RESEARCH NOTE

Comparative antimicrobial studies on plant species known as 'Pasak Bumi': *Eurycoma longifolia* Jack., *Rennelia elliptica* Korth. and *Trivalvaria macrophylla* miq. [version 1; peer review: 1 approved]

Harlinda Kuspradini¹, Sisilia Silau¹, Supartini Supartini², Enih Rosamah ¹, ICTROPS

¹Forestry Faculty, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
²Dipterocarps Forest Ecosystem Research and Development Center, Samarinda, East Kalimantan, 75119, Indonesia

Abstract

Pasak Bumi is a local name for a medicinal plant in Kalimantan, Indonesia. It is a famous medicinal plant and commonly used in traditional medicine as an aphrodisiac, as well as in the treatment of malaria. Pasak Bumi is a commercial name for *Eurycoma longifolia* (Simaroubaceae) plant species. Besides *Eurycoma longifolia* there are two other plant species also known locally as Pasak Bumi, *Rennelia elliptica* (Rubiaceae) and *Trivalvaria macrophylla* (Annonaceae). This study was performed to investigate the antimicrobial activities of the different species of Pasak Bumi and its total phenol contents. The antimicrobial activity of the ethanol extract was determined using the Agar Well Diffusion method at various concentrations while the phenol content was determined by the Folin - Ciocalteu method. The results of the ethanol extract from the different root showed that the *T. macrophylla* had the highest phenol content, and the highest activity index (AI) was found in the *E. longifolia* (0.96 at 1000 µg concentration). The results of this study show that the three different Pasak Bumi have potential as antimicrobials against oral pathogen; 1 yeast: *Candida albicans*, and 3 bacteria: *Staphylococcus aureus*, *Streptococcus mutans*, and *Streptococcus sobrinus*.

Keywords

Pasak Bumi, Eurycoma longifolia, Trivalvaria macrophylla, Rennelia elliptica, antimicrobial activity

This article is included in the **ICTROPS 2018** collection.
Corresponding author: Harlinda Kuspradini (hkuspradini@fahutan.unmul.ac.id)

Author roles: Kuspradini H: Conceptualization, Data Curation, Formal Analysis, Methodology, Supervision, Writing – Review & Editing; Silau S: Formal Analysis, Investigation, Writing – Original Draft Preparation; Supartini S: Project Administration, Resources, Visualization; Rosamah E: Supervision, Visualization;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Forest Product Chemistry Laboratory, Forestry Faculty of Mulawarman University 2017/2018 and DIPA B2P2EHD 2017

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Kuspradini H et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Kuspradini H, Silau S, Supartini S et al. Comparative antimicrobial studies on plant species known as ‘Pasak Bumi’: Eurycoma longifolia Jack., Rnelia elliptica Korth. and Trivalvaria macrophylla miq. [version 1; peer review: 1 approved]

F1000Research 2019, 8:301 (https://doi.org/10.12688/f1000research.16954.1)

First published: 18 Mar 2019, 8:301 (https://doi.org/10.12688/f1000research.16954.1)
Introduction
Pasak Bumi is a plant used in traditional medicinal that grows in the tropical forests of Kalimantan of Indonesia. It is used by the local people as an aphrodisiac, for postpartum treatment, fever, and malaria. In Central Kalimantan, there are three different plant species on Pasak Bumi; Yellow Pasak Bumi (Eurycoma longifolia Jack., Simaroubaceae), Red Pasak Bumi (Rennelia elliptica, Rubiaceae) and Black Pasak Bumi (Trivalvaria macrophylla, Rubiaceae). Previous research of Pasak Bumi (E. longifolia Jack) from different regions has shown activity in inhibiting the growth of microbes, however, research on the other species of Pasak Bumi such as Rennelia elliptica and Trivalvaria macrophylla are still limited. From the above information, the research aim is to compare the inhibition activities of the three different plants against one yeast: Candida albicans, and three bacterias: Staphylococcus aureus, Streptococcus mutans, and Streptococcus sobrinus. The research was also designed to extend our knowledge and help us explore the antimicrobial activities of the three different plant species.

Methods
Preparation of plant extracts
One kilogram of each plant was excavated and harvested from Katingan district, Central Kalimantan. The root was chopped and separated from its stem and leaves. The roots were sliced into small sections with a knife and allowed to dry under shade. The dried samples were crushed into powder using an electric blender. Once crushed, 50 grams of each powder of the plant root was weighed using a digital balance (Mettler Toledo, Mettler-Toyo Group). Furthermore, the powder was extracted using successive maceration with the following solvents: n-hexane, ethyl acetate, and 96% ethanol. The ethanol filtrate was evaporated under a vacuum rotary evaporator (Eyela, N-N series) at 35°C until dry and used for the present study (Figure 1).

Total phenol content
The total phenolic content was determined spectrophotometrically (UV Mini 1240 Shimadzu) in accordance to the Folin-Ciocalteu method. The sample solution was prepared by dissolving the dry extracts (2 mg) in 100 μl DMSO and 900 μl of distilled water. The reaction mixture was made by mixing 200 μl of the extract from sample solution (200 μg/mL), 300 μl of distilled water, 250 μl of 10% Folin-Ciocalteu reagent (Merck Millipore, CAS No. 109001) and 1250 μl of 7.5% sodium carbonate. After a 90 minutes incubation at room temperature, the absorbance was determined spectrophotometrically at 760 nm. Gallic acid (Wako, CAS No. 5995-86-8) was used as a reference standard for plotting a calibration curve (concentration range: 2 to 10 μg/mL). The total phenolic content was expressed as a Gallic Acid Equivalent (GAE)/mg extract, using a standard calibration graph.

Antimicrobial activity
Four pathogenic microbial strains; C. albicans (CA), S. aureus (SA), S. mutans (SM) and S. sobrinus (SS) from the Forest Product Chemistry Laboratory’s culture collections, were used for the present study. The in vitro activity was screened using the agar well diffusion method in Nutrient Agar medium. The extracts of each plant at a concentration of 10 mg/ml in 40% ethanol were prepared, and an aliquot of the test solution was put in to get a final concentration of 100, 250, 500, and 1000 μg/well. It was then placed on the inoculated nutrient agar plates and incubated for ±18–24 h at 37°C. Ten μg/well of chloramphenicol (PT. Indofarma, Tbk., Indonesia) and 40% ethanol were employed as a positive and negative control. After incubation, the diameter of the inhibition zones was measured by a ruler. The experiment was performed in triplicate. The antimicrobial index (AI) was calculated using the formula: Activity index (AI) = Inhibition Zone of the sample/Inhibition Zone of chloramphenicol.

Statistical analysis
All experiments were conducted three times. Regression analysis was used to make a calibration curve and calculate the total
phenol content. All statistical analyses used Microsoft Excel 2010 software.

Results

The total phenolic contents were calculated using the following linear equation based on the calibration curve of gallic acid:

\[y = 0.0667x + 0.009; \quad R^2 = 0.9948, \]

where \(y \) is absorbance and \(x \) is amount of gallic acid in μg (Table 1). *Trivalvaria macrophylla* root extract obtaining higher total phenolic content in comparison to *E. longifolia* and *R. elliptica*. The extracts exhibited dose-dependent antimicrobial activities (Figure 2), and the results indicated that the *in vitro* antimicrobial activity of the *T. macrophylla*, *E. longifolia*, and *R. elliptica* extracts were ranked in the following order; SS>SM>SA>CA; SA>SM>SS>CA; and SS>SA>CA>SM, respectively. The highest activity was found in *E. longifolia* against *S. aureus*, with a maximum AI value (0.96) at 1000 μg/well concentration while the lowest activity at all concentration was found in *R. elliptica* extracts.

<table>
<thead>
<tr>
<th>Sample Scientific name</th>
<th>Local name</th>
<th>Calibration curve regression</th>
<th>Total Phenol (μg/mg extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivalvaria macrophylla (Blume) miq.</td>
<td>Black Pasak Bumi</td>
<td>(y = 0.0667x + 0.009; \quad R^2 = 0.9948)</td>
<td>41.85 ± 0.22</td>
</tr>
<tr>
<td>Eurycoma longifolia Jack.</td>
<td>Yellow Pasak Bumi</td>
<td></td>
<td>20.74 ± 2.81</td>
</tr>
<tr>
<td>Rennelia elliptica Korth.</td>
<td>Red Pasak Bumi</td>
<td></td>
<td>4.37 ± 0.57</td>
</tr>
</tbody>
</table>

Figure 2. Antimicrobial activity Index of the three different Pasak Bumi.
Discussion

Plant extracts with a high AI value indicates that the extracts have good antimicrobial activity against the selected pathogens. The inhibitory activity of *E. longifolia* root extracts was in agreement with previous literature, it could inhibit *S. aureus* and *C. albicans*. *R. elliptica* was found to be able to inhibit the growth of *C. albicans* and *S. aureus*, which is contrary to a previous study where it was found to be inactive; however, there was no information about the extraction method for *R. elliptica* and the concentration used on that study. So far there have been no reports of the *T. macrophylla* being antimicrobial, but in this study *T. macrophylla* has proven to be an inhibitor for the growth of *S. aureus*, *S. mutans*, *S. sobrinus* and *C. albicans*. This is believed to be the first report to explore and compare the antimicrobial potentials of the three different Pasak Bumi plants. The antimicrobial activity may be attributed to the high content of the phenols present. Phenolic compound such as gallic acid can causes irreversible changes (such as charge, intra and extracellular permeability, and physicochemical properties) in the properties of microbial membranes, with consequent leakage of essential intracellular constituents. *E. longifolia* possess a higher antimicrobial activity than *T. macrophylla*, but its phenolic content was lower than *T. macrophylla*. *E. longifolia* extract might contain more non-phenolic compounds, or possess phenolic compounds that contain a higher number of active groups than the other extract. The interactions between chemical compounds (phenolic and non-phenolic compounds) might also be responsible for the antimicrobial effects.

Conclusions

The present study performed *in vitro* studies of antimicrobial properties of three different Pasak Bumi (*E. longifolia* Jack, *R. elliptica* and *T. macrophylla*) on oral pathogens which gave positive results and different degree of activity.

Data availability

Underlying data is available form Open Science Framework

OSF: Dataset 1. Pasak Bumi root extract, https://doi.org/10.17605/OSF.IO/Q6X7R

License: CC0 1.0 Universal

Grant information

This work was supported by the Forest Product Chemistry Laboratory, Forestry Faculty of Mulawarman University 2017/2018 and DIPA B2P2EHD 2017.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

The authors gratefully acknowledge the Dipterocarps Forest Ecosystem Research and Development Center, Samarinda, East Kalimantan and members of the Laboratory of Forest Products Chemistry, Mulawarman University.

References

Page 5 of 8
Sarifah Nurjanah
Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung, Indonesia

This is an interesting manuscript describing the antimicrobial activity of tree species plants known as Pasak Bumi (Eurycoma longifolia, Rennelia elliptica and Trivalvaria macrophylla) against bacteria: Staphylococcus aureus, Streptococcus mutans and Streptococcus sobrinus and yeast: Candida albicans. The study proved that Pasak Bumi not only can be used as an aphrodisiac, but also as a postpartum treatment for fever and malaria. It also has the potential as an antimicrobial agent. The paper is well written and structured, but there are some suggestions as follows:

Introduction:
1. In line 8, clarify the references of research on Pasak Bumi that have been done (references number 8, 9, 10 and 11).

2. In line 11 the authors said that there is no research on R. elliptica yet. This is not in accordance with what is written on the Discussion line 5-9 which states that there were studies on the antimicrobial activity of R. elliptica against C. albicans and S. aureus. So, it should be explained in the Introduction that there were antimicrobial studies on R. elliptica as well as E. longifolia.

Methods:
1. The authors used 760 nm wavelengths on the spectrometer in determining phenol content (used the Folin-Ciocalteu method), what is the reason for the use of these wavelengths? Do you use the results of other research or do you have your own tests? We recommend that you mention the basis used. Based on several studies there were also 750 nm (Rollando and Monica, 2018) or 765 nm (Pourmorad et al., 2006) used.

2. It is not mentioned how long the maceration process was carried out for. We recommend that you write down how long the maceration process was for each solution (n-hexana, ethyl acetate and ethanol).

3. In determining the total phenol content, what DMSO stands for should be stated. Is it dimethyl sulfoxide?
Discussion:
1. The phenol component is thought to be a component that is responsible for antimicrobial properties. Although, the result showed that *T. macrophylla* contains higher phenol than *E. longifolia* but did not show higher antimicrobial activity. For this reason, it is better to find out its chemical composition to determine the components that affect antimicrobial activity.

References
3. Rollando R, Monica E: Determination of total phenolic content and water activities of antioxidant activities methanol extract faloak stem skin (Sericulia quadrifida R.Br) [Article in Indonesian]. *SCIENTIA Journal of Pharmacy and Health.* 2018; 8 (1): 29-36 Reference Source

Is the work clearly and accurately presented and does it cite the current literature? Yes

Is the study design appropriate and is the work technically sound? Yes

Are sufficient details of methods and analysis provided to allow replication by others? Yes

If applicable, is the statistical analysis and its interpretation appropriate? Yes

Are all the source data underlying the results available to ensure full reproducibility? Yes

Are the conclusions drawn adequately supported by the results? Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: process engineering, essential oil, microbiology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com