Metallothionein expression on oysters (*Crassostrea cuculata* and *Crassostrea glomerata*) from the southern coastal region of East Java [version 1; referees: 1 approved]

Asus Maizar Suryanto Hertika, Kusriani Kusriani, Erlinda Indrayani, Defri Yona, Renanda Baghaz Dzulhamdhani Surya Putra

Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, East Java, 65165, Indonesia

Abstract

Background: This study aimed to analyse levels of heavy metals (Pb, Hg and Cd) in the aquatic body, gills and stomach of the oysters *Crassostrea cuculata* and *Crassostrea glomerata*, the metallothionein (MT) level in the gills and stomach of both oysters, and relationships between heavy metals level (Pb, Hg and Cd) in the gills and stomach to MT level in both types of oysters.

Methods: The research method utilized was a descriptive method. The oyster samples were taken from three stations: Sendang Biru, Popoh and Prigi beaches. MT values were assessed using confocal laser scanning microscopy. The heavy metal levels were assessed using atomic absorption spectrophotometry method.

Results: Both oyster heavy metal content obtained in the southern coastal waters exceeded the safe limit set by the State Minister of Environment No. 51 of 2004. In general, the expression of MT was found to be higher in gastric tissue compared to gill tissue.

Conclusions: The relationship between levels of the heavy metals Pb, Hg, and Cd in oyster gills and stomach has a strong relationship with MT levels in the gills and stomach in both types of oysters.

Keywords

Heavy Metal, Biomarkers, Metallothionein, CLSM
Corresponding author: Asus Maizar Suryanto Hertika (asusmaizar@yahoo.com)

Author roles: Hertika AMS: Conceptualization, Supervision; Kusriani K: Investigation; Indrayani E: Data Curation; Yona D: Writing – Review & Editing; Putra RBDS: Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Funding for this study was provided by the General Directorate of Research and Development, Ministry of Research and Technology and Higher Education, Research Contract, Number: 063/SP2H/LT/DRPM/IV/2017. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Hertika AMS et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Hertika AMS, Kusriani K, Indrayani E et al. Metallothionein expression on oysters (Crassostrea cuculata and Crassostrea glomerata) from the southern coastal region of East Java [version 1; referees: 1 approved] F1000Research 2019, 8:56 (https://doi.org/10.12688/f1000research.17381.1)

First published: 14 Jan 2019, 8:56 (https://doi.org/10.12688/f1000research.17381.1)
Introduction

Coastal areas are often under the pressure of ecological pollution originating from human activities. One kind of pollutant is heavy metals, such as cadmium (Cd), Mercury (Hg), and lead (Pb), which originate from household and industrial waste effluent. Heavy metals settle on the bottom of the seabed by sedimentation. This can contaminate marine biota with heavy metals and threaten human health as consumers.

Metallothionein (MT) is a non-enzymatic protein in a low molecular weight which has a high cysteine content, does not have aromatic amino acids and is not heat-stable. The multiple thiol groups (-SH), formed by cysteine residues, allow MT to bind heavy metals. MT has a specific metal binding ability. Each MT only binds one type of metal, with Cd, Hg and Pb each binding a different MT. MT has been widely used as a specific biomarker because the expression of MT reflects the presence of heavy metals. Previous research has revealed that the induction of MT expression increases after the organism is exposed to heavy metals. Hertika et al. found the existence of positive relationships between heavy metals and MT expression in North East coast oysters.

MT possess the ability to bind a certain amount metal in a cell and restore the ability to function of inactive proteins due to metal cadmium. According to Prabowo, heavy metals contained in waters can enter the body of aquatic biota. Heavy metals pass through the mouth and digestive organs, such as the surface of the gills. Therefore, organisms that live in waters with higher levels of heavy metal contamination will have higher heavy metal level.

Oysters, including benthic macrofauna species, are one of the best bioindicators of heavy metal contamination in an area. Oysters are potential biota contaminated by heavy metals, as these are filter feeders, and express MT, which is able to bind heavy metals. Therefore, oysters can be used as test animals in monitoring the accumulation of heavy metal levels in polluted waters. This study aims to analyze heavy metal level (Pb, Hg, and Cd) in the tissues (gills and stomach) of oysters (Crassostrea cuculata and Crassostrea glomerata) and the coastal waters of the South coast of East Java to determine their relationship to MT (MT) expression.

Methods

Sample collection

In total, three samples of oyster (Crassostrea cuculata and Crassostrea glomerata) were collected in three of each of the three sub-stations on the Sendang Biru (Malang) coast, Prigi beach (Trenggalek) and Popoh beach (Tulungagung). Sub-station 1, 2 and 3 on the Sendang Biru beach are geographically located at 8°26'01.3"S 112°41'01.8"E, 8°26'04.7"S 112°40'55.3"E and 8°26'01.3"S 112°41'17.0"E, respectively. Sub-stations 1, 2 and 3 of the Prigi coast are geographically located at 8°15'44.4"S 111°48'13.0"E, respectively. Sub-stations 1, 2 and 3 from Popoh beach are geographically located at 8°17'13.2"S 111°43'47.2"E and 8°17'11.8"S 111°43'31.1"E, respectively. Oyster samples were taken three times for gills and gastric tissue taken in each sub-station and each was analysed separately.

Heavy metal analysis

Heavy metals (Pb, Cd, and Hg) in oysters (gills and gastric tissue) and the seawater at each sub-station were measured by atomic absorption spectrophotometry (AAS) following the measurement procedures in previous studies carried out by Hertika et al., 2018. A total of 50 ml seawater samples obtained from each substation were filtered with a 0.45-mm polycarbonate membrane to separate particles which caused contamination in heavy metal measurements. Next, 1 M nitric acid was added to the water sample to obtain a pH value below 2.

The gill tissue and stomach taken from the oyster samples in each substation were prepared according to the method of Trinchella et al.. In order to obtain a complete oxidation process in the decomposition of organic substances, to each sample of gill and gastric tissue (0.2 grams), 2 ml of HNO₃ were added. The samples were incubated for 30 minutes at low temperatures (5-8°C) to avoid minerals lost during the evaporation process. The sample is centrifuged for 15 minutes at 12,000g. The supernatant resulting from the centrifugation process was taken to measure the heavy metal content. Measurement of heavy metals (Pb, Cd, and Hg) was carried out using the A220 Atomic Absorption Spectrophotometer Variant (Variant, Inc.).

Analysis of MT expressions

To analyse MT expression in this study, confocal laser scanning microscopy (CLSM) was performed (Confocal Olympus Fluoview™ FV1000) based on previous research by Ockleford and Mongan. This observation system utilized a reverse-light-path fiber-optic signal that transmits Nomarski DIC signals to a second detector to visualize immunofluorescent and refractive index (RI) images. Images were observed using an Olympus U-1B90 Microscope (Olympus, Japan) and inputted to Olympus Fluoview v4.2a, Japan for calculating MT expression quantities. Briefly, the gills and stomach in oyster samples (Crassostrea cuculata and Crassostrea glomerata) were preserved into 10% formaldehyde. The sample was cut into 2-3 mm sections using a microtome and dehydrated using the Tissue Tex Processor. The samples were twice soaked with xylol (#CAT 108661251, Merck, Japan) for 10 minutes each. Then the sample was fixed with absolute ethanol 90%, for 5 minutes. Immediately, the sample was soaked with 10 mM pH 6 buffer citrate for 15 minutes. Samples were blocked with PBST containing BSA 2% (CAT# 15561020, Thermo Fisher, USA) for 1 hour in room temperature. Furthermore, the sample was labelled with the Anti-MT Primary monoclonal mouse Antibody (1:1000, CAT# UC1MT, Gene Tex, USA) which contained 2% BSA for 1 hour at room temperature. Samples were rinsed with PBST for 8 minutes. Furthermore, the sample is labeled with rhodamine-conjugated Mouse IgG Antibody (CAT#610-1002, ROCKLAND Immunocological Inc.,USA) containing 2% BSA for 1 hour at room temperature. The sample was rinsed using PBST and dried. Lastly, glycerol was added into the sample and observed using CLSM.
Water quality measurement
Water quality in this study was measured based on standard methods\(^{25}\). Dissolved oxygen concentration was measured in situ using an oximeter (YSI PRO 20). The pH was also measured in situ using a pH pen (PH 2011 ATC) at each substation. Temperature and salinity were measured using a mercury thermometer and refractometer (RHS-10ATC, SINOTECH), respectively.

Data analysis
This study used regression correlation analysis with a simple linear regression model in SPSS version 16.0 software. Professional charts are created using the GraphPad Prism 7.00 application. Using the method outlined by Hertika et al.\(^{17}\), the relationship between heavy metal levels with MT (MT) expression was obtained from multiple regression results with variable Y exhibiting heavy metals in oyster gills or gastric tissue. Variable X exhibited levels of Pb, Cd, and Hg.

Results and discussion
Heavy metal levels in the waters
Analysis of the Pb, Cd and Hg content at the three research stations (Sendang Biru, Popoh, Prigi) is shown in Figure 1. The range of highest Pb concentrations in each substation was 0.03–0.054 mg L\(^{-1}\); the highest Hg concentration was 0.01–0.026 mg L\(^{-1}\) and that of Cd was 0.009–0.018 mg L\(^{-1}\). The highest concentration of Pb, Cd and Hg heavy metals were found at sub-station 2 in Sendang Biru for 0.054, 0.018, 0.026 mg L\(^{-1}\). In general, some measured heavy metal content has passed the specified quality standard. Based on the Decree of the State Minister of Environment No. 51 of 2004 concerning seawater quality standards for heavy metal content\(^{26}\), the Hg content appropriate for the aquatic environment must not exceed 0.003 mg L\(^{-1}\), Pb 0.05 mg L\(^{-1}\) and Cd 0.01 mg L\(^{-1}\).

Heavy metal in the gills and stomach tissue
Heavy metals (Pb, Cd, and Hg) in Crassostrea cuculata and Crassostrea glomerata gills and gastric tissue is exhibited in Figure 2. The highest Pb content in the gills of Crassostrea cuculata was obtained at the Prigi station, at sub-station 1 at 0.13 mg L\(^{-1}\), the highest Cd and Hg concentrations were obtained from Sendang Biru station in sub-station 2 at 0.08 mg L\(^{-1}\) and 0.09 mg L\(^{-1}\), respectively (Figure 2A). Whereas the highest heavy metal level in Crassostrea cuculata gastric tissue Pb, Hg and Cd levels were observed at the Sendang Biru station in sub-station 1, at 0.067, 0.036 and 0.077 mg L\(^{-1}\) respectively (Figure 2B).

Furthermore, the heavy metal content in the gills of Crassostrea glomerata is exhibited in Figure 2C. The highest Pb, Hg, and Cd values were obtained at Sendang Biru station at sub-station 1, at 0.142, 0.071 and 0.11 mg L\(^{-1}\), respectively. The highest value of gastric Pb and Cd content was observed in Prigi stations in sub-stations 1 and 3: 0.145 and 0.047 mg L\(^{-1}\), respectively (Figure 2D). The highest value of Hg was obtained at Sendang Biru station at sub-station 1, which was 0.078 mg L\(^{-1}\).

The accumulation of heavy metals in this study exhibit the same pattern in the study conducted by Bilgin et al.\(^{27}\), which found that accumulation of heavy metals in the soft tissue of mollusks, from highest to lowest, is Pb> Cd> Hg. Aquatic organisms are capable of absorbing and accumulating heavy metals in several ways: through the respiratory tract (gills), digestive tract, and skin surface diffusion\(^{28}\). In this study, the highest accumulation of heavy metals was found in gill tissue. According to Hutagulung\(^{29}\), the high accumulation of heavy metals in gills is closely related to the nature of biota. The oyster’s food intake is conducted through filtering water (filter feeders). Furthermore, Soto et al.\(^{30}\) revealed that gills are the main target tissue for absorption contamination of dissolved heavy metal ions in aquatic bodies.

Research results exhibited that Crassostrea cuculata and Crassostrea glomerata have different values of heavy metals as each organism has a different ability to accumulate heavy metals. Based on the results of the study by Fattorini et al.\(^{31}\) Mytilus galloprovincialis is able to accumulate Pb, Cd and Hg heavy metals at 0.29–2.95 mg L\(^{-1}\), 0.41–1.60 mg L\(^{-1}\), and 0.02–0.19 mg L\(^{-1}\), respectively. However, Kucuksezgin et al.\(^{32}\) achieved different results; Thylacodes decussatus was observed to absorb Pb at levels ranging from 0.38–1.2 mg L\(^{-1}\), Cd at 0.03–0.24 mg L\(^{-1}\),

![Figure 1. Analysis of Pb, Cd and Hg levels in seawater samples from each substation of Sendang Biru, Popoh, and Prigi stations.](image)
Figure 2. Pb, Cd, and Hg levels in the gills and stomach of (A, B) Crassostrea cuculata and (C, D) Crassostrea glomerata at Sendang Biru, Popoh and Prigi stations.

and Hg at 0.04–0.13 mg l⁻¹. This may be related to the tendency of specific bioaccumulation of bivalves, based on different habitats, lifestyles, and abundance of food. Some studies emphasize that metal accumulation has presented different species-specific capacities for bivalves³³,³⁴. It is claimed that this difference is related to the metabolic rate of bivalve species³⁵. The bioaccumulation pattern of metals can generally be attributed to the presence of anthropogenic inputs or lithogenic sources affecting the area. Seasonal variations in bivalves metal concentrations result from many factors, such as large differences in water temperature, particulate metal runoff to coastal waters, food availability. It is caused by transferring metals from water to feeding-filtering organisms, body weight changes during gonadal development, and biomass release associated with sexual reproduction³⁶–³⁸. For bivalves, the accumulated changes depend on the metal and the ability of different species or genera to store or/and remove metals from the tissue. In general, metal concentrations in bivalves increase with increasing shell size; however, in some cases, metal concentrations may decrease due to the detoxification process in these organisms³⁹,⁴⁰. Raw data are available on OSF⁴¹.

MT levels in the gills and stomach of Crassostrea cuculata

MT content analysis is exhibited in Figure 3. Research results exhibited that in MT gastric tissue overall expression was higher than gill tissue (Figure 3A). The highest metallothionine expression in gill tissue was obtained at Prigi station at 810.876–1387.61 arbitrary units. The lowest expression on the gastric tissue was found at Sendang Biru station ranging from 453.246–511.098 arbitrary units. Highest MT expression in gill tissue was also found at Prigi station ranging from 325.976–622.534 arbitrary units. On the other hand, the lowest value was obtained at the Sendang Biru station at 276.254–498.512 arbitrary units. MT expression in the stomach tissue is higher than that in the gill tissue. This is supported by assessment of the morphology of MT expression using rhodamine-labelled MT in the gill and stomach tissue. In Figure 3B, Rhodamine-MT as metallothionine marker is expressed brighter in gastric tissue compared to gill tissue. Figure 3C shows rhodamine-MT absorption, as an MT marker, is recorded to have a higher intensity in gastric tissues compared to gill tissues.

Heavy metal content was inversely proportional to MT expression in the gill and gastric tissues. The high content of heavy metals in the gills stimulates high MT expression to bind and detoxify heavy metals quickly. Therefore, MT quantity detected on the tissue decreases. Conversely, heavy metal in gastric tissue accumulates less compared to gill tissue. Hence, the detoxification process is slower. It indicates that MT quantity detected in this study is higher. According to Ringwood et al.⁴², there is a positive relationship between MT and heavy metal pollutants. Heavy metal contaminants can cause systemic damage to an organism and result in increased MT production. Previous research has revealed that MT has a crucial role in various processes of biological activity; it binds heavy metals and conduct recovery process from systemic damage caused by heavy met-
als through homeostasis process (dynamic balancing of the body’s biological processes) to heavy metals\cite{41,43}, and heavy metal detoxification\cite{44,46}. The function of MT in heavy metal detoxification mainly depends on the high-affinity bond between heavy metals and MTs, which causes heavy metal absorption to be higher than that of important macromolecules\cite{45,47,48}. It indicates that MT plays an important role in protecting cells from heavy metal poisoning\cite{49,50}. It is proven that MT could be a biomarker useful for predicting heavy metal toxicity and heavy metal detoxification toxic to organisms\cite{51,52}. Raw data are available on OSF\cite{53}.

Analysis of MT levels in Crassostrea glomerata gills and stomach

MT content analysis is exhibited in Figure 4. Similar results were obtained in the analysis of Crassostrea glomerata gills and stomach. MT expression in the gastric tissue of Crassostrea glomerata is expressed higher than gill tissue (Figure 4A). The highest MT expression in gastric tissue was obtained at Prigi Station sub-station 1 with a value of 1412,112 arbitrary units. The lowest MT expression in gastric tissue was obtained from Sendang Biru sub-station 3 with a value of 576,243 arbitrary units. Furthermore, the highest MT expression in gill tissue was obtained from Prigi substation 1 with a value of 756,381 arbitrary units. The lowest MT tissue gill expression was obtained at Sendang Biru substation 3, with a value of 366,125 arbitrary units. Higher MT expression was observed in gastric tissue compared to gill tissue morphologically (Figure 4B). The morphological results exhibited that MT labeled Rhodamine-B in gastric tissue appears brighter than gill tissue. Rhodamine-MT is a MT marker used in this study. Figure 4C exhibited that the Rhodamine-MT absorption as an MT marker possesses a higher intensity in gill tissue compared to gastric tissue.

Rumahlatu, et al.\cite{54} stated that MT protein which acts as a metal binding protein can be used as an indicator of pollution, as the presence of MT in oysters serves as a binder of heavy metals that accumulate in the body. Based on the research result, MT expression in Crassostrea glomerata and Crassostrea cuculata has different results. According to Tapiero and Tew\cite{55}, MT expression levels vary between species, these levels are determined by the identity of metal atoms bound to proteins, and the difference in metal distribution between MT isoforms. This may affect MT expression levels, therefore indicating that MT is involved in cellular homeostatic control and element regulation. MT expression in Crassostrea cuculata highest value was found in gastric tissue and the lowest value in gill tissue. This is inversely proportional to the heavy metal content, which was highest in the gills. In this case, the high content of heavy metals in the gills causes high MT production, which in turn is rapidly used for homeostasis and detoxification from damage caused by these heavy metal toxins. Therefore, MT expression in the gill tissue was detected as lower than that in gastric tissue. In previous studies, MT participated in metal ion homeostasis and detoxification, and anti-oxidative damage\cite{56,57}. Furthermore, MT expression is governed by the rate of accumulation of heavy metals, and MT plays an important role in metal detoxification and homeostasis\cite{58,59}. Some species develop physiological adaptations to tolerate metal pollutants\cite{60} which use two major detoxification mechanisms. The oyster uses metal binding compounds in the cytosol, such as MT (or similar proteins), or mineralization of minerals\cite{61}. The relativity of these two detoxification mechanisms varies greatly depending on the species and habitat. According to Amiard et al.\cite{62}, a decrease in MT concentration in organisms accumulated by heavy metals is influenced by cytotoxic effects in the detoxification process. Should an organism accumulate high heavy metals, a significant reduction in MT is caused as it is used in the process of suppressing the reactive production of ROS species oxygen responsible for oxygen metabolism\cite{63}.

The relationship between Pb, Cd, and Hg levels and MT expression in Crassostrea cuculata gills and stomach

The relationship between heavy metal level Pb, Hg, and Cd with MT levels in Crassostrea cuculata gills exhibited a very strong value with the coefficient of determination (R^2) of 0.908. Based on the results of multiple linear regression equations of heavy metal level in the aquatic body against MT levels in Crassostrea cuculata gill tissue, the following formula was obtained: Y = 242.337 + 2,128.234 X_1 + 88.354 X_2 + 2,182.218 X_3. These results indicate that a 1 ppm Pb (X_1) increase will increase MT expression 2,128,234 arbitrary units. Should Cd increased by 1 ppm (X_2), it will increase MT expression by 88,354 arbitrary units. On the other hand, a 1 ppm Hg (X_3) increase would increase the MT expression of 2,182,218 arbitrary units.

Furthermore, a similar result was found in the relationship between the heavy metal level of Pb, Hg, and Cd with the gastric tissue MT expression. It indicates a strong relationship with the value of the coefficient of determination (R^2) of 0.92. Multiple linear regression equations of heavy metal level in the aquatic body against MT levels Crassostrea cuculata gastric assessment obtained the equation Y = 494.528 + 4,075.811 X_1 + 2,852,821 X_2 + 88.354 X_3, the equation exhibited that Pb (X_1) 1 ppm increase would, in turn, increase MT expression 4,075,811 at arbitrary units. Cd (X_2) 1 ppm increase would increase MT expression 2,852,821 at arbitrary units. Hg (X_3) when rising 1 ppm increase will increase MT expression of 5,990,359 arbitrary units.

Hasan et al.\cite{64} stated that when the accumulation of heavy metals in the body of shellfish increases the synthesis of MT will probably reach the maximum level. The research conducted by Li et al.\cite{65}, exhibited a positive correlation between Cd heavy metal and MT levels in the gills and mantle of the bivalve group, which means that MT can be used as a biomarker for Cd heavy metal pollution. Furthermore, Sakulsak et al.\cite{66} stated that the occurrence of exposure to heavy metals and the accumulation of heavy metals in cells can increase MT levels in tissues. Hence, MT can be used as a biomarker in environmental toxicology.

The relationship between Pb, Cd, and Hg levels and MT expression in Crassostrea glomerata gills and stomach

A very strong relationship was obtained in Pb, Hg, Cd heavy metal level and gill MT expression of Crassostrea glomerata with a coefficient of determination (R^2) of 0.943. Multiple linear regression equations of heavy metal level in aquatic body against MT expression of Crassostrea glomerata gills is
Figure 3. Metallothionein (MT) expression in Crassostrea cuculata gills and stomach. (A) The quantity of MT expression at each station. (B) Morphology of MT expression in gills and stomach. (C) Absorbance gating of MT expression from a representative experiment.
Figure 4. Metallothionein (MT) expression in gills and stomach of *Crassostrea cuculata*. (A) The quantity of MT expression at each station. (B) Morphology of MT expression in gills and stomach. (C) Absorbance gating of MT expression from a representative experiment.
Y = 320.254 + 2,311.778 X_1 + 910.719 X_2 + 2,173.765 X_3. This equation exhibited that a 1 ppm increase in Pb (X_1) will increase MT expression 2,311.778 arbitrary units. Furthermore, a 1 ppm increase in Cd (X_2) will increase MT expression 910.719 arbitrary units. A 1 ppm increase in Hg (X_3) will cause an increase in MT expression at 2,173.765 arbitrary units.

The relationship between the heavy metal level of Pb, Hg, Cd in the aquatic body and MT expression *Crassostrea glomerata* gastric tissue exhibited a strong relationship with the value of the coefficient of determination (R^2) of 0.918. Multiple linear regression equations of heavy metal level in the aquatic body against MT expression in *Crassostrea glomerata* gastric tissue was found to be similar. Y = 570.492 + 4,603.743 X_1 + 3,455.676 X_2 + 4,333.870 X_3. The equation exhibited Pb (X_1) up 1 ppm increase will cause an increase in MT expression of 4,603.743 arbitrary units. Furthermore, a 1 ppm increase in Cd (X_2) will cause an increase in MT expression of 3,455.676 arbitrary units. A 1 ppm increase in Hg (X_3) will result in an increase in MT expression of 4,333.870 arbitrary units.

According to Rumahlatu, *et al.*18, MT acts as a metal-binding protein. It can be used as an indicator of pollution, as the presence of MT in oysters serves as a binder of heavy metals that accumulate in the body. Although many species can produce MT, oysters have exhibited a higher accumulation rate for metals compared to other species because they are filter feeders and tend to settle in one place66. MT can bind metals very strongly, but exchanging bonds with other proteins may take place easily. MT bonds to metals possess high thermodynamic stability but low kinetic stability67.

Water quality analysis

We observed physical and chemical water quality parameters that support the life of *Crassostrea cuchulata* and *Crassostrea glomerata*, namely temperature, acidity (pH), dissolved oxygen (DO) and salinity (Figure 5).

Water quality monitoring exhibited that there is no significant difference between each station and exhibited that the water quality is good for the oyster ecology. According to KEP-MENLH. 51 of 200426, it indicates the temperature suitable for oysters growth is 25-34°C. Furthermore, the pH level suitable for oysters’ ecosystem ranging from 6.8 to 8.8. DO levels of more than 5 mg l^{-1} are required to support aquatic organisms’ survival26.

Conclusion

Based on the results of the study it can be concluded that the heavy metal levels in the three locations assessed (Sendang Biru, Popoh, and Prigi) in the aerobic oyster farming area exhibit a high level that indicates that the water quality is good for the oyster ecology. This is in line with the results of the study conducted by KEP-MENLH. 51 of 200426. The water quality parameters observed in the study area are within the range of the optimum level for oyster growth. The results of the study also support the findings of previous studies conducted by researchers in the same region. Therefore, the water quality in the study area is suitable for the growth of oysters.
Popoh, and Prigi) have exceeded the specified quality threshold. Furthermore, the relationship between Pb, Hg, and Cd heavy metal level in the aquatic body has a strong relationship with the expression of MT in oysters’ stomach and gills (Crassostrea cucullata and Crassostrea glomerata).

Data availability
Raw data from the present study, including heavy metal levels in all oyster samples and all raw immunofluorescent images, are available on OSF. DOI: https://doi.org/10.17605/OSF.IO/37BVQ8.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

Data availability

Grant information

Funding for this study was provided by the General Directorate of Research and Development, Ministry of Research and Technology and Higher Education, Research Contract, Number: 063/SP2H/LT/DRPM/IV/2017.

The funders had no role in study design, data collation and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

We hereby wish to acknowledge the Central Laboratory of Life Science (LSIH), University of Brawijaya for granting us permission to carry out this work using their CLSM analysis instrument.

References

Page 10 of 13
levels and fecal pollution in clam (Tapes decussatus) collected from Izmir Bay (Turkey). Environ Meet Assess. 2010; 162(1–4): 407–415.

Publisher Full Text

Publisher Full Text

Publisher Abstract | Publisher Full Text

Publisher Full Text

Publisher Abstract | Publisher Full Text

Publisher Full Text

Publisher Abstract | Publisher Full Text

Publisher Abstract | Publisher Full Text

Publisher Abstract

Publisher Abstract | Publisher Full Text

Publisher Abstract | Publisher Full Text

Publisher Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text

Publisher Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text
Ima Yudha Perwira
Aquatic Resource Management, Faculty of Marine Science and Fisheries, Udayana University, Jimbaran, Indonesia

Review:

This paper explains about the usage of Metallothionein (MT) expression as a specific biomarker for the presence of cadmium (Cd), mercury (Hg), and lead (Pb) in the tissues (gills and stomach) of oysters (Crassostrea cuculata and Crassostrea glomerata) and the coastal waters of the South coast of East Java. This study has used the appropriate methodologies to measure several parameters. The heavy metals (Pb, Cd, and Hg) are measured using atomic absorption spectrophotometry (AAS). Heavy metals in the water samples are directly measured by using AAS, while that in the gill tissue and stomach are extracted (using nitric acid and incubated at 5-8°C for 30 minutes) before the measurement. The expression of MT is observed by using confocal laser scanning microscopy (CLSM). The authors also mentioned the detailed measurement of water quality for supporting the data of this study. The result of this study showed that the heavy metal content in the water is generally past the specific quality standard (based on the Decree of the State Minister of Environment No. 51 of 2004 concerning seawater quality standards for heavy metal content) (Jelaskan kenapa bisa tinggi). The analysis of MT expression on both gill tissue and stomach showed the highest value in the Prigi station. This study also showed a strong relationship between heavy metals (Pb, Cd, and Hg) with gill tissue and stomach in both Crassostrea cuculata and Crassostrea glomerata.

Comments:

This study is interesting, but some points need to be considered. It would be better for the authors to mention some previous study about the using of MT expression as biomarker in the marine species. This study is also interesting because it was carried out in the south coastal area of Java Sea. There is industrial activity located in this area. It would be nice if the authors could mention the importance of doing this study in that area. The highest heavy metal content in the gill tissue and stomach of oysters is observed in the Prigi and Sendang Biru stations. The author has compared the heavy metal content in the oyster with Mytilus and Thylacodes. It would be better if there is another comparative result on the oyster.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Water pollution and ecotoxicology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com