operon amplicons, a great percentage of reads were lost due to an inaccurate sequence size (~1,500 bp). One possible solution could be running each marker gene in different runs, so multiplexing samples with the same size amplicon to avoid underrepresentation of the larger one. When assessing chimera in mock samples using the specific mock database, we detected that the 16S RNA gene formed a higher percentage of chimeras than rrn operon. Some options to improve that fact would include lowering PCR cycles performed. Better adjusting the laboratory practices would allow an increased DNA yield that meets the first quality control steps.

To conclude, both full-length 16S rRNA and the rrn operon retrieved the microbiota composition from simple and complex microbial communities, even from the low-biomass samples such as dog skin. Taxonomy assignment down to species level was obtained, although it was not always feasible due to: i) sequencing errors; ii) high similarity of the marker chosen within some genera; and iii) an incomplete database. For an increased resolution at the species level, the rrn operon would be the best choice. Further studies should be aiming to obtain reads with higher accuracy. Some options would include using the 1D2 kit of Oxford Nanopore Technologies, the new base-callers or the new flow cells with R10 pores. Finally, studies comparing marker-based strategies with metagenomics will determine the most accurate marker for microbiota studies in low-biomass samples.

Data availability

The datasets analyzed during the current study are available in the NCBI Sequence Read Archive, under the Bioproject accession number PRJNA495486: https://identifiers.org/bioproject/PRJNA495486.

Grant information

This work was supported by two grants awarded by Generalitat de Catalunya (Industrial Doctorate program, 2013 DI 011 and 2017 DI 037).
Supplementary material

Supplementary Table 1. Taxa found on skin microbiota of healthy dogs.

List of all the taxa and their relative abundances found on dog skin microbiota samples (chin and dorsal skin). Results for both marker genes tested and for both approaches (Minimap2 + rrn database and WIMP with NCBI database).

Click here to access the data

References

Open Peer Review

Current Referee Status: ✔️ ❓

Version 1

Referee Report 04 February 2019

https://doi.org/10.5256/f1000research.18384.r43566

Rasmus H. Kirkegaard
Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University (AAU), Aalborg, Denmark

Title:
"Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and whole rrn operon".

Summary of the key results:
The study demonstrates the use of nanopore sequencing for characterising low biomass samples with high levels of host DNA using a primer-based approach targeting the entire 16S rRNA gene or the 16S rRNA gene and the 23S rRNA gene.

Furthermore, it evaluates the ability of these methods in the context of known references using mock communities and a pure culture using both the WIMP software and a custom mapping-based approach.

The study demonstrates that nanopore sequencing can give accurate classifications even at the current level of error rate if the reference database contains the right sequences. The study also shows how sequencing the longer fragment spanning both the 16S rRNA and 23S rRNA genes improves the taxonomic classification when the database contains a matching sequence.

Is the work clearly and accurately presented and does it cite the current literature?
The study mentions that the classification methods rely heavily on reference databases so it would be relevant to include citations for papers with methods for producing new reference sequences for both 16S rRNA and the longer fragment in the discussion (metagenomics, artificial long reads, primer free methods). Methods for improving read accuracy are also mentioned as important but the only methods mentioned are future upgrades from the company, relevant existing literature is not included (INC-seq, UMIs etc.). The study concludes that sequencing the entire “rrn operon” would be the best choice but it would be relevant to compare the size of current databases for the 16S rRNA gene versus the rrn operon. The presence of conserved sites for designing better primers is also extremely important but not discussed. Furthermore, there is evidence that quite a few organisms have unlinked rRNA genes, which will thus be missed by a full operon approach.

Citations are also needed for bioinformatics tools for both processing and visualisation of the data.

Is the study design appropriate and is the work technically sound?
The study uses mapping to a reference database to point out that the sequences can get genus-
The study uses mapping to a reference database to point out that the sequences can get genus- and species-level classification. However, the method will always report a genus and a species even in the absence of the correct sequence in the reference database as indicated from the sequencing of the S. pseudintermedius pure culture with the “rrn” method. It will be important to simulate the impact on the results when there is no closely related sequences in the database. This could be done by removing all reference sequences within the Gammaproteobacteria and mapping the HM-783D to the modified database and monitor where the reads end up. It would also be helpful if there was a way to distinguish between reads that have the “correct” match and reads that just happen to map because the 16S rRNA gene is extremely conserved. Something similar would be relevant for the EPI2ME workflow but as the authors cannot control the reference database, it is probably not feasible. One of the advantages of the mock communities should be information about the copy numbers for the rRNA genes but there is no information on this included in the study and how it affects the results.

Are sufficient details of methods and analysis provided to allow replication by others?
The methods section lacks information about what happens after mapping the reads. How are the figures generated, what software is used, etc.? It would also be helpful if the specific scripts/commands used to run the bioinformatics analysis were available.

Figures:

Figure 1: bioinformatic workflow:
The figure gives a decent overview of the bioinformatics processing but seems to miss the visualisation tools used. The main role of Albacore is basecalling the raw data not just demultiplexing. The figure could be improved further if you include the wet lab part of the work, so it becomes clear why the demultiplexing step is included and where the raw data comes from. A mapping step is integrated in the chimera detection (removal?) workflow but it might be better to omit mentioning mapping in that step as it can be confusing that the figure has two mapping steps in a row.

Figure 2: heatmap mock community:
The caption needs to explain what the numbers represent e.g. percentage of sequenced reads/mapped reads. It would be great if the heatmap included the “true” composition of the mock community for comparison. Copy number for each organism in the mock would also be relevant to include in the figure. Since there are only two columns, it would be better to have the sample labels at the top and with horizontal text preferably with a name that makes it easier to interpret the figure.

Figure 3a: stacked bar chart:
Even though stacked bar charts are very common it is not easy to read as they lack a common baseline for most of the values (See https://solomonmg.github.io/blog/2014/when-to-use-stacked-barcharts/ and https://peltiertech.com/stacked-bar-chart-alternatives/). I suggest that you use more of the heatmaps instead of introducing bar charts.

Figure 3b: rarefaction curves:
It would be great if you could add a dashed line for the expected “true” value for the mock community.

Figure 3c: WIMP tree:
This figure is quite complex to read. If the point with running both WIMP and a mapping-based approach with the two different amplicon types is to compare the methods, I suggest that you try to integrate the information better into one combined figure. This way you can help the reader to understand your message.
Figure 4a: stacked bar chart+heatmap dog samples:
Remove the stacked bar chart.

Figure 4b: stacked bar chart+heatmap dog samples:
Remove the stacked bar chart.

Getting rid of the bar charts would allow for making a big heatmap with the data from Figure 4A and 4B combined. This way the reader can also compare the results from the two different sample sites. A naming system that makes it clearer that "_1" and "_2" are replicates would also help the reader interpret the figure. Presenting results aggregated at different levels, which could be included in one another is a bit confusing e.g., "*Bacillus cereus*" could be included in "*Bacillus*" which again could be included in "*Bacillales*".

Figure 5: heatmap mock community contamination:
It is confusing that several cells in the heatmap have a value of “0” but with very different colours. Adding some meaningful labels with the contamination vs no contamination on the top could help the reader understand the figure without reading the caption.

Tables:

Table 1: Primer sequences:
Fine but could be moved to supplementary.

Table 2: Samples and QC:
Make headers easier to understand e.g. "% seq 1st QC" could be “% of reads passing QC”, “Albacore pass” could just be "# reads after basecalling" etc. Where is the number after chimera detection?

Add a column with data accession ID and move the table to supplementary then the sample names can also be expanded so the reader does not have to look to the bottom for an explanation of abbreviations. I suggest adding a column at the end with the number of reads mapping/classified for each sample so the reader know what fraction is included.

Table 3: Pure culture comparison WIMP vs. mapping:
You need to make it clear in the table that *Staphylococcus pseudintermedius* is missing from the “rrn” database. As the paper mentions genus- and species-level classification as the target you may benefit from aggregating the values for *S. pseudintermedius* and *S. pseudintermedius* HKU10-03 as splitting this into strains makes it more confusing as your numbers in the text do not match the ones in the table.

Supplementary Table 1:
It would be great to include the mock communities in this table as well.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly
Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: I am a co-owner of DNASense ApS (www.dnasense.com)

Referee Expertise: microbial biotechnology, nanopore sequencing

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Alfonso Benítez-Páez
Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Valencia, Spain

Cusco and co-workers present an evaluation of both a mock community and the dog skin associated microbiota. The authors made use of the single-molecule Nanopore DNA sequencing technology and compared two different technical approaches by studying the nearly-full 16S rRNA bacterial gene and the nearly-full bacterial rRNA operon.

In my opinion, this work represents an important advance regarding the application of nanopore technology in the field of microbiome research.

The main strength of the work is its detailed technical description regarding the protocols for library preparation, sequencing and basecalling, that altogether facilitate the reproducibility. Moreover, the genetic data generated was properly deposited in a specialized database for public accession to whomever may want to replicate the analysis of long reads by similar approaches or new ones.

The figure quality is good and the information disclosed by them is well accompanied with appropriate captions.

Notwithstanding, I have some minor concerns about the work that should be clarified, at least for me:

1. The last paragraph of page 7 describes the level of reads correctly assigned to species level for the microbial isolate *Staphylococcus pseudintermedius*. However, some of the values cited in the text do not match, at least, explicitly in Table 3. So, the authors should revise this issue or better
describe the information obtained.

2. The authors found that the study of a nearly-full 16S rRNA gene reflects in a better way the expected abundances of microbial species present in the mock community tested. This comparative analysis with regard to the results obtained by using the rrn operon should be accompanied by a linear regression analysis, declaring respective Pearson's "r" coefficients, that can measure more accurately the efficiency of both methods and better support the authors' observations and conclusions.

3. Additionally to the observed richness (observed species) and Shannon diversity, the authors could also include a microbial community evenness evaluation of reference and observed microbiome data from the different approaches evaluated in the study, so that additional conclusions could be addressed.

4. Given the issues with underrepresentation of "rrn" data as a consequence of mixing this type of synthetic DNA with nearly-full 16S rRNA amplicons, the authors should highlight this observation as a major issue of this approach and state a clear recommendation to avoid this type of multiplexing for future studies.

5. It is necessary to better describe the contamination issues described in the last paragraph of the results (page 9). I'm not sure if this cross-contamination came from re-utilization of a flowcell or if this came from contamination of the barcoded-primer, used during nested PCR, with amplicons/DNA from the mock community. In a similar manner, the estimation of 6% of contamination has to be explained in detail (species/proportions discarded or having been taken into account to calculate this percentage).

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Human microbiome, Microbial genomics, Nanopore sequencing, Computational biology, Metagenomics
I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com