RESEARCH ARTICLE

Discipline-specific open access publishing practices and barriers to change: an evidence-based review [version 1; peer review: 3 approved with reservations]

Anna Severin id1,2, Matthias Egger id1,2, Martin Paul Eve id3, Daniel Hürlimann id4

1Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, 3012, Switzerland
2Swiss National Science Foundation, Bern, 3001, Switzerland
3Department of English and Humanities, Birkbeck University of London, London, WC1H 0PD, UK
4Research Center for Information Law, University of St.Gallen, St.Gallen, 9000, Switzerland

Abstract

Background: Many of the discussions surrounding Open Access (OA) revolve around how it affects publishing practices across different academic disciplines. It was a long-held view that it would be only a matter of time for all disciplines to fully and relatively homogeneously implement OA. Recent large-scale bibliometric studies show however that the uptake of OA differs substantially across disciplines. This study investigates the underlying mechanisms that cause disciplines to vary in their OA publishing practices. We aimed to answer two questions: First, how do different disciplines adopt and shape OA publishing practices? Second, what discipline-specific barriers to and potentials for OA can be identified?

Methods: In a first step, we identified and synthesized relevant bibliometric studies that assessed OA prevalence and publishing patterns across disciplines. In a second step, and adopting a social shaping of technology perspective, we studied evidence on the socio-technical forces that shape OA publishing practices. We examined a variety of data sources, including, but not limited to, publisher policies and guidelines, OA mandates and policies and author surveys.

Results: Over the last three decades, scholarly publishing has experienced a shift from “closed” access to OA as the proportion of scholarly literature that is openly accessible has increased continuously. The shift towards OA is however uneven across disciplines in two respects: first, the growth of OA has been uneven across disciplines, which manifests itself in varying OA prevalence levels. Second, disciplines use different OA publishing channels to make research outputs OA.

Conclusions: We conclude that historically grown publishing practices differ in terms of their compatibility with OA, which is the reason why OA can be assumed to be a natural continuation of publishing cultures in some disciplines, whereas in other disciplines, the implementation of OA faces major barriers and would require a change of research culture.

Keywords

Open Access, Open Science, Publishing, Scholarly Communication,
Introduction
As a response to perceived limitations of the subscription-based model of scholarly publishing and propelled by technical possibilities provided by the internet, Open Access (OA) presents a new model of academic publishing. OA takes different forms but generally offers free and unrestricted access to the outputs of academic research with relaxed constraints on reuse, as opposed to publications being “locked away” behind subscription paywalls. Having gained global relevance, the potential implications of OA for academic publishing continue to generate debate in the academic community. Many of these discussions revolve around the question of how OA affects publishing practices in different academic disciplines.

The foundation for OA was laid in high-energy physics when Paul Ginsparg established the arXiv open repository for preprints. OA soon appeared to constitute an “inescapable imperative” for several reasons: first, OA gained early momentum based on a combination of grass-root advocacy initiatives promoting the unrestricted access to publications on the one hand and funding organisations, universities and national governments implementing OA mandates and policies that require scholars to make their outputs publicly accessible on the other hand. Second, OA has the potential to enhance scholarly communication by speeding up the dissemination of research outputs, by expanding readership and by increasing the impact of research outputs. From an information-processing perspective, scholars across all fields should see these benefits and use OA communication channels uniformly. These trends suggested that it would only be a matter of time for all academic disciplines and fields to fully adopt OA and to converge on a stable set of relatively homogeneous OA publishing practices. In contrast to these expectations, recent bibliometric studies show that academic disciplines vary considerably in terms of their OA publishing practices.

Bibliometric studies investigating disciplinary OA publishing practices are in large part descriptive and, as such, do not analyse the mechanisms that shape discipline-specific OA publishing practices. This limitation becomes relevant as vast amounts of resources and efforts are committed to the development, maintenance and advancement of OA communication channels. In the absence of a valid theory of how academic disciplines adopt OA, resources may be dedicated to ventures that are not sustainable. We aim to address this by answering the following questions: (1) How do different academic disciplines adopt and shape OA publishing practices? (2) What discipline-specific barriers to and potentials for OA publishing can be identified? In order to answer these questions, we first synthesise relevant bibliometric studies that were aimed at assessing the prevalence and patterns of OA publishing practices across academic disciplines. Adopting a social shaping of technology perspective, we then develop an analytical framework that consists of socio-cultural and technological factors that generally shape publishing practices. We apply this analytical framework to the case of OA publishing and examine evidence on the forces that represent barriers to and potentials for OA, causing OA publishing practices to differ across disciplines. Doing so, we examine and aggregate evidence from a variety of primary data sources including, but not limited to, OA mandates and policies, infrastructures of scholarly communication technologies and author surveys.

Methods
Prevalence and patterns of open access publishing practices: Meta-synthesis of bibliometric studies
The objective of our review is to identify and synthesise large-scale bibliometric studies on the prevalence and patterns of OA publishing across academic disciplines. Such studies usually analyse similar samples of academic publications, including data from Web of Science (WoS), Google Scholar (GS) and Scopus, but employ different methods for identifying disciplinary publishing practices within these databases. This relates to definitions of OA, included OA routes, covered publication years and employed search strategies for OA full texts. For this reason, we conducted a meta-synthesis. The aim of a meta-synthesis is to qualitatively integrate, compare and analyse methodologically heterogeneous studies, thereby allowing the emergence of interpretive themes. In this study, we synthesised the results from bibliometric studies to identify patterns of OA publishing practices across academic disciplines. The search was pre-planned and comprehensively, as it aimed to seek all available studies. No date limits were employed. The searches were conducted in August to October 2018. Bibliometric studies were searched in a systematic way. This involved, first, the querying of the online databases ScienceOpen, Scopus, WoS and GS. The search was conducted using the following search string: “Discipline” AND “Publish*” AND “Open access” OR “OA”. The selection of the search terms was based on the topic literature on scholarly communication. Second, reference lists and bibliographies of all included studies were evaluated manually for additional publications. Having identified key experts within the field, their GS profiles were also searched for material. In an initial screening stage, two independent reviewers screened titles and abstracts of studies and decided on whether to include respective studies in the review. Studies were excluded that did not meet our selection criteria, as outlined in Table 1. This procedure resulted in a total of 11 studies. In a second screening stage, we assessed the full text of the included studies. In order to gain the data of interest to our review, we analysed the “Results” sections of primary studies and extracted data on reported proportions of publications that were OA, including both the overall OA proportions and the relative uptake on OA routes.

Mechanisms and factors shaping open access publishing practices: Narrative review of sociotechnological forces
Our goal in this section is to explain the patterns of OA publishing practices that we observed in the previous section. To do this, we performed a narrative review of the mechanisms and factors that shape OA publishing practices in different academic disciplines. Thereby, we aim to identify discipline-specific barriers and potentials for OA. We recruited an interdisciplinary team of researchers covering the broad academic disciplines natural and technical sciences, medicine and health-related sciences, social sciences and law, arts and the humanities. Each co-author of our team examined evidence on factors that shape OA publishing practices within their own areas of research training. In doing so, we did not perform a systematic review of the literature. Instead, we developed an analytical framework of socio-cultural and technical factors that generally shape publishing practices. Each co-author used this framework as a tool for identifying the socio-technical mechanisms and factors that shape OA publishing practices within their own discipline.
In general, studies were concerned with how much of the scholarly literature in a discipline is openly accessible, and via which OA routes scholarly outputs are made openly accessible. Earlier studies distinguished between three phases. Dated between the early 1990s and the mid to late 2000s, the first phase can be characterised as a phase of formation: A few fields related to the natural and technical sciences took on a pioneering role in implementing OA, amongst these particularly mathematics (reported OA prevalence rates of 16% and 20% in 1999 and 2002, respectively). An exception to this are the fields engineering and chemistry, which feature OA prevalence rates that consistently are lower than all natural and technical sciences and lower than most other disciplines, including the social sciences and humanities.

Table 1. Selection criteria literature search.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA publishing practices</td>
<td>The study examines the overall prevalence of OA and the uptake of OA routes rather than only assessing the overall free availability of scholarly outputs.</td>
</tr>
<tr>
<td>Academic disciplines</td>
<td>The study examines OA publishing practices across broad academic disciplines, including the medical and life sciences, natural sciences, social sciences and law and humanities.</td>
</tr>
<tr>
<td>International scope</td>
<td>The study assesses OA publishing practices across countries. The scope is not limited to a national setting.</td>
</tr>
<tr>
<td>English language</td>
<td>The study is written in English.</td>
</tr>
</tbody>
</table>

Results

Prevalence and patterns of open access publishing practices: Meta-synthesis of bibliometric studies

The characteristics of the studies included in our review are presented in Table 2. In general, studies were concerned with the questions of (1) how much of the scholarly literature in a discipline is openly accessible, and (2) via which OA route scholarly outputs are made openly accessible. Earlier studies analysed random samples of academic publications from bibliometric databases, such as Scopus or WoS, whereas more recent studies examined these databases in full. Making use of automated web search strategies, studies assessed whether openly accessible versions of sampled scholarly publications could be found on the web, for example through Google Scholar. On this basis, studies determined OA levels and the relative uptake on different OA routes across disciplines. Earlier studies distinguished between Green OA, which refers to articles published in subscription-based journals, but for which either the accepted or the published version can be retrieved from an open repository, and Gold OA, which describes articles published in OA journals, that is, journals in which all articles are openly accessible. More recent studies also include Hybrid OA, which refers to articles free under an open license in a subscription journal, and Bronze OA, which describes articles free to read on the publisher page without an open license.

Table 3 shows the main findings of the studies included in our meta-synthesis. Looking at the overall prevalence of OA for all disciplines, we see that the system of academic publishing has experienced a shift from “closed” access to OA: OA levels have increased steadily across all disciplines, from 20.4% of all scholarly outputs reported as OA in 2008, to 23% in 2010 and more than half of all scholarly outputs being OA in publication years later than 2010: 53.7% for publication years 2011 until 2013, 54.6% on average in years 2009 and 2014, 66% for publication years between 2009 and 2017, and 55% in 2014. Two studies determined the prevalence of OA to be less than 50% for publication years later than 2010: Piwowar et al. determined that on average 36.1% of the scholarly literature was made OA in the time period between 2009 and 2015 and Bosman and Kramer found this share to be 29.4% for 2016 and 2017. Looking at how different disciplines implemented OA over time, we can distinguish between three phases. Dated between the early 1990s and the mid 2000s, the first phase can be characterised as a phase of formation: A few fields related to the natural and technical sciences took on a pioneering role in implementing OA, amongst these particularly mathematics (reported OA levels of 25.6% and 42% in 2008 and 2010, respectively) and physics and and space-related research fields (OA levels of 32.9% for earth sciences and 23.5% for physics & astronomy in 2008, and 37% for earth & space and 27% for physics in 2010). An exception to this are the fields engineering and chemistry, which feature OA prevalence rates that consistently are lower than all natural and technical sciences and lower than most other disciplines, including the social sciences and the humanities.

The social sciences were also fast in embracing OA, featuring OA prevalence levels only slightly below those reported for the natural and technical sciences (16% OA in sociology in the time from 1992 to 2003, followed by economics with 13.5% OA and business with 9% OA; 23.5% OA and 37% OA observed in the social sciences for publication years 2008 and 2010, respectively). Medicine and health-related research fields were substantially slower in implementing OA than most natural and social sciences (OA levels of 6.2% in medicine between 1992 and 2003; 21.7% for medicine and 15.2% for other areas related to medicine in 2008; 17%, 14% and 12% OA reported for health, clinical medicine and biomedical research in 2010, respectively). As such, medicine and health-related fields implemented OA to an even smaller degree than the humanities have in the early years of OA (19% OA reported for humanities in 2010). The second phase of OA is dated between the mid 2000s and the mid 2010s and can be characterized as a period of transformation. In medicine and health-related research fields, OA uptake increased substantially, causing OA levels in these fields to equal

It has been discussed controversially whether or not this type of publication is in fact OA. A case has been made that such publications are not (Bronze) OA, but “free-to-read” only, whereas others argue that Bronze OA is a sub-category of OA as OA is not a binary category, but encompasses a range of components that determine the degree of openness of a certain publication outlet. Following the latter argument, we use the term Bronze OA throughout this publication and acknowledge the fact that there are varying degrees of openness.
<table>
<thead>
<tr>
<th>Study</th>
<th>Data sources</th>
<th>No. of analysed publications</th>
<th>Publication years</th>
<th>Definition of OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larivière and Sugimoto (2018)</td>
<td>Papers published between 2009 and 2017 that are indexed in WoS and have a DOI, combined with Unpaywall</td>
<td>12,683,296</td>
<td>2009 – 2017</td>
<td>Gold and Green</td>
</tr>
<tr>
<td>Martin-Martin et al. (2018)</td>
<td>All documents with a DOI from WoS, Social Sciences Citation Index and Arts & Humanities Citations Index, combined with GS</td>
<td>2.6 million documents</td>
<td>2009 and 2014</td>
<td>Gold, Hybrid, Bronze, Green</td>
</tr>
<tr>
<td>Jamali and Nabavi (2015)</td>
<td>First ten hits from queries of minor Scopus subject categories in GS</td>
<td>7244 articles</td>
<td>1996 – 2013</td>
<td>Any full text accessible through GS (Gold, Green, Other)</td>
</tr>
<tr>
<td>Khabsa and Giles (2014)</td>
<td>Capture-recapture approach</td>
<td>No limit</td>
<td>No limit</td>
<td>Any full text accessible on the web (Gold, Green, Other)</td>
</tr>
<tr>
<td>European Commission (2014)</td>
<td>Scopus, combined with searches of DOAJ, ROAR, OpenDOAR, PubMedCentral, and other sources of freely downloadable papers</td>
<td>513,793 articles</td>
<td>1996 – 2013</td>
<td>Gold, Green, Other</td>
</tr>
<tr>
<td>BJØRK et al. (2010)</td>
<td>Random sample of full-text articles from Scopus, combined with Google searches for OA full-texts</td>
<td>1837 articles</td>
<td>2008</td>
<td>Any full text accessible on the web (Gold, Green, Other)</td>
</tr>
<tr>
<td>Hajjem (2006)</td>
<td>CDROM version of ISI’s Science and Social Science Citation Indices, combined with robot crawling of the web for OA full-texts</td>
<td>1,307,038 articles</td>
<td>1992 – 2003</td>
<td>Any full text accessible on the web (Gold, Green, Other)</td>
</tr>
<tr>
<td>Study</td>
<td>% OA by discipline (year)</td>
<td>% OA route by discipline (year)</td>
<td>Gold</td>
<td>Green</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Piwowar et al. (2018)</td>
<td>All disciplines: 36.1% (2009–2015) Biomedical Research: 58.5% Mathematics: 52.7% Clinical Medicine: 47.8% Health: 41.8% Earth and Space: 40.4% Biology: 32.7% Physics: 31.6% Psychology: 29.7% Social Sciences: 25.1% Professional Fields: 20.6% Engineering and Technology: 17.4% Chemistry: 15.5%</td>
<td>All disciplines: 7.4% (2009–2015) Biomedical Research: 15.3% Health: 11.7% Mathematics: 11.2% Clinical Medicine: 10.3% Biology: 7.3% Earth and Space: 5.6% Psychology: 4.7% Engineering and Technology: 4.2% Physics: 3.1% Humanities: 3.0% Chemistry: 2.8% Arts: 2.4% Professional Fields: 1.4% Social Sciences: 1.3%</td>
<td>All disciplines: 11.5% (2009–2015) Biomedical Research: 18.7% Mathematics: 17.6% Health: 14.1% Professional Fields: 10% Biomedical Research: 10% Clinical Medicine: 9.8% Earth and Space: 8.5% Engineering and Technology: 8.3% Chemistry: 7.9% Biology: 7.2% Humanities: 6.3% Arts: 4.9%</td>
<td>All disciplines: 0.6% (2009–2015) Mathematics: 9.4% Humanities: 8.6% Biomedical Research: 8.1% Clinical Medicine: 6.3% Biology: 4.2% Health: 3.0% Earth and Space: 2.7% Chemistry: 2.3% Physics: 2.1% Psychology: 2% Professional Fields: 1.8% Engineering and Technology: 1.8% Social Sciences: 1.8% Arts: 0.6%</td>
</tr>
<tr>
<td>Study</td>
<td>% OA by discipline (year)</td>
<td>% OA route by discipline (year)</td>
<td>Gold</td>
<td>Green</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Health Sciences: 55%</td>
<td>Natural Sciences: 55%</td>
<td>Health Sciences: 33%</td>
<td>Health Sciences: 33%</td>
</tr>
<tr>
<td></td>
<td>Arts & Humanities: 24%</td>
<td></td>
<td>Economic and Social Sciences: 8%</td>
<td>Natural Sciences: 15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arts and Humanities: 7%</td>
<td>Arts and Humanities: 9%</td>
</tr>
<tr>
<td></td>
<td>Medical and Life Sciences: 60%</td>
<td>Social Sciences: 50%</td>
<td>Medical and Life Sciences: 8.2%</td>
<td>Medical and Life Sciences: 19.4%</td>
</tr>
<tr>
<td></td>
<td>Social and Behavioral Sciences: 49.9%</td>
<td>Natural Sciences: 50%</td>
<td>Law, Arts and Humanities: 7.3%</td>
<td>Social and Behavioral Sciences: 15.9%</td>
</tr>
<tr>
<td></td>
<td>Engineering Sciences: 40.2%</td>
<td>Language, Information and Communication: 5.7%</td>
<td>Natural Sciences: 3.5%</td>
<td>Natural Sciences: 15.3%</td>
</tr>
<tr>
<td></td>
<td>Law, Arts and Humanities: 36.3%</td>
<td>Social and Behavioral Sciences: 1.7%</td>
<td>Engineering Sciences: 3.5%</td>
<td>Engineering Sciences: 8.7%</td>
</tr>
<tr>
<td></td>
<td>Law, Arts and Humanities: 32.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life Sciences: 66.9%</td>
<td>Social Sciences: 60.8%</td>
<td>Life Sciences: 60.9%</td>
<td>Physical Sciences: 18.3%</td>
</tr>
<tr>
<td></td>
<td>Physical Sciences: 60%</td>
<td>Health Sciences: 59.7%</td>
<td>Physical Sciences: 56.4%</td>
<td>Social Sciences: 14.3%</td>
</tr>
<tr>
<td></td>
<td>Health Sciences: 59.7%</td>
<td></td>
<td>Health Sciences: 40.4%</td>
<td>Life Sciences: 2.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Social Sciences: 40.4%</td>
<td>Health Sciences: 0.5%</td>
</tr>
<tr>
<td>Khabasa and Giles (2014)</td>
<td>All disciplines: 24% (all years)</td>
<td>Computer Science: 50%</td>
<td>Not assessed</td>
<td>Not assessed</td>
</tr>
<tr>
<td></td>
<td>Computer Science: 50%</td>
<td>Multidisciplinary Sciences: 43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics and Business: 42%</td>
<td>Geosciences: 35%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geosciences: 35%</td>
<td>Physics: 35%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Sciences: 29%</td>
<td>Mathematics: 27%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics: 27%</td>
<td>Medicine: 26%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicine: 26%</td>
<td>Biology: 25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology: 25%</td>
<td>Arts and Humanities: 24%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arts and Humanities: 24%</td>
<td>Chemistry: 22%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry: 22%</td>
<td>Social Sciences: 19%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Sciences: 19%</td>
<td>Agricultural Science: 12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agricultural Science: 12%</td>
<td>Engineering: 12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering: 12%</td>
<td>Material Science: 12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>% OA by discipline (year)</td>
<td>% OA route by discipline (year)</td>
<td>Gold</td>
<td>Green</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>European Commission (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All disciplines: 53.7% (2011 – 2013)</td>
<td>General Science & Technology: 89.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biomedical Research: 70.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematics & Statistics: 67.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biology: 66.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics & Astronomy: 59.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Earth & Environmental: 57.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychology & Cognitive Sciences: 57.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Health & Health Services: 57.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical Medicine: 56.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sciences Economics & Business: 54.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information & Communication Technology: 54.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agriculture, Fisheries & Forestry: 53.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Sciences: 43.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabling & Strategic Technologies: 39.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry: 38.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Built Environment & Design: 37.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arts, Humanities & Social Sciences: 35.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philosophy & Theology: 34.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering: 34.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Historical Studies: 34.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication & Textual Studies: 30.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visual & Performing Arts: 23.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All fields: 12.1% (2011–2013)</td>
<td>General Science & Technology: 58.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biology: 17.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agriculture, Fisheries & Forestry: 16.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public Health & Health Services: 15.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical Medicine: 14.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biomedical Research: 12.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information & Communication Technologies: 12.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematics & Statistics: 11.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry: 9.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabling & Strategic Technologies: 9.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Sciences: 8.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication & Textual Studies: 8.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Earth & Environmental Sciences: 8.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Historical Studies: 7.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychology & Cognitive Sciences: 5.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Economics & Business: 5.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philosophy & Theology: 5.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics & Astronomy: 5.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering: 4.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Built Environment & Design: 3.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visual & Performing Arts: 2.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Arts, Humanities Social Sciences: 2.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All fields: 5.9% (2011–2013)</td>
<td>Physics & Astronomy: 25.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematics & Statistics: 24.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Economics & Business: 11.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information & Communication Technologies: 8.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Earth & Environmental Sciences: 5.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Sciences: 5.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philosophy & Theology: 5.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Built Environment & Design: 4.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Science & Technology: 3.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biology: 3.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychology & Cognitive Sciences: 3.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication & Textual Studies: 3.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering: 3.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visual & Performing Arts: 2.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agriculture, Fisheries & Forestry: 2.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabling & Strategic Technologies: 2.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Sciences: 2.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Historical Studies: 2.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry: 1.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>OA route by discipline (year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gargouri et al. (2012)</td>
<td>All disciplines: 21% (2005-2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics: 43%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earth & Space: 37%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Sciences: 37%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Fields: 29%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics: 27%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering & Technology: 23%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychology: 23%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology: 22%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities: 19%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Health: 17%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clinical Medicine: 14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arts: 14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomedical Research: 12%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry: 9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomedical Research: 9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All disciplines: 8% (2008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicine: 13.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biochemistry, Genetics & Molecular Biology: 13.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other areas related to Medicine: 10.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics: 8.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earth Sciences: 7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Sciences: 5.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Chemical Engineering: 5.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other areas related to Medicine: 4.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All disciplines: 11.9% (2008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earth Sciences: 25.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics: 25.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics & Astronomy: 23.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Sciences: 23.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering: 19.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molecular Biology: 19.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other areas related to Medicine: 15.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Chemical Engineering: 12.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All disciplines: Not reported (1982-2003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sociology: 16%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics: 13.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business: 9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Politics: 7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychology: 7.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Health: 6.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Political Science: 5.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Law: 5.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not assessed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
or surpass OA prevalence in the social sciences and humanities (26% OA determined for medicine for publication years until 2013, while 24% OA showed for arts and humanities; 59.7% OA in health sciences between 2004 and 2014, while 60.8% of publications in social sciences were OA). For the early period of this phase, OA levels in the natural and technical sciences remained well above those observed in other disciplines (Observed OA levels were 50% in computer sciences, 35% in both geo-sciences and physics, 29% in environmental sciences and 27% in mathematics in publication years until 2013; 60% OA in physical sciences in the time from 2004 to 2014). Because of higher OA growth rates in medicine and health towards the end of this phase, these fields soon overtook the natural and technical sciences in embracing the idea of OA. Particularly biomedical research took on a leading role in embracing OA (70.6% OA in biomedical research, 67.6% OA in mathematics & statistics, 66.2% for biology, 59.4% for physics & astronomy and 58.8% for earth and environmental sciences, closely followed by public health & health services and clinical medicine with OA levels of 57.2% and 56.3%, respectively, in the period from 2011 to 2013). During this period, the gap between the natural and technical sciences and medicine on the one side and the social sciences and humanities on the other side widened. The humanities in particular published research outputs to lesser degrees OA than other disciplines (35.0% OA in arts, humanities & social sciences, 34.7% in philosophy & theology, 34.4% in historical studies for publication years 2011 to 2013). The third phase of OA can be dated after the early 2010s and is a phase of stabilisation, in which differences in the OA publishing patterns across disciplines have become established. Studies consistently show that medical and health-related research fields are taking the leading roles in embracing OA, featuring OA uptake levels that are well above those reported for other disciplines (Reported OA levels are 60% in medical and life sciences on average for 2009 and 2014; 59% for health sciences in 2014; 58.5%, 47.8% and 41.8% for biomedical research, clinical medicine and health in publication years from 2009 to 2015, respectively; 41.7% for life sciences and biomedicine in 2016 and 85%, 79% and 73% for biomedical research, clinical health and health in publication years from 2009 to 2017, respectively). The medical sciences are closely followed by disciplines from the natural and technical sciences (50% OA for natural sciences on average in 2009 and 2014; 55% OA for natural sciences in 2014; 52.7% OA for mathematics, 40.4% OA in earth and space, 32.7% OA in biology and 31.6% OA in physics between 2009 and 2015; 14.8% for physical sciences / technology in 2016; 57% OA for mathematics, 56% OA for earth and space, % 56% OA for physics and 51% OA for biology in publication years from 2009 to 2017). OA uptake in the social sciences is close behind the natural sciences (Reported OA levels are 49.9% for social and behavioural sciences in 2009 to 2014; 55% for economic and social sciences in 2014; 25.1% in social sciences between 2009 and 2015; 17.3% in social sciences for 2016; 39% for social sciences between 2009 and 2017). Law, arts and humanities show the lowest OA uptake across all disciplines (OA prevalence rates determined to be 32.3% for law, arts and humanities between 2009 and 2014; 24% for arts and humanities in 2014; 13.9% for arts and humanities in 2016). Looking at the relative uptake of OA routes for all disciplines, we observe that most OA is published via the Green route, that is, published as journal articles for which the accepted or the published version can be retrieved from an open repository. Gold OA journals are also of importance for scholarly publishing, even though the relative uptake on Gold OA remains well below Green OA for most publication years (Relative uptake levels were 11.9% Green OA and 8.5% Gold OA in 2008, respectively, 21% Green OA and 2% Gold OA in publication years from 2005 to 2010, 5.9% Green OA and 12.1% Gold OA between 2011 and 2013, 10.8% Green OA and 7.3% Gold OA on average in publication years 2009 and 2014; 8.8% Green OA and 49.4% Gold OA in publication years between 2004 and 2014, 31% Green OA and 23% Gold OA in 2014 and 11.5% Green OA and 7.4% Gold OA in publication years between 2009 and 2015). Studies that also assessed the relative uptake on Hybrid OA and Bronze OA have revealed, that, first, Hybrid OA generally is of little importance for scholarly publishing, with 1% or less of all scholarly outputs being published as articles free under an open license in subscription journals. Second, the importance of Bronze OA is comparable to that of Gold OA. Relative uptake on Bronze OA was determined to be an average 13.2% for publication years 2009 and 2014 and 12.9% for publication years from 2009 to 2015. Looking at the relative uptake on OA routes by discipline, we observe that there is little consistency in reported uptake levels across the studies included in our review, which likely is due to methodological differences in how studies determined how much of the scholarly literature in a specific discipline is published through different OA routes. Nevertheless, we are able to determine the relative importance of the different OA routes for each discipline: For the medical sciences, we observe that publication in pure OA journals (Gold OA) plays a more important role for making research findings openly accessible than both the archiving of articles in repositories following publication in subscription journals (Green OA) and the publication of articles free under an open license in subscription journals (Hybrid OA). Two more recent studies have revealed that the publication of articles free to read on the publisher page without open license (Bronze OA) also is of substantial relevance for OA in the medical sciences, featuring similar prevalence levels as Gold OA. For the natural and technical sciences, we see that there are substantial differences in the OA publishing patterns between different fields: scholars in physics, mathematics, astronomy and biology make large shares of their research outputs openly accessible through the Green route of OA, followed by Bronze OA, Gold OA, and, with some distance, Hybrid OA. In contrast, for scholars in chemistry and biology, Gold OA journals are of greater importance than any other OA route. For scholars in the social sciences, Green OA is of greater importance for OA publishing than Gold OA, Bronze OA and Hybrid OA. In the humanities and law, scholars make research outputs openly accessible predominantly through publication of articles in Hybrid OA journals, followed by Green OA, Bronze OA and Gold OA.

Analytical framework: Social shaping of technology

Previous studies have analysed discipline-specific publishing practices from a range of perspectives. In general, these
Several surveys and inter-
entailed in this framework are illustrated in
showing how OA is implemented
Social and cultural factors are believed to
be of less or no relevance in explaining the emergence of OA. SCOT perspectives view technology as a social phenomenon
constructed by the society producing and using it. In order to
analyse OA publishing patterns, one would have to first
understand the social relations within which respective tech-
nologies are used. Both positions have been shown to suffer
from limitations in explaining scholarly publishing practices. The so-called “social shaping of technology” (SST) perspec
tive that takes an intermediate standing between these extremes proves to be more useful for analysing OA publishing prac-
tices. SST is a theoretical stance that conceives the relation-
ship between technology and society as one of mutual shaping. Instead of evolving according to an inner technical logic or a
single social determinant, technology is believed to be a social
product patterned by the conditions of its creation and use. Central to technical change are choices made by social actors
and groups during the generation and implementation of new
technologies. This process involves a set of conscious and uncon-
scious choices between different technical options. Which options
social actors select is affected by both technical consider-
ations and a range of social and cultural aspects. Thus, social
choices influence the contents of technologies. At the same time,
technologies have social implications as they shape human
action and behaviour. Following this, scholarly publishing
practices can be understood as socio-technical ensembles: the
ways in which scholarly outputs are published is affected by the
operational choices made by scholars during the creation, imple-
mentation and use of respective communication technologies.
These operational choices are influenced by both technical
considerations and socio-cultural aspects. As communication
technologies are implemented and used, they in turn affect the
ways in which scholars communicate and disseminate their research findings. It follows that, in order to explain discipline-
specific OA publishing practices, it is necessary to examine the
socio-cultural and technical factors that affect publishing choices
within particular disciplines. Based on these assumptions, we
have developed an analytical framework that places focus upon
technical factors and socio-cultural factors alike when analysing
patterns of OA publishing practices. The analytical dimensions
teained in this framework are illustrated in Table 4.

Open access in the medical sciences
Initially, medicine and health-related disciplines were reluctant
to adopt OA publishing, resulting in OA levels to be well below
those observed in the natural and social sciences. From the
mid-2000s onwards, however, the uptake on OA increased sub-
stantially and particularly biomedicine and clinical medicine
took on leading roles in embracing OA. Research outputs are
predominantly made OA by publication in Gold OA journals, whereas Hybrid OA, Bronze OA and Green OA are of little
importance for these disciplines. Factors facilitating OA can
be identified as strong OA mandates combined with either funder-operated repositories or available funding for article
processing charges (APCs), the richness in high-quality and
prestigious OA journals and the wide circulation of publica-
tions in these outlets. A major barrier to OA in the medical
sciences are authors’ concerns over the quality of peer review in
OA journals, which is related to the emergence of fraudulent
journals and publishers.

A) Author behaviour and attitudes – Several surveys and inter-
view studies have shown that in biomedicine and the life sci-
ences, a large majority of authors support OA publishing, but
the reputation of journals, their impact factor, and the quality
and speed of peer review are more important factors determining
the choice of publication outlets than the OA status. For example, in 2004, Sara Schroter and colleagues interviewed
authors who submitted articles to the BMJ. Almost all authors
supported the concept of OA, but many were concerned
about poor quality research being published for a fee, and
OA was not a factor of importance when selecting a journal.
More recently, the 2014 international author survey con-
ducted by publisher Taylor & Francis showed that investiga-
tors working in Science, Technology and Medicine (SEM)
mentioned wider circulation than publication in a subscription
journal as an advantage of OA, but were strongly against to the
use of their work for commercial gain without their explicit
permission. Authors expected rigorous peer review and rapid
publication in return for paying for OA publication.
Surveys among academics from lower income countries indicate that the funding of APCs is an important concern. A study from India
found that the most important factors influencing the selection
of medical or dental journals were that the journal is indexed in
widely used bibliographic databases, has an online submission
system, a satisfactory impact factor and peer review, and that
APCs are affordable. The importance of affordable APCs may explain why authors from resource-limited settings are over-represented among publications in fraudulent journals that charge small fees but do not provide proper peer review or add
value through editing.

B) Publisher behaviour and policies – As private profit-
oriented companies, most traditional publishers are driven by
maximizing income to satisfy their shareholders. Consequently,
as the OA model is unlikely to generate the level of income and
profit that can be achieved with the subscription model, few
commercial medical publishers have converted their subscription
journals to OA. This also applies to academic or professional
societies. Policies on prior publication remain tight for most
of these journals. Some journals have now moved to allowing

1 For a comprehensive discussion of the merits of these perspectives in explaining publishing practices see Kling & Kim (2000) and Oostveen (2004).
their authors to self-archive submitted manuscripts without an embargo period, while self-archiving of accepted versions of a publication remains subject to a standard embargo period of 12 months. Pioneers among OA medical journals include the Journal of Clinical Investigation, which in 1996 became the first major journal to be freely available on the web. Of note, publication in the journal was free to authors initially, but APCs were introduced after the journal lost 40% of its institutional subscribers. The BMJ followed suit in 1998, but moved some content (including editorials and education and debate articles) behind a pay wall in 2005. The number of OA journals increased considerably from 2000 onwards, with the arrival and rapid growth of OA publishers such as the not-for-profit publisher Public Library of Science (PLoS) or the commercial publisher BioMedCentral (BMC). The launch of OA journals by major biomedical research funders and the emergence of mega-journals are other factors that have influenced uptake of OA publishing in medical research fields.

C) Infrastructure of scholarly communication – OA publishing in the medical sciences focuses on Gold OA journals and only a small number of OA institutional and subject repositories has emerged. This can be explained as follows. First, sufficient funding is available for publication in Gold OA journals. Second, journal publications are of central importance in academic hiring and promotion decisions within the medical sciences. Third, there is a large number of high-quality Gold OA journals for authors to publish their research in. The uptake on open repositories in general is low, but an exception to this is the PubMed Central (PMC), which archives full-text scholarly articles and plays a central role in the medical and life sciences. PMC has experienced rapid growth in the late 2000s as the National Institutes of Health (NIH) introduced an OA policy that mandates its grantees to deposit the final peer-reviewed version of an article based on NIH-funded research in PMC. The embargo was initially 12 months after publication, but was later shortened to 6 months and journals have since moved to be compliant with this Green OA mandate. Submissions into the PMC undergo indexing and formatting procedures, which produces advanced metadata and unique identifiers. Of interest, even though not of the same relevance as PMC, is also the PeerJ Preprint section, which allows authors to submit preprints and postprints from the biological and medical sciences.

D) Structural and institutional factors – The main type of work products in the medical sciences are journal articles.

<table>
<thead>
<tr>
<th>Analytical Dimension</th>
<th>Description and Criteria</th>
</tr>
</thead>
</table>
| Author behaviour and attitudes | The publication outlets that scholars choose to publish the outputs of their research in and how they perceive these outlets, depending on the importance attached to the following criteria:
a) quality control mechanisms and standards thereof
b) speed of work and result-sharing
c) impact of publication outlets
d) prestige of publication outlets
e) terms of academic promotion |
| Publisher behaviour and policies | The degrees to which publishers (i.e. commercial publishers, university presses, scholarly societies and others) decide to make full journal volumes or selected papers either closed access or OA and the timing of that, reflected in the following publishing policies and guidelines:
a) lengths of embargoes
b) policies on prior publication
c) copyrights and licensing
d) APC levels |
| Infrastructures of scholarly communication channels | The characteristics of publication outlets (i.e. e-print servers and repositories, academic journals, digital libraries and academic social networks), described by:
a) availability
b) technical features
c) uptake by scholars |
| Structural and institutional factors | Characteristics of research activities and conduct, described by:
a) types of research (i.e. basic vs. applied research)
b) types of work products and research outputs
c) topic of research
d) research costs
e) funding structures |
| OA mandates and policies | The strength and effectiveness of OA mandates and policies by public funding agencies, research foundations and organisations, private companies and others, depending on their specific conditions:
a) degree of obligation (i.e. mandate vs. recommendation)
b) type of mandated or recommended OA route
c) existence of “opt-out” opportunities for specific disciplines or research outputs
d) permissible embargo periods for archiving in a repository following publication |
Like the natural sciences, research in the medical sciences and related fields in most parts is funded by project-specific grants, which makes it fairly easy to integrate processing charges for publication in OA journals into existing funding structures. Further, medical research is in large part funded by third-party funding, for example by the World Health Organization (WHO) and the Wellcome Trust. These organizations have strong OA mandates while, at the same time, providing both convenient open repositories for depositing articles and sufficient funds for covering processing charges for publication in OA journals.49

E) OA mandates and policies – Evolving national and institutional OA policies, OA mandates by major funders of (bio-)medical OA research, and the availability of funding for APCs have accelerated the uptake of OA publishing in the medical and life sciences. A substantial number of national governments have moved to require scholars in the medical and life sciences to make their articles OA if based on publicly-funded research by either publishing in OA journals or by making publications OA by depositing the accepted or the published version of an article in a repository. Usually, scholars are granted embargo periods of 6 or 12 months to comply with the latter.45 Besides national governments and research institutions, major funders of medical research play an active role in promoting OA. Besides the NIH, this includes the WHO and the Wellcome Trust. Since 2014, journal articles and book chapters based on WHO-funded research have to be published in either an Gold or Hybrid OA journal or in a subscription journal that allows the author to deposit the accepted version in PMC no later than 12 months after publication.46 Similarly to the NIH, the Wellcome Trust requires articles to be published in OA journals where a journal makes this option available and to be deposited as the accepted version in an open repositories no later than 6 months after publication. Both funders state that they will withhold or suspend payments if articles are not made OA. Both funders provide repository infrastructures (PMC for NIH and PMC or PMC Europe for Wellcome Trust) and funds for covering APCs.47 In contrast to the USA, the policy environment in the UK favoured gold and hybrid OA, with particularly high uptake in the life sciences and rapidly increasing costs.48

Open access in the natural and technical sciences
For most publication years, the natural and technical sciences show the highest OA prevalence rates amongst all disciplines. There are, however, substantial differences in the OA publishing patterns between different subdisciplines of the natural and technical sciences. Journals in the fields of physics, mathematics, astronomy, information technology and biology were the early pioneers of OA and continue to make large shares of their research outputs OA. In contrast, engineering and chemistry feature OA prevalence rates that are consistently much lower than in other fields of the natural and technical sciences and even slightly lower than OA levels observed in the social sciences and humanities. While Green OA seems to be of central relevance for OA publishing within physics, astronomy, biology, information technology and mathematics (followed by Bronze, Gold and, by some distance, Hybrid OA), scholars in chemistry and biology make larger shares of their research OA through publication in Gold OA journals than in open repositories. Factors facilitating OA in the natural and technical sciences can be identified as the long-existing culture of preprint distribution, availability in funding for APCs and high levels of awareness of and familiarity with OA publishing. Barriers to OA are concerns about the quality of OA journals and high degrees of industrial integration in some fields.

A) Author behaviour and attitudes – The distribution of preprints has a long tradition in many fields related to the natural sciences, particularly in physics, mathematics, astronomy, information technology and biology, where scholars commonly share their manuscripts before submitting these for publication to journals. Before it was possible to make documents available electronically, a paper-based culture of preprint distribution developed in the 1960s, especially in high-energy physics.49 With the emergence of the Internet, scholars began sharing electronic versions of their preprints informally via electronic mail and when Paul Ginsparg established the open repository arXiv in 1991, scholars started making their preprints openly accessible through centrally self-archiving them in arXiv. Surveys have revealed that, to scholars within these fields, rapid publication, high visibility and large readership appear to be the most important factors when it comes to choosing a publication outlet, and that scholars associate these features with depositing preprints in open repositories.50-52 Adding to this, scholars in the natural sciences generally show high levels of familiarity with the concepts of OA in general and Green OA in particular.53-55 As a consequence, Green OA has become the most popular way of making research outputs OA in physics, mathematics, astronomy, information technology and biology. Publishing in journals (closed-access and Gold, Hybrid or Bronze OA) is less prominent for scholars within these fields. In contrast, scholars in chemistry and engineering value publication in journals over self-archiving in repositories, which is the reason why Gold OA plays a bigger role than Green OA in these fields.56 Despite the preprint culture in some of the natural sciences, 40% to 50% of all research outputs overall remain closed-access today. Chemistry and engineering show particularly low uptake levels on OA. This might be due to the fact that scholars within these fields still have concerns about the quality of peer review in OA journals and are concerned that this might translate into low-quality publications in these outlets. Consequently, OA journals within the natural sciences have not yet been able to match the reputation of subscription journals.52

B) Publisher behaviour and policies – Commercial publishers as well as learned societies in the natural and technical sciences have been slow in embracing the idea of OA. This relates to two factors: First, publishers face a potential loss of revenues in switching from a subscription model to an APC model, as has been shown in a number of market analyses.53-54 Second, general concerns about the quality of OA journals are not only shared by scholars but also by publishers and learned societies.55 As a result, most of the major commercial publishers, as well as learned societies in the natural sciences, have been reluctant to either convert their existing subscription journals to
OA and to set up new OA journals. An exception to this are few large publishing houses that have started setting up new OA journals in disciplines that do not have a culture of preprint distribution, such as chemistry or engineering. In disciplines where there is a culture of preprint distribution, publishers have started relaxing policies on prior publication and enable manuscripts deposited in repositories to be directly submitted to their journals.

C) Infrastructure of scholarly communication – In physics, mathematics, astronomy, information technology and biology, scholars are used to sharing their research outputs openly making use of open repositories, particularly arXiv. Originally established within high energy physics, arXiv now is used by scholars in most fields of the natural sciences and its concept has eventuated in a number of discipline-specific repositories in other fields, including the social sciences. Even though repositories do not employ formal mechanisms of quality control, scholars within the natural sciences use them to first, disseminate their research outputs without publication delays, and second, stay informed about ongoing research within their fields. In the light of this publication culture, relatively few OA journals have emerged within these fields. In fields where there is a smaller culture of self-archiving in repositories, most particularly in chemistry and engineering, the number of OA journals has grown slowly but steadily in recent years. These journals cover a variety of specific subject areas, are peer-reviewed, and, for the most part, are published in English. Exemplary journals in engineering are the International Journal of Antennas and Propagation, the Journal of Engineered Fibers and Fabrics, Journal of Scientific and Industrial Research and Thermal Science. Chemistry journals that enjoy popularity are the Archive for Organic Chemistry, Beilstein Journal of Organic Chemistry, Chemistry Central, Catalysts and ChemistryOpen.

D) Structural and institutional factors – The main types of work products in the natural and technical sciences are journal articles, electronic preprints and conference proceedings, which are published records of conferences, congresses or other meetings. Researchers from the natural sciences have reported that the process of self-archiving electronic preprints and conference proceedings is little time-consuming and that they generally experience little difficulties in making research outputs OA using open repositories. In addition, and similar to the medical sciences, research in the natural sciences is in large parts funded by project-specific grants, which would make it fairly easy for scholars to integrate fees for publication in Gold or Hybrid OA journals into existing funding structures. A structural factor that limits the uptake on OA within the natural and technical sciences is that some of these fields, particularly chemistry and engineering, are industry-oriented. This adds to the fact that, particularly within engineering, the focus is rather national than international as products developed by engineers are, for the large part, produced for domestic markets. As a consequence of these factors, large numbers of publications within these fields are more practice- than science-oriented and are published in closed-access journals that are partly financed by advertising.

E) OA mandates and policies – Reflecting the ambition to make research outputs OA, there are strong OA mandates for the natural and technical sciences. Usually, these fields are subject to similar OA requirements as the medical sciences: scholars are usually required to make their outputs OA if based on publicly-funded research by either publishing in OA journals or by depositing the accepted or the published version of an article published in subscription journal in a repository. By default, scholars are granted embargo periods of 6 or 12 months to comply with the latter. Besides national and international funding agencies, CERN and the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP) play leading roles in promoting OA. SCOAP is an international partnership of funding agencies, research centers and libraries that was launched with the aim of providing funding for the conversion of high-energy physics journals from a subscription model of publishing to OA. Within this scheme, libraries and research centers either pay reduced subscription fees for participating journals or stop paying altogether. Saved monies feed into a central fund, which is used to pay publishers up front to publish OA articles. Doing so, the initiative enables scholars to make their research outputs OA without straining their own research funds. By 2014, five journals had been converted within the framework of SCOAP. The OA policy of CERN requires its scholars to publish their articles, wherever possible, in journals covered by SCOAP. When circumstances require publication in journals that are not covered by SCOAP, the APCs must be covered by funds from outside the CERN Budget, for example through EU projects or by other institutions. Where this is not possible, authors may request special permission and funds from CERN.

Open access in the social sciences
Overall, the OA uptake in the social sciences is higher than in most disciplines of the humanities, but remains below the medical and natural sciences. Publishing in Gold OA journals plays a less important role than the archiving of publications in institutional and subject repositories following publication in a subscription journal. For scholars within the social sciences, open repositories appear to be of central importance for making research outputs openly accessible, closely followed by publication in Gold OA journals, and, with some distance, Hybrid and Bronze OA. The low uptake on OA is due to a variety of reasons, including low levels of awareness, concerns about quality and prestige of OA journals, the central role of monographs for career advancement and difficulties in accessing funding for APCs and Book Processing Charges (BPCs). Having said that, the social sciences are currently experiencing a cultural shift towards conducting science more openly, which manifests itself in an increasing embracement of OA.

A) Author behaviour and attitudes – Author surveys consistently have revealed that the awareness of OA publishing is lower for the social sciences than for the medical and natural sciences, and that OA publication outlets have not yet fully become part of the workflow for social scientists. The knowledge of OA journals and repositories however appears to grow amongst social scientists with particularly young researchers reporting
high levels of OA awareness and engagement\(^8\). Most social scientists support the idea of OA in principle, but stringent quality control, further improvement of the manuscript before publication and journal prestige still appear to outweigh OA in authors’ journal selection criteria\(^{31,60}\). As a consequence, OA publishing activity remains low for the social sciences. This is also due to the fact that some social scientists and their learned societies are still opposed to OA, which relates mainly to concerns about quality of peer review and editorial services in OA journals\(^{61}\). Relevant to the appreciation of OA in the social sciences is also the importance attached to monographs. While in the natural and medical sciences, the large part of research findings is disseminated via journal articles, the monograph has a central place in the culture and ecology of publishing in most of the social sciences and is highly relevant to career advancement\(^{30,62}\). Monographs have been shown to be less likely to be published OA. Amongst other factors, this relates to authors’ concerns over restricted editorial services and doubts whether unestablished OA publishers and formats are able to translate their effort in writing a monograph into reputational gain within the scientific community\(^8\).

B) Publisher behaviour and policies – Few publishers in the social sciences have decided to convert their existing subscription-based journals to OA or to set up new OA journals. Key academic journals in the social sciences remain closed access. Amongst other factors, this relates to publishers fearing that their academic authors will not be able to access funding for APCs or that switching to an APC model will result in a loss of prestige – both of which are main factors affecting authors’ choice of publication venue\(^60\). For some journals, such as the Historical Social Research or the Zeitschrift für Soziologie, it has become common practice to make their contents automatically OA after an embargo period of two years either by enabling access to their articles on their own website or by depositing them in an OA repository\(^4\). In addition to this, a large variety of new economic models of OA publishing has emerged that offers viable alternatives to author-payment model in the social sciences and humanities. To name only two, this includes Knowledge Unlatched (KU) and the Open library of Humanities (OLH). OLH is based on a business model that is called “Library Partnership Subsidy” and which asks libraries to pay a relatively small annual subscription fee to enable OA to scientific publications. The model originally was aimed at journals in the humanities and social sciences, but has been expanded to monographs\(^60\). The goal of KU is to create a financially sustainable route to OA for monographs through a global co-operated model where libraries use their existing acquisition budgets to enable OA to monographs\(^60\). Another innovative business model of OA publishing that has gained some popularity in the social sciences and humanities is the so-called “freemium” model. This model makes HTML versions of articles and books openly available to everyone, while PDF and ePub formats are accessible only to subscribing libraries and research institutes\(^65\). One well-known example of this is OpenEdition. While long-term access to research outputs is questionable within these models, OpenEdition and others managed to convince otherwise conservative publishers to create open versions of their journal volumes and monographs\(^65\).

C) Infrastructures of scholarly communication – The social sciences are currently experiencing a considerable growth of open repositories, resulting in authors being able to choose from more than 200 different OA repositories, the most of which are institutional or subject repositories\(^7\). While subject repositories have become a fairly established part of the workflows for social scientists, institutional repositories are less often used and predominantly host faculty working papers and theses. Prominent examples of subject repositories are the Social Science Research Network, the Social Science Open Access Repository and SocArXiv. Because OA preprint repositories do not employ peer review, however, social scientists have been slow to adopt Green OA. Gold OA journals are of even less importance for the social sciences. Key academic journals in most countries remain closed access\(^60\). The few existing OA journals in large part are restricted to highly specified sub-disciplines with limited impact and small readership. One notable exception to this was the launch of SAGE Open in 2011, which has brought to the social sciences the OA mega journal model already popular in the natural and medical sciences\(^60\). In addition to this, a number of OA journals were launched by academic or professional societies, such as Socius: Sociological Research for a Dynamic World launched by the American Sociological Association in 2016\(^62\).

D) Structural and institutional factors – Similar to most disciplines of the humanities, monographs are one of the main work products in the social sciences and highly relevant for academic promotion and career advancement. Besides author concerns over prestige and standards of editorial services of OA monograph publishers, the high costs and procedural complexities associated with producing monographs are important factors restricting the uptake on OA of monographs in the social sciences\(^7\). In addition to this, social scientists have reported to face significant difficulties in access to grant funding for both APCs and BPCs, as most research in the social sciences is not done by means of project-specific funding that is commonly used to compensate APCs in the natural and medical sciences\(^1\).

E) OA mandates and policies – Scholars in the social sciences face similar OA requirements as scholars within the natural and medical sciences do. Some special regulations can be identified, however. First, monographs are generally not included in OA mandates. Most public funders limit themselves to recommending OA for monographs. One of the few exceptions to this is the SNSF, which demands the OA publication of monographs and provides respective funding for BPC\(^61,71\). Second, the social sciences commonly are granted longer embargo periods for the archiving of a journal article after publication in a subscription journal. While embargo periods of 6 or 12 months are the default for the natural and medical sciences, social scientists usually have to deposit journal articles in institutional or subject repositories after up to 12 or 24 months following publication\(^4,72\).

Open access in the humanities

Generally speaking, OA uptake in the humanities is lower than in most areas of the natural, medical and social sciences. This is partly due to the fact that these disciplines exist in a “dry
climate of funding for gold OA models that rely on APCs. Low uptake is also due, though, to the fact that the monograph plays such a central role in many humanities disciplines, but the funding challenges for open access to such outputs remains an unresolved problem at scale. Hybrid OA is of central importance for the humanities, followed by Green OA, Bronze OA and Gold OA. Given that the humanities focus on the study of human cultures and artforms, it is, though, nonetheless surprising that more humanists do not seek to reach general public audiences through broader availability of their research work.

A) Author behaviour and attitudes – As in many academic fields, authors operate within a symbolic economy of prestige that is usually among the prime motivations in choice of publication venue. The relative prestige of publications is determined by a scarcity correlation (usually achieved through peer review) with the shortage of evaluative labour on hiring, tenure, and grant panels, although most humanities fields use an informal hierarchy of publications rather than quantitative measures such as the Impact Factor. Although institutional signups to the San Francisco Declaration on Research Assessment may help to change this through a shift to evaluation at the article level, the focus on the Impact Factor in that declaration may make it harder to alter evaluative cultures in these disciplines. Further, academics and learned societies in the humanities disciplines have often been opposed to open access, for a variety of reasons that range from concerns over misunderstanding, worries about open licensing and plagiarism, or fears for the standing of their members. In addition to this, humanities scholars show fairly low levels of awareness of OA and potential OA publication outlets in their fields. That said, there are signs of a cultural shift with new economic models that do not rely on author payments, such as KU, the OLH, Open Humanities Press, Open Book Publishers, Punctum Books, and others appearing to have some traction with at least some humanities scholars. Although it is tempting to posit that humanities scholars are simply less driven by technological change than their counterparts in scientific disciplines, and thereby less inclined towards digital (and, therefore, open) publishing solutions, this is a generalized assertion that is hard to substantiate.

B) Publisher behaviour and policies – The main concern driving humanities publishers is ongoing sustainability of their operations. In switching to an APC or BPC model, often undifferentiated from scientific publications, publishers fear that their academic authors will not be able to pay. It is also clear that highly selective publication models, which are common in the humanities, are more difficult to run, economically, on an OA basis. Hence there is little movement towards a fully gold OA ecosystem, although it is unclear what impact the recently announced pan-European initiative, Plan S, may have upon this. That said, most humanities publishers are compliant with green OA mandates, such as the UK’s REF policy. On the other hand, it is also the case that some humanities scholars have argued that a longer citation half-life (particularly for monographs) should translate to longer embargo periods within these disciplines, although this does not necessarily match up to sales half-lives. Despite some disciplines having healthy cultures of offline working paper circulation (philosophy, for instance), preprints have not taken off in the humanities and policies on prior publication remain tight, especially in the most prestigious venues.

C) Infrastructure of scholarly communication – In addition to institutional repositories, there has been a growth in recent years of OA subject repositories, such as the MLA Commons, which is operated by one of the largest subject associations in the humanities. There has also been a prominent culture, for many years, of scholar-led OA journal and book publications. Postpublication peer-review remains rare and usually elicits scant participation without active intervention, with a few notable exceptions and experiments. There is no infrastructure at a comparative scale to arXiv in the humanities disciplines. Furthermore, for long-form reading, print remains a crucial resource and scholars often report that they do not wish to read works of 80,000-words length in a purely digital format.

D) Structural and institutional factors – The high costs of producing monographs are a key structural factor that currently limits OA in the humanities. Further, most research work in the humanities does not receive project-specific funding, making it difficult to integrate processing charges into a grant. That the humanities disciplines are often of lesser importance in institutional hierarchies also means that it can be difficult to secure funding for articles. The slow cycle of producing long-form outputs is also problematic for OA, as the time investment (and hoped-for credit on publication) is greater than those of a journal article, leading scholars into more conservative prestige-seeking behaviours. There are also substantial challenges around third-party rights and re-use of images, particularly within disciplines such as Art History. Museum policies on licensing have not kept pace with digital publication practices and still often rely on “number of copies” as a metric determining pricing for re-use. Under such a paradigm, it can be difficult (or very expensive) to negotiate re-use rights for unlimited online dissemination. Finally, some disciplinary spaces, such as creative writing, have developed outward facing cultures that rely on sales. Creative writing scholars are often assessed on whether they can produce a “bestselling novel”, which works poorly under an OA model. The production of such artifacts may, however, have a research process behind them and various institutional policies will regard such objects as scholarly undertakings. The extent to which such work should be exempted from OA mandates remains, therefore, an ongoing debate.

E) OA mandates and policies – In national cultures, such as that in the UK, the humanities are subject to similar OA requirements as the social sciences, involving monographs being excluded from OA mandates and embargo periods of 12 or 24 months for the archiving of journal articles after publication in a subscription-based journal. A few research foundations, such as the Wellcome Trust, will pay for Gold OA to monographs in the medical humanities. It appears likely, given recent moves among European funders, that policies around lengthened embargo periods for the humanities will be harmonized with other disciplines down to zero in coming years.
Open access in law

The transition to OA of legal literature can be said to be still in its infancy. Legal studies feature some of the lowest OA prevalence levels. In part, this is because of low levels of awareness and little demand for OA publishing outlets amongst legal scholars and practicing lawyers. Those who would most benefit from the OA movement (e.g. law schools unable to subscribe to a wide range of law journals and practitioners in smaller law firms) have little influence over publication behavior. Further, despite the rising importance of international law, the relevance of national legal systems remains high, causing most law journals and law books to focus on the legal situation in a specific country and to be managed by publishing houses in that same country. Often, legal scholars know their publisher(s) personally and tend to publish in a relatively small number of journals — most of which are closed access.

A) Author behaviour and attitudes — Generally speaking, legal scholars have been reluctant to adopt OA despite agreeing that the research field would benefit from journals that publish OA articles. Even though the field is slowly moving towards OA, many authors of legal publications either are not aware of OA or have little to no incentive to publish their research in OA journals or public repositories. In legal studies, it is common practice that academics and practicing lawyers publish in the same legal journals or legal commentaries. Some practicing lawyers might even prefer to publish in law journals behind paywalls, thereby guaranteeing an exclusive access to their knowledge and ensuring that potential clients are not able to find the relevant information themselves. Because of the high relevance of national legal systems, large parts of the legal literature is written in the languages of these countries and published in law journals or books operated in the same countries. Accordingly, the argument that OA enables a worldwide readership is of limited relevance in the field of law. On the other hand, many legal issues are of interest not only to academics and practicing lawyers, but also to the media and politics. According to Hunter (2005), scholarship in law is “arguably the most useful to the public and that has the greatest effect on public policy”. The role of electronic media in supporting scholarly communication and dissemination of research findings is growing but the most important databases (e.g. HeinOnline and LexisNexis in the United States or BeckOnline in Germany) are paywalled.

B) Publisher behaviour and policies — In the U.S., many or most law reviews are published by law schools, not by for-profit publishers. In contrast to commercial publishers, law schools do not have the usual incentives to oppose OA. Hence, a large and growing number of US law journals are OA. The situation is very different in jurisdictions outside the US where legal scholarship is generally published by commercial publishers. Due to the small demand for OA publishing on part of legal scholars, there are little to no incentives for for-profit publishers to set up new OA journals or book series or to convert existing subscription-based journals to OA. There are some notable exceptions, however. In recent years, some OA law journals have been set up that are predominantly community-driven and operated independently from commercial publishers (e.g. JIPITEC in the EU, Forum Historiae Iuris in Germany or sui generis in Switzerland). According to the DOAJ, there are about 200 OA law journals. OA law journals from the US are in large part not listed, although it is not clear why this is the case. The Creative Commons list of OA law adopting Journals lists 37 OA law journals but most of the 18 Harvard Law School Journals (all but one of them are OA) are missing.

C) Infrastructure of scholarly communication — Most OA journals and open repositories are operated by universities and their law departments. Most universities in the U.S. have their own repositories and also publish their own legal OA working paper series. This idea gains some traction in other countries, for example in Germany, the Netherlands or Italy. Prominent examples of university led OA journals involve Stanford Technology Law Review, Harvard Human Rights Journal, Bucerius Law Journal or the International Journal of Communications Law & Policy. There is only a limited number of disciplinary repositories and the uptake of repositories such as LawArXiv appears to be slow. In the US and in international law, the most popular disciplinary repository for law professors is SSRN, which is now owned by Elsevier. In English-speaking legal scholarship, scholars find it even difficult to build reputation without being represented in SSRN. A growing number of universities is further providing support for setting up OA journals or transforming closed to OA journals (for example, by providing an OJS infrastructure). Since practicing lawyers and legal scholars work almost exclusively with texts, OA infrastructures do not have to fulfill demanding technical requirements.

D) Structural and institutional factors — There are three types of work products in legal research: monographs, journal articles and commentaries covering a specific law. PhD theses in the field of law are predominantly published as monographs. Many universities routinely make PhD theses OA (for example Harvard University in the U.S. University of St.Gallen in Switzerland). While the authors of legal books are mostly academics, this remains different for journal articles and legal commentaries where both academics and practitioners contribute. As a result, not only scholars and universities, but also practicing lawyers need to be convinced to move towards OA. One possible way to foster OA amongst legal scholars might be to encourage academics and practitioners to publish in different journals and commentaries. In this scenario, academics could publish their works in scientific OA journals and practitioners could keep on using closed access journals and commentaries, which, however, would be more practice-oriented. Research project costs often are smaller in the field of law compared to other disciplines. As legal scholars are not dependent on third party funding, so that funder OA requirements have only limited potential to incentivize OA publishing.

E) OA mandates and policies — OA mandates by public funding agencies, research foundations and private companies only have limited impact in the field of law since legal research is relatively inexpensive and therefore does not depend on third party funding in large parts. As OA law is often considered as a discipline related to the humanities, scholars in this field face the same OA requirements as the social sciences and humanities, including relatively long embargo periods for Green OA and
monographs that are excluded from OA requirements. It can be assumed that OA mandates by universities, if mandatory, will have a greater potential to foster some change in the field of legal academia than OA mandates by public funders. An important alternative to top-down OA mandates are OA policies from law schools (for example the Harvard Law School Open Access Policy) and non-binding statements promoting OA. In 2009, the directors of the law libraries of 12 US Universities signed the Durham Statement on Open Access to Legal Scholarship. This statements urges law schools to make the definitive versions of journals and other scholarship produced at the school immediately available upon publication in stable, open, digital formats, rather than in print⁹.

Discussion and conclusion

Over the course of the last three decades, OA to the scholarly literature has emerged as a new norm of scholarly publishing. As a response to perceived limitations of the subscription-based model of scholarly publishing and propelled by technical possibilities offered by the Internet, OA promises the removal of major barriers in assessing, distributing and re-using research findings⁸. OA publishing has grown substantially across different types of publication outlets, academic disciplines and research contexts, resulting in growing shares of scholarly publications being made openly accessible. While there is little doubt about the notion that OA is of global relevance with the potential to revolutionize the ways in which scholarly publications are shared, many of the discussions surrounding OA still revolve around the question of how it affects publishing practices across different academic disciplines. This question has become increasingly relevant against the background of first, funding organisations, governments and universities implementing OA mandates and policies that require scholars across all disciplines to make their research outputs OA and, second, vast amounts of resources being dedicated to the development, maintenance and advancement of respective publishing infrastructures.

Reviewing bibliometric studies that assessed OA prevalence and publishing patterns across broad academic disciplines in the first part of this review, we examined how different disciplines have adopted OA publishing over time and identified discipline-specific patterns of OA publishing. In the second part of this review, and based on a social shaping of technology perspective, we examined a variety of data sources and identified discipline-specific barriers and potentials for OA. Doing so, we explained the publishing patterns and trends observed in the first part of this review. We found that, over the last three decades, scholarly publishing has experienced a shift from closed access to OA. The proportion of scholarly literature that is openly accessible has increased continuously across all disciplines, resulting in overall OA levels well above 50% for publication years after 2010. Most OA appears to be published as journal articles in subscription journals for which the accepted of the published version can be retrieved from an open repository (Green OA). Publication of articles in pure OA journals (Gold OA) is also of importance for scholarly publishing, even though the relative uptake on Gold OA remains well below Green OA for most publication years and academic disciplines. Hybrid OA generally is of little variance for OA publishing, with 1% or less of all scholarly outputs being published as articles free under open licenses in subscription journals. The importance of Bronze OA is comparable to Gold OA, featuring similar levels of uptake. Having compared OA publishing patterns for the broad academic disciplines natural and technical sciences, medical sciences, social sciences, law and humanities, we found that the shift of scholarly publishing towards OA occurs uneven across disciplines in two respects. First, the growth of OA has not been uniform across disciplines; scholars in different disciplines differ substantially in how much they embrace the idea of OA, which manifests itself in varying proportions of openly accessible research outputs across disciplines and sub-disciplines. Second, academic disciplines have not converged on a set of homogeneous OA publishing practices, but differ substantially regarding the OA publishing channels scholars use to publish their research outputs OA. This unfolds as follows: scholars in medical and health-related sciences initially were reluctant to adopt OA publishing, but soon the OA uptake in these disciplines increased substantially and particularly biomedicine and clinical medicine took on leading roles in embracing OA. Medical scholars make research outputs openly accessible predominantly by publishing them in journals: The Gold OA route is of central importance for OA in medical sciences, followed by Hybrid, Bronze, and, with some distance, Green OA. Factors facilitating OA and shaping OA publishing practices in these disciplines are strong OA mandates combined with both funder-operated repositories and available funding for APCs, a richness in highquality OA journals and the perception of authors that OA journals allow for a wider circulation of publications than subscription journals do. The medical sciences are closely followed by the natural and technical sciences in embracing the idea of OA. Within this broad discipline, however, we found different patterns of OA publishing both in terms of OA prevalence rates and OA routes: Scholars in physics, mathematics, information technology, astronomy and biology were the early pioneers of OA and continue to make large shares of their research outputs OA, whereas scholars in engineering and chemistry are more reluctant to make research outputs openly accessible. Further, while Green OA plays an important role for scholars in physics, mathematics, information technology, astronomy and biology (followed by Bronze, Gold, and with some distance, Hybrid OA), scholars in engineering and chemistry publish most OA through the Gold OA route. OA in physics, mathematics, information technology, astronomy and biology has been facilitated by an existing culture of preprint distribution and by high levels of familiarity with OA publishing in general and Green OA in particular. Barriers to OA in chemistry and engineering can be identified as concerns about the quality of OA journals, which are shared by scholars, publishers and learned societies alike, as well as high degrees of industrial integration within these fields. The OA uptake in the social sciences is well below the medical and natural and technical sciences, but remains above OA prevalence rates that we observed for the humanities and law. For scholars within the social sciences, open repositories appear to be of central importance for making research outputs openly accessible, closely followed by publication in Gold OA journals, and, with some distance, Hybrid and Bronze OA. We identified several factors that shape OA publishing practices within the social sciences. Most importantly, this
includes authors’ concerns about the quality and prestige of OA journals, the central role of monographs in terms of academic career advancement and difficulties in assessing funding for APCs and BPCs. These factors also explain why most OA within the social sciences is published via the Green route. We observed signs of cultural change particularly in young scholars, who embrace the idea of conducting science more openly. Humanities features OA uptake levels well below the social sciences. Most OA within the humanities is published as Hybrid OA, followed by Green OA, Bronze OA and Gold OA. The most important factors shaping these publishing practices are comparable to those identified in the social sciences, including a dry climate for APC and BPC funding, the central role of monographs, which are less likely to become OA, and authors, publishers and scholarly societies being opposed to OA. Just like in the social sciences, there is, however, some movement with new economic models that do not rely on author payments appearing to have some traction with humanities scholars.

OA in law is still in its infancy with legal scholars making only small proportions of their research outputs OA. In large part, this is due to low levels of awareness and little demand for OA within the academic community. Of relevance is also that OA mandates and policies only have limited impact on publishing behaviour as legal studies in large part do not depend on third party funding. The financing of publication fees for publishing in OA journals appears to constitute a major barrier to OA within the humanities, social sciences and law. We believe that new OA models that do not rely on author payments represent a viable alternative to financing OA within these disciplines. This includes models such as the OLH or other crowd funding initiatives, such as KU.

These findings indicate that, as OA is implemented and used across different academic disciplines, it is shaped by the scholars that use respective communication technologies. In turn, OA technologies shape the ways in which scholars communicate and disseminate their research findings. Our findings also suggest that, in spite of the transformational potential of OA, the shift towards OA is uneven across disciplines and even sub-disciplines. We found that academic disciplines feature distinctive research cultures that have grown historically and manifest themselves in discipline-specific publishing practices. These publishing practices vary fundamentally in terms of their compatibility with OA publishing formats, which is the reason why the implementation of OA can be assumed to be a natural continuation of publishing cultures in some disciplines, while in other disciplines, the implementation of OA faces major obstacles and requires a change of research culture.

Our review has several limitations and these should be taken into account when interpreting our results. First, most of the bibliometric studies included in our review assessed OA publishing practices across broad academic disciplines, that is, the natural and technical sciences, medical sciences, social sciences, humanities and law. Choosing broad academic disciplines as units of analysis produces data that is fairly coarse-grained. Consequently, there is a chance that relevant differences in publishing practices between sub-disciplines remain undetected. For example, the few bibliometric studies that have assessed OA publishing practices for the natural sciences and related sub-disciplines revealed that there are substantial differences in the OA uptake between physics and chemistry. Therefore, we encourage future bibliometric research to assess OA publishing practices not only across broad disciplines, but to also take into account related sub-disciplines and research fields. Second, only two bibliometric studies in our review have included Bronze OA and Hybrid OA in their analyses, resulting in highly limited data on the relative uptake on these OA routes. This likely limits the robustness of our conclusions. We encourage further research to include Bronze and Hybrid OA in their bibliometric analyses. Third, in explaining OA publishing patterns, we conducted a narrative review by the means of which each co-author identified relevant socio-technical forces that affect OA within their area of research training. A major limitation of narrative reviews is that there is a chance that evidence has been selectively chosen. We tried to keep limitations in objectiveness to a minimum by basing the narrative review on an analytical framework.

Overall, our review is the first to comprehensively explain OA publishing patterns across academic disciplines. We identified patterns and trends of discipline-specific OA publishing practices and revealed barriers and potentials for OA across disciplines. Doing so, we contributed to understanding how different disciplines adopt and shape OA. We encourage further research to investigate the underlying mechanisms and factors that shape scholarly communication in general and OA publishing practices in particular. A profound understanding should inform both OA policies and community-driven efforts in promoting OA.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Grant information

The author(s) declared that no grants were involved in supporting this work.

Acknowledgements

The authors would like to thank Peter Suber for valuable comments to the Law chapter. We would also like to thank Alexander Grossmann for valuable comments on the terminology “Bronze OA.”
Open Peer Review

Current Peer Review Status: ? ? ?

Version 1

Reviewer Report 19 February 2019

https://doi.org/10.5256/f1000research.18948.r43518

© 2019 Schmidt B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Birgit Schmidt
Göttingen State and University Library, Göttingen, Germany

The article reviews and synthesises quantitative and qualitative findings on disciplinary OA publication practices and uptake over time. The article extensively reports figures on OA levels from former studies (selected based on a set of criteria) and discusses factors influencing disciplinary publishing cultures based on a framework of analytical dimensions.

Overall, this creates a useful comprehensive overview and reference point.

Is the work clearly and accurately presented and does it cite the current literature?
A few references should be reconsidered, e.g. on p. 11 the authors cite Kling and Kim (2000) for a statement that “social and cultural factors are believed to be of less or no importance in explaining the emergence of OA”. This does not seem justified as Kling and Kim’s study adopts a social shaping perspective, in order to analyse field differences in the use of electronic media. Some references are certainly not the most authoritative, e.g. websites that summarise disciplinary attitudes (e.g. reference 52). For further comments on references see the list below.

Is the study design appropriate and is the work technically sound?
The authors search and selection criteria for studies on the uptake of OA are sound. However, in some cases that leads to limitations as several studies, in particular the earlier ones, only provide little information about the status for certain disciplines, e.g. the humanities. In such cases it would have been good to further amend the data by taking into account disciplinary studies. The authors note that there is little consistency in the reported uptake of OA, however, this should be discussed earlier and in more detail in the study.

Are sufficient details of methods and analysis provided to allow replication by others?
The description of methods on how studies were retrieved and selected as well as the framework of the analysis seem sufficient. However, too little attention is given to major differences of the considered studies, in particular the definitions of OA used, the data sources (including how was OA identified), and how the limitations of the studies should be considered in the comparison of study results.
The authors’ definition of the different OA routes is certainly not homogeneously applied by all selected studies, as they mainly follow Piwowar et al.’s (2018) approach to define OA as exclusive categories. More commonly, “green OA” is defined as “self-archiving” of peer-reviewed works in OA repositories, i.e. green OA overlaps with other OA routes.

Another deviation is e.g. the study by Archambault et al. (2014) (reference 10) which considers green OA as “OA provided before or immediately after publication by author self-archiving” while focusing on deposit in “institutional repositories and some thematic repositories listed in OpenDOAR and ROAR” (Ibid., pp. 4 and i), e.g. arXiv.org was included; PubMed Central was considered under Other OA. In particular, it can thus be expected that in this case preprints have been included.

There are also a number of results in some of these studies which deserve further attention – and if possible explanation – in particular, if these have not been observed in other studies: e.g. the high rate of hybrid OA for Mathematics and the Humanities reported by Piwowar et al. (2018)1. Another example are the surprisingly high gold OA figures found by Jamali and Nabavi (2015), please make explicit how gold OA was defined.

If applicable, is the statistical analysis and its interpretation appropriate?
There is no statistical analysis across the selected studies, the authors mainly provide an overview of the reported levels of OA, and organise these in three phases. In general, the authors report all available figures of OA uptake by discipline but do not provide any comments on the sometimes vast differences of these figures.

Are all the source data underlying the results available to ensure full reproducibility?
The authors have created summary tables of relevant studies and their framework for the further analysis. Regarding the uptake of OA the authors refer to data in the selected studies but have not created additional comparative data. All additional information which was used in the narrative review of mechanisms and factors shaping OA publishing is disclosed through the list of references. Some of the considered studies are not reproducible based on the chosen methodology (e.g. often a web search for an openly available version of a research article was applied, which may change over time).

Are the conclusions drawn adequately supported by the results?
Yes, overall the main conclusions are adequately supported.
There are in addition a couple of other issues and small errors which I would like to point out:

- Typos: “66& for publication years…” - use %; replace “SEM” by “STM” for “Science, Technology and Medicine”; replace “PLoS” by “PLOS”.
- p. 4: The conclusion regarding the comparison of OA levels for medical research areas and the humanities is not quite convincing as only one figure for the humanities (based on Gargouri et al., 2012 (see reference 9)) is provided.
- Table 2: Consider adding more information on the definition of OA or a specific column which explains how the study deviates from the definition of OA provided by the authors. It is also important to note which studies treat the definitions as exclusive categories and which used definitions of OA that allow overlaps, in particular with green OA. Add “with DOIs” in column two of Piwowar et al (2018).
- The reference European Commission (2014) should be cited as Archambault et al. (2014).
- Table 3: The second column on Piwowar et al. (2018) should include a note that the figures for the Humanities and the Arts were not included as these disciplines are underrepresented in the WoS and in terms of DOI coverage. In the Hybrid OA column the overall figure cannot be correct: 0.6% is too low; according to Table 3 of Piwowar et al. it should be replaced by 4.3%. Even if certain
routes of OA have not been assessed, e.g. Hybrid and Bronze OA, it would be good to add a note if they have been included in other categories. Please check the figures provided for Martín-Martín et al. (2018), the overall OA figures do not seem to match with the sum of the OA routes (the sum is substantially smaller, what is missing? E.g. Social and Behavioral Sciences: 49.9% OA vs. a sum of 23.4% for all OA routes). For further studies the overall OA figures do not match with the sum of the OA routes either, e.g. for Science Metrix (2018) and Jamali and Navabi (2015), please explain.

- p. 10: Please correct the underestimation of Hybrid OA, as noted above the overall figure found by Piwowar et al. (2018) is 4.3% for recent articles with a DOI in WoS.
- p. 11: The statement “… as the OA model is unlikely to generate the level of income and profit that can be achieved with the subscription model” deserves a reference.
- p. 11: “This also applies to academic and professional societies” – the given reference does not seem to be connected to this statement.
- Table 4: “APC levels” is a bit narrow as a perspective, and not much is said about cost aspects in the later discussion. Regarding infrastructures the support aspect is missing (e.g. institutional support for the green and gold OA routes). Regarding structural and institutional factors copyright is missing (this is not just an aspect which is relevant for publishers).
- p. 12: NIH OA mandate – mention the year in which the mandate was introduced
- p. 13 E) does not mention Wellcome Open Research
- p. 13 A) Preprints do have a tradition in biology, but were mainly circulated in small circles of colleagues. Please note that on arXiv.org quantitative biology represents a very small share and is not representative for the discipline. A reference for molecular biology is e.g. the study of Kling and Kim (2000). Thus the conclusions on green OA do not fully apply to biology.
- p. 14 C) You provide several examples of OA journals in Chemistry, what does “enjoy popularity” mean here?
- p. 14 D) Please provide a reference for the stated national focus of engineering.
- p. 14 E) Remove bold face for the word “Reflecting”.
- p. 14: There seems to be some redundancy in the introduction to “Open access in the social sciences”. Moreover, please add a reference for the order of OA routes as the one you state is not found by the most recent studies (compare e.g. Piwowar et al.1).
- p. 14 A) Reference 51 seems a bit old for a statement about the present state.
- p. 15 – typo “Open library of Humanities” should be “… Library …”
- p. 15: “While long-term access to research outputs is questionable in these models…” – this is an unjustified statement.
- p. 15 C) You do not provide any evidence for growth of the number of repositories when you state the current status, please justify this statement.
- p. 15 C) “Because OA preprint repositories do not employ peer review, however, social scientists have been slow to adopt Green OA.” – This statement is not convincing, preprint servers circulate non-peer reviewed versions while green OA focuses on final author manuscripts (after peer review) or the publisher’s version (i.e. you compare apples and pears here).
- p. 15 C) Some of the details about academic journals could be moved to B).
- p. 16 OA in the humanities: Add reference to the cited order of green OA, Bronze OA etc.
- p. 16 A) The last sentence should be amended, otherwise it is just a cliché pointed out but not put to rest.
- p. 16 C) MLA Commons is a network of scholars, the related repository is called CORE.
- p. 16 C) You state that “post-publication peer review remains rare … with a few notable notable exceptions and experiments”. – Please note that one of your references do not support this statement: Bourke-Waite (reference 83) does not elaborate on post-publication peer review but points out that for the HSS double-blind peer review remains the norm and notes an experiments of
open peer for monographs by Palgrave-Macmillan. Brienza (2012) certainly fits here as for the book of K. Fitzpatrick post-publication peer review was applied to a draft version (in the sense of open peer commenting). It could be argued that review articles which are quite common for monographs to be considered as a form of post-publication peer review.

- p. 16 E) For the last sentence you may add an indicative reference, e.g. to Plan S which does not allow any embargoes.
- p. 17 OA in law: Please add references to the statement that legal studies feature some of the lowest OA levels.
- p. 17 B) JIPITEC is based in Germany (which is in the EU…). You note that several journals are not listed in the DOAJ which is indeed a pity, they may not have re-registered after the introduction of revised criteria in 2014.
- p. 18 “overall OA levels well above 50%” – add reference, not all recent studies agree on this point; “the relative uptake on Gold OA remains well below Green OA for most publication years and disciplines” – add reference; “hybrid OA generally is of little variance” – not according to Piwowar et al. (2018); “hybrid OA… with 1% or less of all scholarly outputs” – this figure is too low, Piwowar et al. (2018) found 4.3% hybrid OA on average.
- p. 18 “… biology were the early pioneers” – see comment on biology above. OA in biology is not initially strong via preprints and green OA (arXiv.org only holds a limited number of quantitative biology papers), uptake gets stronger via gold OA with the wave of new OA journals in the 2000s, and only from 2013 onwards preprints finally take off (launch of PeerJ Preprints and bioRxiv). For a discussion of earlier initiatives/experiments with biology preprints which were pretty much blocked by the publishing industry see: Cobb, M. (2017). The prehistory of biology preprints: A forgotten experiment from the 1960s.
- p. 18 “Barriers to OA in chemistry and engineering can be identified as concerns about the quality of OA journals” – add reference.
- p. 19 “difficulties in assessing funding for APCs and BPCs” – you mean “accessing” here, please also add a reference.
- p. 19 “we observed signs of cultural change particular in young scholars” – add reference.
- p. 19 “Most OA within the humanities is published as Hybrid OA…” – try to explain why hybrid OA comes first. Piwowar et al. (2018) which seems to be the source here do not seem to do.
- p. 19 “This includes models such as OLH or other crowd funding initiatives, such as KU.” – You may consider adding a reference here, e.g. Bulock, C. (2018).3.
- p. 19 “… OA … is shaped by the scholars that use respective communication technologies.” – You do not really discuss different types of communication technologies but mainly point out common communication formats, channels and infrastructures.

References

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: library and information science, scholarly communication, open science

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 26 Mar 2020

Anna Severin, University of Bern, Bern, Switzerland

We would like to thank Birgit Schmidt for her useful peer review of our study. In response to her comments, we have made the following revisions throughout the manuscript:

- We agree that the reference Kling and Kim (2000) on p.11 should have been reconsidered. Shortening and restructuring of the paper removed the statement from the text altogether. As for references that were not authoritative (e.g. reference 52), we either replaced them entirely or included additional references.

- We agree that we might have excluded important studies on the status of OA for individual disciplines. We now take into account disciplinary studies in the narrative review and in the
Discussion section, thereby framing the results of the meta-synthesis. We now discuss the heterogeneity of included studies and how this might affect the consistency and comparability of study results (please see Methods, Results, Discussion).

- We now discuss the heterogeneity of included studies and how this might affect the comparability of study results (please see Methods, Results, Discussion).
- We have added a sub-section in which we state our definition of OA and its routes. In Table 2, we have added a column on the OA definition used by each study included in our review. Throughout the Results and the Discussion section, we note if included bibliometric studies differ from our definition of OA. In the Results section, we highlight how studies differed from one another in their definitions of OA and its sub-types. In the Discussion, we highlight the consequences thereof for the comparability of study results. In the narrative review, we now offer potential explanations for the popularity of Hybrid OA in specific disciplines.
- We have corrected the following typos: “66& for publication years…” - use %; replace “SEM” by “STM” for “Science, Technology and Medicine”; replace “PLoS” by “PLOS”
- Due to sparse data on the early uptake on OA in the humanities, we have removed the conclusion regarding the comparison of OA levels for medical research areas and the humanities (p. 4 in version 1). We note this limitation in the narrative review.
- In Table 2, we have added a column on the OA definition used by each study included in our review. Throughout the Results and the Discussion section, we note if included bibliometric studies differ from our definition of OA.
- We added "with DOIs" in column two of Piwowar et al (2018).
- We have cited the reference European Commission (2014) as Archambault et al. (2014).
- Table 3 (now Table 4):
 - In a footnote, we added the information that for Piwowar et al. (2018), the figures for the Humanities and the Arts were not included as these disciplines are underrepresented in the WoS and in terms of DOI coverage.
 - We have corrected the Hybrid OA overall figure for Piwowar et al. (2018).
 - We have corrected the Hybrid OA overall figure for Piwowar et al. (2018), as well as the figures for Jamali and Navabi (2015).
 - As for Martin-Martin et al. (2018) and Archambault et al. (2014), the sum of shares for individual OA routes does not match with the overall OA figure because both studies included Free Availability / Other OA in their estimation of OA levels – which this study does not. For both studies, we have noted this in footmarks and are discussing it in the Results and Discussion section.
- We have added two references to the statement “… as the OA model is unlikely to generate the level of income and profit that can be achieved with the subscription model”: Hagner (2008) and Johnson et al. (2017).
- For the statement "This also applies to academic and professional societies", we have replaced the reference, now: Albert (2006).
- Table 4 (now Table 5): We have replaced “APC levels” with “publishing costs”. We also added more information on support aspects and copyright factors in Table 4.
- We now mention the year in which the NIH OA mandate was introduced.
- We now mention Wellcome Open Research.
- The remarks on OA and preprints in biology are now more differentiated.
- We agree that we should have elaborated on what “enjoy popularity” means in the context of OA journals in Chemistry. Shortening and restructuring of the paper however removed the entire statement from the text.
- We now provide two references for the stated national focus of engineering: Rostan et al. (2014) and Kyvik & Ingvild (2017)S Kyvik and R Ingvild.
• We have removed the bold face for the word “Reflecting”.
• We have removed the redundancies in the introduction o “Open access in the social sciences”. and added more references for the order of OA routes.
• We have added a more recent reference for a statement about the present state of open access in the humanities: Rodriguez (2014).
• We have corrected the typo “Open Library of the Humanities”
• We have removed the statement “While long-term access to research outputs is questionable in these models…”
• We have rephrased the statement on growth of repositories in the social sciences to “Some attempts have been made to promote repositories in the social sciences” and provided two references for it: OpenDOAR database and Xia (2007).
• We have rephrased the statement “Because OA preprint repositories do not employ peer review, however, social scientists have been slow to adopt Green OA.” and now provide a reference for it.
• We have added references to the cited order of OA routes for the humanities.
• We have corrected the statement on MLA Commons.
• Shortening and restructuring the paper removed the following statement from the text: “post-publication peer review remains rare … with a few notable exceptions and experiments”.
• We have added an indicative reference for the statement that Plan S does not allow any embargoes.
• We have added references to the cited order of OA routes for law.
• We have corrected the statement that JIPITEC is based in the EU.
• We have corrected the following statements: “overall OA levels well above 50%”, “hybrid OA generally is of little variance”, “hybrid OA… with 1% or less of all scholarly outputs”
• We have added more detailed information on preprint uptake in biology to the section on OA in biology and added a respective reference: Kaiser (2017).
• Shortening and restructuring of the paper removed the following statement from the text: “Barriers to OA in chemistry and engineering can be identified as concerns about the quality of OA journals”
• Shortening and restructuring of the paper removed the following statement from the text: “difficulties in assessing funding for APCs and BPCs”.
• Shortening and restructuring of the paper removed the following statement from the text: “we observed signs of cultural change particular in young scholars”
• Shortening and restructuring of the paper removed the following statement from the Discussion: “Most OA within the humanities is published as Hybrid OA…”. We however give a potential explanation for the popularity of Hybrid OA in the humanities in our narrative review.
• We added the reference Bulock, C. (2018) to the following statement: “This includes models such as OLH or other crowd funding initiatives, such as KU.”
• Shortening and restructuring of the paper removed the following statement from the text: “… OA … is shaped by the scholars that use respective communication technologies.”

Competing Interests: We have no competing interests to declare.
The manuscript tackles a very important and ambitious topic, that of improving our knowledge about what differences there are in open access uptake across academic disciplines. A lot of bibliometric work has been done in this area, however, most of it has been fragmented as definitions and methodological approaches have varied a lot across studies. This study makes a welcome exception to most of the research within the field in not just producing yet another measurement of OA that is improved in some incremental way, yet failing to be compatible with results of earlier studies, but rather leverages what is already out there (both in terms of existing studies, but also other knowledge) in order to thoroughly discern how disciplines differ in their approaches to utilising various forms of OA. The manuscript has two main components 1) a systematic literature review of bibliometric research (which includes 11 articles), and 2) an analysis of open access in academic research disciplines interpreted through the theoretical lens of Social Shaping of Technology. I could easily see both parts being published as individual articles based on what they aim to achieve and in how challenging they are to put together, having them together like this is not a major problem but something that requires effort and rigour which this first version of the manuscript succeeds with to a satisfactory degree. The text itself is of high quality.

Is the work clearly and accurately presented and does it cite the current literature?

For the most part, yes, but I do think the strictness of the criteria for the systemic literature review of OA uptake requires that supplementing research that is left out of the review is still discussed/reflected upon as in some other parts of the manuscript. I have a couple of recommendations for this that are mentioned below in this section.

One source which I think is a great omission and gives a lot of detailed breakdown into the differences between OA journal differences is: Crawford, W. (2018). GOAJ3: Gold Open Access Journals 2012-2017. https://walt.lishost.org/2018/05/goaj3-gold-open-access-journals-2012-2017/. If “top-down” studies, focusing on only one type of OA mechanism, were excluded this study was perhaps not included on such grounds but I think it is doing the study a disservice – there is no better source that describes the disciplinary differences longitudinally across disciplines, including information about article processing charges, than that e-book and associated dataset. If not integrated into the meta-analysis it should at least be used in the other parts of the manuscript to frame the study and its results.

Further reference you could consider, purely based on the idea that they have also explored disciplinary differences in the OA context specifically, albeit through analysis of bibliographic indexes:

In general I avoid suggesting citing material that I have been involved in authoring as part of reviews I have conducted, but in this case I would like to point out two studies that give precise metrics of various types of OA in narrowly defined disciplines, and another study which deals with disciplinary differences in self-archiving rights, utilizing these references is completely optional and not something that influences my verdict or recommendation for a revised version of the paper:

Table 3, being split onto 4 pages, is massive and very hard to use for making any conclusions between time/discipline(which each study having their own way of classifying as well)/OA method by eye. It is functional but far from optimal. In this case I would save a table like this to become an appendix, and rather compose a figure where the discipline categories have been standardized according to some well established scheme that fits well with most of the studies. This would come at the cost of precision in losing sub-discipline breakdowns in many cases but in my view that is worth the cost.

I would also suggest to focus less on comparisons of decimal point-accuracy prevalence of OA mechanisms between the previous studies, since they vary so much depending on other factors than inherent disciplinary differences. Zooming out would make it easier to see, and tell the reader, what is important to focus on, not just drop the decimal points but also consider putting in subheadings or structuring the “Prevalence and patterns of open access publishing practices: Meta-synthesis of bibliometric studies” so that each “era” of OA development would get its own mini-narrative, now its just a long single block of text and a lot of percentages that are hard to relate to anything.

The influence of academic social networks is in my view underrepresented in the review of existing literature and conclusions of the study, they have provided a substantial share of the OA copies measured in the various bibliometric studies and many authors also perceive them as essentially “solving” the issue of OA and paywalls on a personal level since there has been very weak monitoring of adherence to copyright on such services.

The concept of Bronze OA would need further unpacking since in most of the reviewed studies it is present, but not always separated and referred to as such from other OA provision mechanisms.

Is the study design appropriate and is the work technically sound?

The collection process for inclusion of existing literature contains both strict elements (specific indexes were queried with specific identical keywords, studies had to fulfil four pre-set criteria to be included) but also what seems like a liberal and flexible amount of bottom-up/explorative elements (authors contributing
discipline specific OA findings/literature, scouring reference lists and Google Scholar profiles). This large jump between very strict and transparent, to a largely undocumented part where “anything goes” which has very little transparency other than the disciplinary analysis’ themselves could be expanded somewhat.

For me it was a bit unclear what the first criteria in Table 1 when strictly applied entails, do the studies have to explore OA availability “bottom-up” through web-search engines/querying and giving uptake metrics for various OA mechanisms in one single study? If this is the case, which it could be by looking at the included studies, the criteria description should in my view be revised to communicate this.

The time-lag between when a study has measured the level of OA and when the materials being measured were published, varies a lot across the included studies. I think this caveat/feature could be highlighted more in the text because it matters quite a lot if an article was searched for 1 year after it was published or 5 years after it was published.

Are sufficient details of methods and analysis provided to allow replication by others?

Yes, the study is literature-based with no need for further data.

If applicable, is the statistical analysis and its interpretation appropriate?

Not applicable

Are all the source data underlying the results available to ensure full reproducibility?

Yes, the study is literature-based with no need for further data.

Are the conclusions drawn adequately supported by the results?

Yes, my revision suggestions concern mainly minor points not critical to the main results and contribution of the study.

The second half of the manuscript, which comprises the discipline-specific description of OA practices, I have very little to comment about since I think it does a great job at mixing research results with discipline-specific knowledge. The most central things are brought up and argued for well.

References

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: scholarly publishing, open access, information systems science

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 26 Mar 2020

Anna Severin, University of Bern, Bern, Switzerland

We would like to thank Mikael Laakso for his helpful comments. In response to his review, we have made the following revisions throughout the manuscript:

- We agree that the strictness of inclusion criteria for the systematic review might have caused studies to be left out that also analysed disciplinary OA publishing practices, albeit from a different perspective. We acknowledge this limitation in the Discussion. To frame our results, we now include disciplinary studies in the narrative review and in the Discussion section. This includes some of the references you provided us with – thank you.
- We agree that Table 3 (now Table 4) is large and we would have liked to move it to the appendix too. Unfortunately, F1000 no longer supports supplementary files / appendices and requires all results to be kept as part of the main text. We therefore kept Table 3 (now Table 4) as is. To keep the paper short, we did not add any further figures or tables.
- We restructured and shortened the text significantly. We now focus less on comparisons of decimal point OA prevalence levels and only highlight the most significant figures. We further restructured the section “Prevalence and patterns of open access publishing..."
practices: Meta-synthesis of bibliometric studies” and included more subheadings. We now illustrate the different phases / eras of OA development in a clearer structure, albeit without sub-headings for the different eras (as we believed this to be too fine-grained).

- We now discuss the importance of social networks and so-called “free availability” for making scholarly publications openly accessible (please see Methods, Results and Discussion section).
- We now define Bronze OA and discuss how it is defined and measured by the studies included in our review (please see Table 1, Table 3, Results and Discussion section).
- To address the fact that the collection process included both strict elements and a more liberal amount of explorative elements, we have added information on how we conducted the narrative review of discipline-specific OA literature (please see Methods). Further, we now state that the strictness of inclusion criteria for the systematic review might have caused studies to be left out that also analyzed disciplinary OA publishing practices. We also state that, as for our narrative review, there is a chance that evidence has been selectively chosen (please see Discussion).
- Yes, studies had to explore OA availability “bottom-up” through web-search engines/querying and giving uptake metrics for various OA mechanisms. We have added this information as a criterion for inclusion in our review (please see Table 1 and Methods).
- The discussion now includes the time-lag between when a study has measured the level of OA and when the materials being measured were published as a limitation to our study.

Competing Interests: We have no competing interests to declare.
Methods and presentation:

- Although the study is described as a meta-synthesis, it seems to me that it’s essentially a descriptive study. The authors find the studies and then largely describe what they report. There isn’t much synthesis, and I, as a reader, would appreciate more.

- There is huge heterogeneity in the studies of proportions of articles that are open access, but readers are left to look through a table that is four pages long - and largely to wonder for themselves about the reasons for the big variations. I know that all the data are there, but how is it that a study of 12m article from 2018 finds that 66% of articles are open access, whereas another equally large study from the same year finds that 29% are open access? Clearly they must be using different definitions of open access, and the authors don’t themselves define open access or its subsets (gold, green, hybrid, and bronze). They should. I’d like to see a summary table that has the following columns: Year of study, number of articles in the study, definition of open access, proportion of articles that were open access.

- There should be another summary table that shows the variation by discipline in overall open access rates and in the subsets of open access.

- Another useful addition would be a figure that showed how proportions of articles that are open access by discipline have varied over time.

- The authors might also give a table that shows the association between their “analytical dimension” and the different disciplines. At the moment readers can get this information only by ploughing through pages of text that describe the variations by discipline.

- As this is essentially a descriptive study I don’t have great criticisms of the methods and conclusions, although I recognise the weakness of surveys, which give us data on what people say about their behaviour than what really drives their behaviour.

- My biggest criticisms are about presentation. I’d like to see not only more tables and a figure but also a much shorter paper backed up by supplementary material if necessary. That would, I judge, make for a much more readable and useful paper and dramatically increase the number of readers.

Minor points:

- There is at the moment a great deal of repetition. The discussion is mostly a repetition of the results.

- I’d like to see some data in the abstract.

- I believe that abbreviations are a plague in medical writing, and I’d avoid them, including OA for open access.

- I’d drop “evidence-based” in the title.

- It would be good to have the search strategy as a table.
• Much of what’s in the results should ideally be in the discussion.

• There are a fair few typos.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: I'm a long standing enthusiast for open access.

Reviewer Expertise: Peer review, journalology, NCD, research misconduct, global health

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 26 Mar 2020

Anna Severin, University of Bern, Bern, Switzerland

We thank Richard Smith for his helpful review of our manuscript. In response to his comments, we have made revisions throughout version 2:

• Methods and presentation: In an attempt to restructure the paper, we have included more synthesis and less description of results.

• We now discuss the heterogeneity of the studies included in our review (in terms of their methodological approaches and results) throughout the paper (please see Methods, Results and Discussion). We have added a sub-section in which we state our definition of OA and its routes (please see Methods and Table 1.) In Table 2, we have added a column on the OA definition of each study included in our review. Throughout the Results and the Discussion section, we note if included bibliometric studies differ from our definition of OA.

• Unfortunately, F1000 does not support supplementary files / appendices and requires all results to be included as part of the main text of the paper. This means that Table 3 (now Table 4) could not be moved to the supplementary files. In order to keep the paper short, we therefore decided not to add any further tables or images. Information on year of study,
number of articles in the study, definition of open access is given in Table 2. Information on proportions of articles that were open access and in the subsets of open access is included in Table 3.

- Where appropriate, we discuss how the methodological heterogeneity of the studies included in our review affects the consistency and comparability of their results (please see Methods, Results and Discussion).
- We restructured and shortened the text significantly. We now illustrate the analytical dimensions (i.e. the different phases / eras of OA development) in a clear structure, albeit without a separate table.
- We now acknowledge the weakness of author surveys as a limitation (please see Discussion).
- We removed repetitions, including the repetition of results in the discussion.
- We added data to the abstract.
- To keep the paper short, we decided to keep the abbreviations, including OA for open access.
- We dropped “evidence-based” in the title.
- We added the search strategy as a figure (please see Figure 1).
- We moved parts of the results to the discussion and removed repetitions in both chapters.
- We corrected all typos.

Competing Interests: We have no competing interests to declare.

Comments on this article

Reader Comment 20 Dec 2018

Sebastian Nordhoff, Language Science Press, Germany

This article is an important contribution as it addresses the change towards OA not from a purely technological, legal, or political point of view. Instead, it takes a sociological, or anthropological, approach and assesses the values and practices of different fields and their respective influence on the uptake of OA.

I have no expertise in reviewing meta-analyses and cannot comment on procedure. The studies at hand seem few, as the authors acknowledge, but the selection procedure seems fair. The reader is informed about the potential issues related to the quantity and the quality of the studies.

Only in the very last two paragraphs do the authors acknowledge the internal complexity of the broad areas they cover (Medicine, Tech, SS, Humanities, Law). It would be useful for the reader to find this acknowledgement earlier on. Being a linguist myself, I feel misrepresented by the depiction of humanities offered here, but of course I acknowledge that this is an accurate representation one can get when reading the existing studies. When reading the discussion of the humanities, I was consistently annoyed by the fact that the humanities were treated as a "discipline". As for the humanities, one should at least mention the
Lingua/Glossa transition as it has received major press coverage, also in the general press.

Anecdotally, Larry Hyman reports on his 5 decades of publishing experience in linguistics here and basically says that OA is a logical extension of the way linguists have always operated: https://userblogs.fu-berlin.de/langsci-press/2018/11/28/an-interview-with-berkeleys-larry-hyman-author-of-sev

The authors report the high costs of monographs different studies report, true to their chosen methodology of meta-analysis. The costs of monographs reported in these studies, however, vary wildly, and there are questions whether these costs are really necessary, or whether more efficient handling of monograph production could not lead to much lower costs. In any case, it is an overstatement when the authors say: “the funding challenges for open access to [monographs] remains an unresolved problem at scale”. I concur that the funding challenge for monographs continues to be an issue, and will do so for a long time to come. Nevertheless, I contend that scalability is not an unsolved problem, as Language Science Press is able to produce 30 monographs a year for 100,000 EUR altogether. https://zenodo.org/record/1286972. This might be due to all kinds of special factors found in linguistics and might not generalise to other subfields, but the original statement we find in the article is too strong.

Suggestion for addition:
Another factor the authors might want to take into account when comparing fields is the duration of peer review. In the humanities, duration of peer review can exceed one year. This logically leads to lower expectations wrt turnaround until publication. This practice might have an influence on OA. Basically, everybody is used to publication taking forever, so one would expect less opposition to embargoes.

Suggestions for clarification:
Knowledge Unlatched is NOT a model, but a company. In this article, KU seems to be used to refer the front list financing model KU started with (now called KU Select). However, KU now also funds platforms such as Language Science Press or Open Commons in Phenomenology. The text should clearly distinguish the company “Knowledge Unlatched” from the particular funding models that company proposes.

Related to this point, the article fails to mention platform-based approaches (sometimes called Platinum or Diamond) such as scipost.org or Language Science Press. Instead of a per-item fee (APC/BPC, charged to whoever), these projects see the provision of a platform for publication as a discipline-wide task, which should jointly be funded. This is similar to the Glossa interpretation of the OLH model. In that sense, Glossa as an all-purpose journal can actually be likened to a megajournal, but without APCs.

The general absence of APCs in humanities OA should also be highlighted. Currently, APCs of 0€ would still be considered Gold OA for the purpose of this article, but this is misleading on two accounts. First, it misrepresents the support APC/BPCs enjoy in the field. Secondly, it clouds the important smaller scholar-led initiatives and puts them in the same bag as the major corporate Gold-OA-players. This is analytically not acceptable. My feeling is that OA in the humanities will have a platform-based, not item-based, cost structure if it is to succeed.

The use of “Bronze OA” is not acceptable. There is a small footnote to that effect, but this is not sufficient. What is called “Bronze” here violates both the spirit and the letter of the standard OA declarations. This is not an honorable third place. I agree that it is useful to have that category for the analytical purposes of this article. But Bronze implies more value than what is warranted. What we need would be more a category
like "also ran". Better than nothing, but definitely not up to standards. We should all take care that this category does not end up in the "good" bag when evaluating OA targets. I would label this category "Fake OA".

Stylistic suggestions:

Condense conclusion and drop repetitions, explanations and parentheses there which have already been mentioned.

"the implementation of OA can be assumed to be a natural continuation of publishing cultures in some disciplines, while in other disciplines, the implementation of OA faces major obstacles and requires a change of research culture." This suggests that OA is a culture. I suggest rephrasing as: "the implementation of OA can be assumed to follow naturally from the publishing cultures in some disciplines, while in other disciplines, the implementation of OA faces major obstacles and requires more adaptation of the established practices."

Text accompanying Table 3 tedious to read. Tabular data should be presented as tables, not in running text. Either highlight the most significant figures, or drop the rephrasal of the tables altogether.

Check the following stretches for language/spelling/typos/style/grammar:

- 66& for publication years between

- Science, Technology and Medicine (SEM)

- In addition to this, social scientists have reported to face significant difficulties scarcity correlation (usually achieved through peer review) with the shortage of evaluative labour on hiring, tenure, and grant panels,

- Prominent examples of university led OA journals

- Research project costs often are smaller in the field of law compared to other disciplines.

- As law is often considered as a discipline related to the humanities

- This question has become increasingly relevant against the background of first, funding organisations, governments and universities implementing OA mandates and policies that require scholars across all disciplines to make their research outputs OA and, second, vast amounts of resources being dedicated to the development, maintenance and advancement of respective publishing infrastructures.

- a richness in high quality OA journals

Competing Interests: I am the CEO of Language Science Press. Language Science Press publishes OA monographs and edited volumes in linguistics. LangSci works with Knowledge Unlatched to organise its funding.
Christian Zimmermann, Economic Research, Federal Reserve Bank of St. Louis, USA

For Economics, this article ignores the very prominent role of pre-prints and of RePEc. Given the prevalence of easily accessible pre-prints, there is much less of a need for OA.

Competing Interests: I am involved in RePEc.

Sylvie Vullioud, Scientific Information School (SIS), Switzerland

Is it possible to provide any information about Open Access in economical sciences?

Article Genetic Endowments and Wealth Inequality is a working paper (pre-print?) by putatively published by NBER publisher.

‘Access to NBER Papers: You are eligible for a free download if you are a subscriber, a corporate associate of the NBER, a journalist, an employee of the U.S. federal government with a "GOV" domain name, or a resident of nearly any developing country or transition economy’.

This was not commented on SSRN platform, neither peer-reviewed, and published as a whole page in Le Temps in Switzerland Le patrimoine génétique induirait l’inégalité des richesses.

How many 'working papers' or 'pre-prints' are behind paywall on SSRN? Is it widespread in economic and law sciences? Can we still say that SSRN is a pre-print servor or not?

What is the proportion of peer-reviewed articles versus expertise reports in economic sciences that are made by universities or by private companies for universities? Is peer-reviewed articles important? If so, is commercial secret a barrier to OA or not?

Thank you.

Competing Interests: None.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com