RESEARCH ARTICLE

Correlation of cervical progesterone levels to plasma progesterone levels in normal pregnancy and preterm labor: A cross-sectional study [version 1; peer review: awaiting peer review]

Yuyun Lisnawati 1, Noroyono Wibowo2, Ana Mariana 3

1Department of Obstetrics and Gynecology, Faculty of Medicine Universitas Indonesia, Persahabatan General Hospital, Jakarta, Indonesia
2Department of Obstetrics and Gynecology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
3Indonesian Reproductive Medicine Research and Training Center (INA-REPROMED), Faculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia

Abstract

Background: Theory of “functional progesterone withdrawal” explains the role of progesterone prior to delivery. Previous studies mentioned the existence of progesterone regulation in the cervix that plays a role in maintaining the integrity of the cervix and cervical ripening. Cervical progesterone levels relate to activities of progesterone at the cervix, compared to its amount in circulation. The objective of this study was to measure cervical mucus progesterone levels and its correlation to plasma progesterone levels in pregnancy.

Methods: This was a cross sectional study conducted in January-September 2010 at Persahabatan Hospital. The subjects were pregnant woman in the 28th – 34th weeks of gestational age. In total, 72 subjects who met the criteria were divided into normal pregnancy group and preterm labor group. The cervical and plasma progesterone levels were measured using The Advia Centaur® Progesterone kit, which is a commercial immunoassay with direct chemiluminescence method.

Results: There was positive correlation (r=0.539) between cervical progesterone levels with plasma progesterone levels in the preterm labor group. There was no correlation between cervical progesterone levels with plasma progesterone levels in the normal pregnancy group.

Conclusion: This study showed that cervical progesterone levels could be measured through cervical mucus. A significant positive correlation was found by this study between cervical progesterone levels and plasma progesterone levels in the preterm labor group. This study is expected to provide new insights for understanding the metabolism and the role of progesterone in maintaining cervical integrity during pregnancy, and its relation to prevention of preterm birth.

Keywords
Cervical, Progesterone
Introduction

Preterm birth contributes long and short-term effects to neonatal health problems. The incidence of preterm birth has not shown a significant decline. About a decade ago, the incidence of preterm birth was reported around 12–13% in the United States and 5–11% in developed countries. In Indonesia, the rate of preterm birth is 15.5% and is included in the group of 10 countries with the highest preterm birth according to the World Health Organization 2013.

The hormone progesterone maintains the continuity of pregnancy in order to prevent preterm labor that can cause preterm delivery. Progesterone is a steroid hormone which has important roles in maintaining uterine quiescence until the pregnancy reaches term. A recent study stated that circulatory progesterone levels in humans remain stable until placenta is born. Nevertheless, the role of progesterone in the onset of labor is still believed to occur through an indirect mechanism called “functional progesterone withdrawal”.

Circulation of progesterone hormones may enter the peripheral tissue such as salivary glands and cervix. Progesterone regulation also occurs in the uterus and cervix. The uterus produces 5α-reductase enzyme and 20α-hydroxysteroid dehydrogenase enzyme (20α-HSD) which converts progesterone into inactive metabolites and decreases the uterine quiescence. Mahendroo et al. showed that in a term rat uterus with 5α-reductase deficiency, the uterus remains to contract although delivery does not happen because there was no cervix maturation.

Andersson et al. showed that during pregnancy, cervical glandular epithelial cells produce 17β-hydroxysteroid dehydrogenase (17β-HSD) type 2 enzyme that converts estradiol to estrone and 20α-hydroxyprogesterone (20αP) to progesterone. Approaching delivery, regulation of 17β-HSD type 2 decreases and creates a state that supports cervical maturation. The data on the study by Andersson et al. supports the idea that cervical maturation and myometrial contraction in labor involves regulation of progesterone in the cervix and uterus through the complex relationship between cervical epithelial, stromal, and myometrium.

Progesterone plasma level is widely studied to monitor the function of the corpus luteum in secretory phase and the beginning of pregnancy. In later pregnancy, progesterone level monitoring is only done for individuals with a high risk of having abortus or preterm delivery, although the effectiveness of its application in clinical practice remains controversial.

Assumption about the reduced quantity of plasma progesterone before delivery is now widely questioned. Currently, the role that progesterone plays before delivery is described as “progesterone functional withdrawal” theory. Prior studies mention that there is progesterone regulation in the cervix, which contributes to preserve cervical integrity as well as cervical maturation. It is assumed that cervical progesterone levels reflect the target organ’s progesterone activity, i.e. the cervix, better than circulatory progesterone. Therefore, measuring cervical mucus progesterone during normal pregnancy and preterm delivery pregnancy needs to be explored. As far as we know, there has been no research that measures levels of progesterone in cervical mucus.

Methods

Study design

This study was a cross-sectional correlation study conducted in January 2010 until September 2010 at Persahabatan General Hospital Jakarta, Indonesia.

Participants

The participants are subjects in the 28th–34th weeks of pregnancy with a single and normal fetus. The subjects were divided into two groups, normal pregnancy and preterm labor, as described in the inclusion criteria.

The inclusion criteria for this study were as follows: (1) pregnant women at 28th–34th weeks of pregnancy with single and normal fetus who attended at Persahabatan General Hospital, (2) subjects in normal pregnancy group had no contraction, (3) subjects in preterm labor group had minimal 4 contractions in 20 minutes that was proved by cardiotocography, without amniotic membrane ruptured or blood mucus in cervix, (4) subject willing to take part in research and sign informed consent. The exclusion criteria for this study were as follows: (1) respondents who does not meet the inclusion requirements for this study; and (2) respondents who not willing to be a participant in this study and incomplete of filling informed consent.

To anticipate differences in progesterone levels every week of gestational age, subgroup analysis was carried out based on gestational age. The subjects of the study were recruited according to three subgroup of gestational age in each group of normal pregnancy and preterm labor: (1) 28 (+0 days) up to 29 (+6 days) weeks, (2) 30 (+0 days) up to 31 (+6 days) weeks, and (3) 32 (+0 days) to 33 (+6 days) weeks.

The sample size was derived from the formula \(n = \frac{Z^2 \sigma^2}{\epsilon^2} \), a sample of at least 12 subjects in each subgroup is needed to detect a moderate correlation (\(r = 0.75 \)) with 80% power and 5% confidence limit, calculated using the hypothesis test formula for Pearson correlation. Based on this calculation, we enrolled 72 participants, 36 subjects in the normal pregnancy group and 36 subjects in the preterm labor group.

Data collection

In both group participants, they were given an explanation of the purpose and benefits of the study, and as asked to provide written consent to participate in the study. The written approval sheet was signed by the patient and the researcher. After the patients signed the written approval sheet and also have given the information by the researcher, maternal blood (5 mL) was collected from patients to measure progesterone and cervical mucus. The blood samples were centrifuged on 3000 rpm for 15 minutes to obtain the plasma/serum.
Cervical mucus was collected using prism shaped MQA ophthalmic sponge. The speculum was inserted inside the vagina on lithotomy position to visualize the cervix with enough lighting to inspect. The ophthalmic sponge was hold on the base of the prism using long forceps/tweezers and collection of cervical mucus was performed by inserting the ophthalmic sponge into the external orifice of the uterus and hold still for 60 seconds until the sponge absorbs the mucus. The sponge was removed gently and put inside a storage tube, a neutral vacuum tube filled with 1 cc of 0,9% NaCl to store the specimen. The tube was put inside a cooler (2–8°C) within 30 minutes of collection to prevent contamination and the tube was put inside a freezer within 4 hours after collection. Before processing, samples were centrifuged at 16000 g to obtain the supernatant (to separate sample from sponge).\(^9\)

The plasma blood and cervical mucus progesterone levels were measured using The Advia Centaur® Progesterone kit, which is a commercial immunoassay with direct chemiluminescence method. This kit has 0.21 µg/L (0.67 nmol/L) analytical sensitivity. The score used in the analysis were between 0.21 µg/L to 60.00 µg/L.

Statistical analysis

After all the necessary data was collected, the data was coded on pre-arranged coding sheets by the principal investigator. Statistical analyses and data entry were performed using the Statistical Package for the Social Sciences (SPSS), version 20.0. We performed statistical analysis using a Spearman test for measures the correlation or the strength of association between cervical progesterone level and plasma progesterone level in normal pregnancy group and the preterm labor group. The results were presented in tables and figures.

Ethical considerations

This study was approved by The Ethics Committee of Persahabatan General Hospital (approval number 01/Diklit-RSP/Kom.Eтик/II/2010). The research proposal was submitted and reviewed by the Research Committee, whereby permission was granted to conduct the research. A written letter of consent was submitted to the health institution to seek permission to conduct this study, which was also granted. Privacy and confidentiality of the clients’ information was observed through the use of data collection with coded identification numbers. All prospective subjects received an explanation from the main researcher and additional researchers regarding the procedures for conducting research. The decision to follow or refuse to follow the research was taken by informed consent. All data will be kept confidential and the subject had the right to know all the results of the examination carried out.

Results

This study enrolled a total of 72 pregnant women who met the study criteria. They were divided into two groups: 36 women in the normal pregnancy group and 36 women in the preterm labor group. Table 1 shows that there were no significant differences in age distribution, education level and working status between groups. Gestational age grouping was balanced evenly between the two groups.

Data distribution of cervical progesterone levels in normal pregnancy group and preterm labor group were not normal due to extreme values. Table 2 shows that the median of the cervical progesterone level of normal pregnancy group was 1.74 ng/ml, which is lower than preterm labor group (median: 1.91 ng/ml). The range of progesterone levels in the preterm labor group was greater than in normal group. Plasma progesterone levels in both groups had normal data distribution. Mean value of normal pregnancy group was 174.52 ± 59.11 ng/ml, lower than preterm labor group (195.10 ± 82.21 ng/ml).

The correlation between cervical progesterone levels and plasma progesterone levels in normal pregnancy group were show using a scatter plot graph (Figure 1). Although schematically there was

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Preterm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>32 (6)</td>
<td>29 (7)</td>
<td>0.107*</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age (week)</td>
<td>28-30</td>
<td>12 (50)</td>
<td>12 (50)</td>
<td>1.000</td>
</tr>
<tr>
<td>n (%)</td>
<td>30-32</td>
<td>12 (50)</td>
<td>12 (50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-34</td>
<td>12 (50)</td>
<td>12 (50)</td>
<td></td>
</tr>
<tr>
<td>Education Level</td>
<td>High School</td>
<td>26 (72.2)</td>
<td>29 (80.6)</td>
<td>0.405</td>
</tr>
<tr>
<td>n (%)</td>
<td>University</td>
<td>10 (27.8)</td>
<td>7 (19.4)</td>
<td></td>
</tr>
<tr>
<td>Work</td>
<td>Yes</td>
<td>14 (38.9)</td>
<td>10 (27.8)</td>
<td>0.317</td>
</tr>
<tr>
<td>n (%)</td>
<td>No</td>
<td>22 (61.1)</td>
<td>26 (72.2)</td>
<td></td>
</tr>
</tbody>
</table>

Chi Square test; Unpaired T-test*
Table 2. Cervical and plasma progesterone levels of normal pregnancy and preterm labor.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Cervical progesterone (ng/mL)</td>
<td>1.74 (0.99-5.74)</td>
</tr>
<tr>
<td>Med (min-max)</td>
<td></td>
</tr>
<tr>
<td>Plasma progesterone (ng/mL)</td>
<td>164.32 (81.10-294.89)</td>
</tr>
<tr>
<td>Med (min-max)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Correlation between cervical progesterone level and plasma progesterone level in normal pregnancy group. Spearman correlation $r = 0.196; p$ value $= 0.251$.

Discussion

As a pregnancy hormone, progesterone is not only metabolized in circulation, but also in the uterus. Previous studies have proven the existence of local regulation of progesterone in uterus and cervix. A term uterus produces an enzyme that convert progesterone into inactive metabolites and decreases the uterine quiescence. In this study, the cervical progesterone level could be measured through the cervical mucus, which was collected using a prism shaped ophthalmic sponge. The data obtained from both groups had abnormal distribution. The range was quite large, especially in the preterm labor group with a median of 1.91 ng/ml (0.37–13.72). The existence of extreme values affected the distribution of data in both groups and caused abnormal data distribution. Some of the possible causes of this abnormal data distribution were bias, which could occur in collecting and processing samples; and examination methods, which still require correction and presence of cervical local factors (such as clinical or subclinical infection) that may affect the regulation of progesterone (which was not explored in this study).

Progesterone is a hormone that plays a dominant role to keep the uterus quiescence during pregnancy. Circulatory progesterone level in humans remains elevated until birth, which refers to the notion of a “functional progesterone withdrawal”, which occurs before delivery. The definition may also apply to cervical progesterone. Progesterone is inactivated by local regulation of the cervix, not by the quantity of the progesterone hormone. The study by Andersson et al. was one study that proved the existence of progesterone inactivation in the uterus and cervix.
cervix before delivery. Using immunohistochemical methods and quantitative real-time PCR, this study proved the existence of elevation of 20α-hydroxyprogesterone (20αP), an inactive metabolite of progesterone, just before delivery. This elevation was allegedly caused by decreasing concentrations of 17β-HSD type 2 enzyme in endocervical epithelial cells. The method that we use was different from the methods above. We tried to measure progesterone level from cervical mucus by using competitive immunoassay with direct chemiluminescence method. This may be a limitation of our study.

In the present study, cervical progesterone levels in the normal group were lower than the preterm labor group. These results were inversely related to the expected hypothesis where cervical progesterone levels in preterm labor group were expected to be lower than the normal pregnancy group. The hypothesis, which was based on the assumption that the cervical mucus was similar with saliva and the study conducted by Connor et al., in which it was stated that salivary progesterone concentrations between 24 and 34 weeks of pregnancy were lower in pregnant women who experienced delivery before 34 weeks of gestation compared to pregnant women who experienced delivery after 37 weeks, were not proven in this study. The salivary progesterone levels in the study by Connor et al. were measured serially, while in this study progesterone level were measured one-time. Therefore, to get better data, serial measurements of cervical progesterone level using a good method in the pregnancy group might be needed.

High cervical progesterone levels in the preterm labor group in the present study might be caused by an increase of progesterone metabolites in the cervix due to infection process. Infection rates contributed more than 30% as a cause of preterm labor. Mahendroo et al. showed conversion of progesterone into inactive metabolites by cervical enzymes before delivery in pregnant rats. Using radioimmunoassay examination technique (RIA), this study detected conversion of progesterone into 5a-pregnan-3, 20-dione by steroid 5a-reductase, into 4-pregnen-20a-ol-3-one by 20a-hydroxysteroid dehydrogenase and into 5a-pregnan-3a, 20a-diol by the combined action of two enzymes with 3a-hydroxysteroid dehydrogenase. This present study used a competitive immunoassay technique with direct chemiluminescence method which did not differentiate active progesterone to its inactive metabolite produced in the cervix. Detected progesterone level in cervical mucus possibly includes progesterone and its inactive metabolites and therefore did not reflect the actual activity of cervical progesterone.

In the normal pregnancy group, although schematically there was a trend of increasing relationship between cervical and plasma progesterone level, the result generated by the correlation test showed that there was no significant correlation with weak strength. Thus, the elevation of plasma progesterone levels was not followed by elevation in plasma progesterone level. Different results were obtained in the preterm labor group: the relationship between cervical progesterone and plasma progesterone were more visible and the result obtained from the test showed a significant relationship as well as moderate correlation strength ($r=0.539$). This result indicated that the elevation of cervical progesterone level in the preterm labor group was directly proportional to plasma progesterone levels. Differences occurred in both groups require further study. Was it influenced by the regulation of local progesterone that occurs in the cervix? As known from previous studies, the regulation of cervical progesterone during pregnancy was different than before delivery. Would inflammation/infection in the cervix influence cervical and
plasma progesterone level? A one-time sample collection was also thought to be possible factor influencing different results of both groups.

Conclusion

Cervical progesterone levels can be measured through the cervical mucus. A significant positive correlation was only found between cervical progesterone level with plasma progesterone level in the preterm labor group. This study is expected to provide new insights for understanding the metabolism and the role of progesterone in maintaining cervical integrity during pregnancy, and its relation to prevention of preterm birth.

Data availability

Underlying data

Open Science Framework: Correlation of cervical progesterone levels to plasma progesterone levels in normal pregnancy and preterm labor: A cross-sectional study, https://doi.org/10.17605/OSF.IO/YDM9P.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information

This work is supported by Hibah PITTA 2018 funded by DRPM Universitas Indonesia No.5000/UN2.R3.1/HKP.05.00/2018.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

This work was performed at the Department of Obstetrics and Gynecology, Persahabatan General Hospital Jakarta, Indonesia. The authors wish to thank all staff at the Persahabatan General Hospital Jakarta for supporting us regarding this study.

References

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com