Conserved structure of the NPR1 gene distal promoter isolated from a chili pepper (Capsicum annuum L.) in West Sumatera [version 1; peer review: 2 approved with reservations]

Jamsari Jamsari1, Maythesya Oktavioni1, Bastian Nova2, Ifan Aulia Candra3, Alfi Asben4, Lily Syukriani1

1Department of Agrotechnology, Universitas Andalas, Padang, West Sumatera, 25136, Indonesia  
2Department of Crop Science, Universitas Taman Siswa, Padang, West Sumatera, 25138, Indonesia  
3Postgraduate Biotechnology Program, Universitas Andalas, Padang, West Sumatera, 25136, Indonesia  
4Department of Agricultural Product Technology, Universitas Andalas, Padang, West Sumatera, 25136, Indonesia

Abstract

Background: The non-expressor of pathogenesis related gene 1 (NPR1) protein is one of the key regulators in the systemic acquired resistance plant defence system. The cis-acting elements of its distal promoter gene are characterized by salicylic acid inducing elements such as the W-box, RAV1AAT and ASF1, accompanied with enhancer and silencer elements. This study was aimed to isolate and characterize the distal promoter sequence of the NPR1 gene (PD_CbNPR1) from the chili pepper (Capsicum annuum L.) genotype Berangkai, a local genotype known to produce large yields, but is susceptible to viral infection. Elucidating its sequence structure will open a broad range of possibilities to engineer the gene expression which is important to improve chili pepper resistant.

Methods: PCR-based cloning combined with a primer walking strategy was applied in this study. The BioEdit tool was used to edit the sequence and verify sequence integrity, while homology analysis was conducted with BLASTn searching. Identification of a cis-acting element was detected by PLACE.

Results: Isolation of the complete distal promoter sequence of PD_CbNPR1 produced a fragment 5,950 bp in size. BLASTn search analysis indicated that PD_CbNPR1 sequence is highly conserved (99% homology) showing only a single nucleotide polymorphism (SNP) (base substitution) compared with its reference sequence. Analysis using PLACE tools successfully identified nine cis-acting elements containing a W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE and GT1 with multi repeats and diverse motives, as well as enhancer and silencer elements, which is characterized by a CCAAT-box and GAGAAATT pattern, respectively.

Conclusion: The distal promoter of the NPR1 gene is highly conserved, showing only one SNP caused by one base substitution event.
Keywords
CCAAT-box, distal promoter, NPR1 gene, RAV1AAT, W-box

This article is included in the Global Open Data for Agriculture and Nutrition gateway.

Corresponding author: Jamsari Jamsari (ajamsari@yahoo.com)

Author roles: Jamsari J: Conceptualization, Funding Acquisition, Methodology, Resources, Supervision, Validation, Writing – Review & Editing; Oktavioni M: Formal Analysis, Investigation, Software, Writing – Original Draft Preparation; Nova B: Methodology, Supervision; Candra IA: Supervision; Asben A: Funding Acquisition; Syukriani L: Data Curation, Project Administration

Competing interests: No competing interests were disclosed.

Grant information: This study was funded by Universitas Andalas–Padang, West Sumatera, Indonesia, via Professorship Cluster Research Grants, Fiscal year 2018, Contract No.: 18/UN.16.17/PP.RGB/LPPM 2018. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Jamsari J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Jamsari J, Oktavioni M, Nova B et al. Conserved structure of the NPR1 gene distal promoter isolated from a chili pepper (Capsicum annuum L.) in West Sumatera [version 1; peer review: 2 approved with reservations] F1000Research 2019, 8:52 (https://doi.org/10.12688/f1000research.17374.1)

First published: 14 Jan 2019, 8:52 (https://doi.org/10.12688/f1000research.17374.1)
Introduction
The non-expressor of pathogenesis related gene 1 (NPR1) protein is a main regulator in the systemic acquired resistance response of many plants. Over expression by modifying distal promoter in the W-box element of the OsNPR1 gene in rice could increase its resistance against Xanthomonas oryzae pv. Oryzae up to 4.3 times (Hwang & Hwang, 2010). Similar results were reported by Zhong et al. (2015), who modified the RAV1 element on the GhNPR1 which increased Gladiolus hybridus resistance against Curvularia gladioli by up to 18.6 times compared to control. Based on those studies, we expect more prospects of the NPR1 gene promoter in the improvement of plant resistance against many pathogens.

Here we report characteristics of the distal promoter segment of the NPR1 gene isolated from chili pepper (Capsicum annuum) genotype Berangkai, a local genotype potentially produces more yields compared to other genotypes cultivated in West Sumatera.

Methods
Genomic DNA isolation
Healthy young leaves collected from chili pepper genotype Berangkai was used as the plant material in this study. The chili pepper genotype Berangkai was grown in a greenhouse and maintained for 8 weeks before being used for DNA isolation. Genomic DNA isolation was performed using protocol as described by Jamsari & Pedri (2013).

Fragment isolation and PCR conditions
PCR-based cloning combined with a primer walking approach was applied for the isolation complete segment of distal promoter of the NPR1 gene. All PCR reactions in this study were performed using the KOD-Plus-Neo kit provided by Toyobo-Japan. Chromosome 7 of Capsicum annuum cv. Zinla-1 (Qin et al., 2014), accession number: NC_029983.1, was used as the reference sequence. Primer combinations were designed to cover the interval segment spanning from base 112.600.897 to 112.606.847 on the reference sequence (Table 1). All primers used in this study are listed in Table 1. First-step isolation was started from both termini and continued with successive isolation until both termini formed a complete contig of the target segment. The initial PCR condition was started with 95°C for 3 minutes for pre-denaturation and amplified in two different loops using 14 and 24 cycles. The first 14 cycles were performed using a touch down steps started by denaturation at 95°C for 30 seconds. Annealing was initiated with 70°C for 30 seconds and gradually decreased 1°C for every cycle before finally elongated in 72°C for 2 minutes. The next 24 cycles started with denaturation at 95°C for 30 seconds with annealing at 55°C for 30 seconds and elongation of at 70°C for 2 minutes and elongated for 72°C for 2 minutes. Final extension was maintained at 72°C for 5 minutes. PCR reaction was performed in 50 µl of final volume. PCR composition was set according to manufacturer’s recommendation, containing 5 µl 10x Buffer KOD-Plus-Neo, 5 µl of 2 mM dNTPs, 3 µl of 25 mM MgSO₄, 1.5 µl of 10 ng/µl of each primer, 1 µl of KOD-Plus-Neo (Toyobo, Japan) and 1 µl of 10 ng/µl of DNA template. The volume was filled with 32 µl of nuclease-free water.

Bioinformatic tools and sequence analysis
The PCR product generated from each walking step was processed to sequencing reaction using its both forward and reverse primers. All sequencing processes were performed by 1st BASE-Singapore. A number of bioinformatic tools were applied during analysis of the sequence. Trimming, editing and building of the sequence contig were performed using BioEdit v7.2.5 (Hall, 1999). Homology search of the sequence with all available sequences deposited in the NCBI database was run using the BLASTn tool (Altschul et al., 1990). The cis-acting elements were identified using PLACE, developed by Higo et al. (1999).

Table 1. Primers ID, sequence, length of expected product and verified sequence obtained in this study.

<table>
<thead>
<tr>
<th>Primer ID</th>
<th>Sequence 5’ to 3’</th>
<th>Expected PCR product (bp)</th>
<th>Verified sequence (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1-F</td>
<td>TGA TCG CAC TCA CCG AAC</td>
<td>3,597</td>
<td>970</td>
</tr>
<tr>
<td>F1-R</td>
<td>CGG TAC CTT GTT AAC CCC ATC</td>
<td>3,351</td>
<td>Skipped for sequencing</td>
</tr>
<tr>
<td>F2-F</td>
<td>CAT GGG GTT AAC AAG GTA CC</td>
<td>1,204</td>
<td>1,115</td>
</tr>
<tr>
<td>F2-R</td>
<td>CCC AAG CGG TAA CTA TTG AAC</td>
<td>1,915</td>
<td>1,811</td>
</tr>
<tr>
<td>F1.1-F</td>
<td>CGG ACC CAC ACC AGG TTA TAT</td>
<td>970</td>
<td>871</td>
</tr>
<tr>
<td>F1.1-R</td>
<td>CCC CCT CCT TAG CTT CTC TTC</td>
<td>1,204</td>
<td>1,115</td>
</tr>
<tr>
<td>F1.2-F</td>
<td>CCC TTG GTC CTT AGT CAG TGA</td>
<td>1,811</td>
<td>1,724</td>
</tr>
<tr>
<td>F2.1-R</td>
<td>CCA TGC GCT CAT ATG GTG A</td>
<td>1,915</td>
<td>1,801</td>
</tr>
<tr>
<td>F2.1-F</td>
<td>CCC GTC AAG AGG TTT CAC</td>
<td>2,020</td>
<td>1,915</td>
</tr>
<tr>
<td>F2.2-F</td>
<td>CCG GAC ATA GAC TAA GGG ATC</td>
<td>2,020</td>
<td>1,915</td>
</tr>
<tr>
<td>F2.2-R</td>
<td>CCC AAG CGG TAA CTA TTG AAC</td>
<td>2,020</td>
<td>1,915</td>
</tr>
</tbody>
</table>
Results and discussion

Characteristics of the NPR1 distal promoter

We successfully isolated the distal promoter of the NPR1 gene from our local chili pepper genotype Berangkai, exhibiting 5,950 bp in size and designated PD_CbNPR1. The fragment was isolated from two steps round of walking via PCR-based cloning. In the first step, the whole distal promoter region was expected to be covered using two primer combinations (F1 F/R and F2 F/R). However, after verification of the sequence data using BioEdit, the upstream primer combination (F1 F/R) successfully produced a contig spanning only 1,963 bp, while the downstream primer combination (F2 F/R) was skipped for the sequencing process. In the second round of primer walking, four new primer combinations (F1.1-F/R, F1.2-F/R, F2.1-F/R, and F2.2-F/R) (Table 1) were designed in order to extend sequence coverage. Combining all verified sequences obtained from the first and the second round of primer walking successfully produced a contig with a size of 5,950 bp (Figure 1).

Homology analysis between PD_CbNPR1 and its reference sequence via BLAST search showed 99% homology. The data was verified by only one single nucleotide polymorphism (SNP) shown as a substitution event at the position -6,335 from the ATG start codon (Figure 2). This finding clearly indicated that both distal promoters are highly conserved, even they originated from distantly related regions.

Cis-acting regulatory elements

PLACE analysis successfully indicated 9 cis-acting elements with multi repetition (Figure 3). All 9 cis-acting elements contained the W-box (15), WLE1 (W-box like elements) (8), RAV1AAT (20), TATA-box (22), CAAT-box (26), GARE (1), GT1 (20), Enhancer (4) and Silencer (1).

The W-Box element binds the WRKY protein, acting as a transcription factor during expression of NPR1 (Yu et al., 2010). Mutation in this element in Arabidopsis thaliana delayed the NPR1 expression induced by salicylic acid (SA). PLACE analysis indicated that PD_CbNPR1 is characterized by three consensus sequences: TTGAC, TGACY, and TGACT. The TGACY pattern could also be found in the promoter of ERF3 isolated from tobacco (Nishiuchi et al., 2004), while TGACT could be found in the promoter of the Iso1 barley gene (Sun et al., 2003). The WLE1 (W-box like elements) with TGACA pattern has an analog function with the W-box identified in the promoter of OsNPR1 (Hwang & Hwang, 2010).

Another cis-acting element found in PD_CbNPR1 is RAV1AAT, which acts as binding site for protein RAV1 (Hwang & Hwang, 2010). The RAV1 protein is a transcription factor associated with some pathogenesis-related genes (Sohn et al., 2006). Two consensus patterns of RAV1AAT elements found in PD_CbNPR1 are CAACA and TTGTTG. The CAACA pattern was also found by Kagaya et al. (1999) in Arabidopsis thaliana, while the TTGTTG pattern is similar to the OsNPR1 promoter (Hwang dan Hwang, 2010). Notably, the ASF1 element is absent in the PD_CbNPR1. The ASF1 element has been previously reported by Hwang & Hwang (2010) and Zhong et al. (2015) as a cis-acting for common promoter associated with pathogen infection and SA induction.

PLACE analysis identified 22 putative TATA-boxes in our PD_CbNPR1, which could be classified into TATA box 3, TATA box 4, TATA box 5 and TATA box OspaI. During transcription, the TATA-box binds with RNA polymerase II and many transcription factors like TFIID, TFIIA, TFIIF, TFIIE, and TFIIH to build the TATA-box complex.

Figure 1. Primer walking steps along distal promoter sequence based on the Capsicum annuum cv. Zunla-1 genome. Base position of start and end segment are shown by number on each terminus. Length of verified sequence of each segment is shown by number in bracket on each segment.

Figure 2. Partial multi-alignment showing one single SNP (T/G) at position -6,335 from ATG (red box).
Another interesting element found in PD_CbNPR1 is the CAAT-box (26 repeats) which is associated with the regulation of many genes involved in pathogen infection (Imran et al., 2016). The CAAT-box consensus sequence found in PD_CbNPR1 is characterized with CAAT which is similar that have been found in promoter of the legA gene from Pisum sativum (Shirsat et al., 1989).

We also found a gibberelline-responsive element (GARE) motif, which has been previously reported by Ogawa et al. (2003) as the binding site with some transcription factors induced by gibberelic acid. The consensus sequence of those motifs is TAACAAR. Another cis-acting element induced by abiotic factors such as salt, light and pathogenesis is GT1 motif (Bilas et al., 2016; Park et al., 2004). The identified GT1 element in PD_CbNPR1 is characterized by a consensus GRWAAM motif and present in 20 repeats. They could be classified into two forms, GT1CONSENSUS and GT1GMSCAM4, as described previously by Terzaghi & Cashmore (1995). The last GT1 class, GT1GMSCAM4, is initially identified by Park et al. (2004) with consensus pattern GAAAAA.

PLACE analysis also successfully identified four CCAAT-box motifs, which is commonly reported as an enhancer of transcription (Thongbo et al., 2013). This element is able to up-regulate the transcription and replication rate of eukaryotic genes by binding many types of transcription factors (Bilas et al., 2016). da Silva et al. (2013) previously reported that a greater number of CCAAT-boxes could improve promoter capability in increasing of replication rate by binding efficiently with transcription factors. In contrast with the enhancer, we found only one motif of GAGAAATT which is also known as silencer (Lai et al. (2009)). This element is reported to be able to down-regulate the kinesin-like protein 1 (AtKPI1) gene in Arabidopsis thaliana by up to 80.9%.

**Conclusion**

We successfully isolated the distal promoter of the NPR1 gene from chili pepper genotype Berangkai (designated PD_CbNPR1) spanning 5,950 bp. The PD_CbNPR1 contain 9 cis-acting elements: W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE, GT1, enhancer and silencer elements. Engineering of the cis-acting elements may have future prospects, particularly in improving chili pepper resistance against biotic and abiotic stresses by up- and down-regulating NPR1 gene expression.

**Data availability**

The sequence of the distal promoter of the NPR1 gene sequenced in this study has been deposited in GenBank under accession number MK281381; http://identifiers.org/ncbigi/GI:1547604514.

**Grant information**

This study was funded by Universitas Andalas–Padang, West Sumatera, Indonesia, via Professorship Cluster Research Grants, Fiscal year 2018, Contract No.: 18/UN.16.17/P关RGB/LPPM 2018.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References


Open Peer Review

Current Peer Review Status: ?  ?

Version 1

Reviewer Report 02 May 2019

https://doi.org/10.5256/f1000research.18999.r47197

© 2019 Peraza-Echeverria S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Santy Peraza-Echeverria  
Biotechnology Unit, Yucatan Center for Scientific Research (CICY), Mérida, Mexico

This study reports the cloning and bioinformatic analysis of the putative promoter region of PD_CbNPR1 from chili pepper. This putative promoter region was isolated from a local chili pepper genotype (Berangkai) known to produce large yields but susceptible to viral infections. The putative promoter sequence of PD_CbNPR1 could be useful for enhancing the immune system of the Berangkai genotype.

I have the following observations and comments:

1. Indicate the Genbank accession number of the NPR1 sequence used to BLAST the chili pepper genome. Also, perform a phylogenetic analysis to determine whether the chili NPR1 sequence used to isolate PD_CbNPR1 belongs to the NPR1 clade (e.g., Arabidopsis has five NPR1 homologs: NPR2, NPR3, NPR4, NPR5 and NPR6. NPR1 and NPR2 form a single clade).

2. Check the concept of homology. It is wrong to say “99% homology”.

3. The KOD-Plus-Neo kit is designed for long range PCR (up to 24 kb from human genomic DNA), so it is not clear why the amplification of the full-length putative promoter region (5950 bp single amplicon) was not possible.

4. The search for putative cis-acting regulatory elements in the putative promoter of PD_CbNPR1 should also include other databases such as:
   b. PlantPAN 3.0 (http://plantpan.itps.ncku.edu.tw)

5. Figure 1: the length of the core promoter should be indicated along with the 5’UTR.

6. The transcription start site should be provided as part of the characterization of the promoter region.

7. A transient expression analysis using GUS as reporter gene would be useful to determine whether this putative promoter is functional.
Is the work clearly and accurately presented and does it cite the current literature?  
Partly

Is the study design appropriate and is the work technically sound?  
Partly

Are sufficient details of methods and analysis provided to allow replication by others?  
Partly

If applicable, is the statistical analysis and its interpretation appropriate?  
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?  
Partly

Are the conclusions drawn adequately supported by the results?  
Partly

**Competing Interests:** No competing interests were disclosed.

**Reviewer Expertise:** Molecular Plant-Pathogen Interaction and Plant Biotechnology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 28 January 2019
https://doi.org/10.5256/f1000research.18999.r43017

© 2019 Lu M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MINGHUI LU  
College of Horticulture, Northwest A&F University, Yangling, China

In the manuscript “Conserved structure of the NPR1 gene distal promoter isolated from a chili pepper (Capsicum annuum L.) in West Sumatera”, Dr. Jamsari Jamsari and co-authors offer us the structure of the distal promoter of the NPR1 gene, which will lay a foundation for the understanding of the mechanisms of pepper resistance to viral infection. But there are some issues that need to be explained:

1. The PD_CbNPR1 is cloned by gene walking approach, which needs to be confirmed by PCR amplification with a full-length primer pair.

2. The authors suggest that the structure of PD_CbNPR1 is conservative based on the comparison with the reference gene (Figure 2) and on the cis-element distribution (Figure 3). I think that this is not enough. The comparison of nucleotide sequences among distal promoters from several
different plant species should be performed.

3. The PD_CbNPR1 is amplified from a pepper variety with viral susceptibility. I suggest the authors compare the PD sequences between virus susceptible and resistant varieties, which is beneficial to understanding the mechanisms of pepper resistance to viral infection.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

**Competing Interests:** No competing interests were disclosed.

**Reviewer Expertise:** plant tolerance to abiotic stresses especially high temperature

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com