Progression free survival in Iraqi breast cancer patients treated with adjuvant 3D conformal radiotherapy: A cross-sectional study [version 1; peer review: 1 approved with reservations]

Manwar Abdullelah Al-Naqqash1,2, Enas Khudhair Al-Bdaer3, Wieeam Abdul fattah Saleh Saleh2, Ahmed Salih Al-Shewered1

1Department of Surgery, College of Medicine, University of Baghdad, Baghdad, 10001, Iraq
2Department of Radiation Oncology, Oncology Teaching Hospital, Ministry of Health/ Environment, Baghdad, 10001, Iraq
3Basra Radiation Oncology, Ministry of Health/ Environment, Basra, 62061, Iraq

Abstract

Background: Breast cancer is a common malignancy in Iraq, accounting for one-third of female cancers in the Iraqi Cancer Registry. Radiotherapy confers benefits for local control and progression free survival (PFS) in patients with breast cancer. This study aimed to assess PFS in patients treated by hypofractionated three-dimensional conformal radiotherapy (3DCRT) and correlate PFS with patients' clinical and pathological profiles.

Methods: We retrospectively reviewed 299 women with breast cancer treated at Baghdad Radiation Oncology Center between October 2017 and May 2018. Regarding radiotherapy, 4005 cGy in 15 fractions over 3 weeks was adopted as standard practice for patients undergoing mastectomy and 4005 cGy in 15 fractions + 1000 cG in 5 fractions as a booster dose for women undergoing breast-conserving surgery.

Results: Age ranged from 25 to 75 years, and the mean age was 49.9±10.99 years. The most common stage was T2 (156, 53.9%), which mostly comprised luminal A (105, 36.3%). The results showed a high frequency of N1 (109, 37.2%), with luminal A (69, 23.4%). Relapse occurred in 35/299 (11.7%) patients, and the chest wall was a common relapse site in 9 of these patients (25.9%).

Conclusions: We conclude that adjuvant radiotherapy reduces locoregional recurrence, distant metastasis and mortality rate.

Keywords
3D conformal radiotherapy, Breast cancer, Progression free survival, Luminal subtypes, HER2 neu receptors
Corresponding author: Manwar Abdulelah Al-Naqqash (abudallaham@gmail.com)

Author roles: Al-Naqqash MA: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Supervision, Validation, Visualization, Writing – Review & Editing; Al-Bdaer EK: Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Software, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Saleh Saleh WA: Funding Acquisition, Investigation, Project Administration, Resources, Validation, Visualization, Writing – Review & Editing;

Al-Shewered AS: Conceptualization, Data Curation, Software, Validation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Al-Naqqash MA et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Al-Naqqash MA, Al-Bdaer EK, Saleh Saleh WA and Al-Shewered AS. Progression free survival in Iraqi breast cancer patients treated with adjuvant 3D conformal radiotherapy: A cross-sectional study [version 1; peer review: 1 approved with reservations] F1000Research 2019, 8:71 (https://doi.org/10.12688/f1000research.17570.1)

First published: 18 Jan 2019, 8:71 (https://doi.org/10.12688/f1000research.17570.1)
Introduction
Breast cancer is a common cancer in women, and it is estimated that one in eight women in the US will develop it in their life. It is the leading cancer among women in both Europe and the US and has become an emerging disease in developing countries. In Iraq, 3845 patients were estimated to have breast cancer in 2011. Therapy requires a multidisciplinary team involving surgeons, medical oncologists, radiation oncologists, pathologists, radiologists, and supportive care personnel. Adjuvant radiotherapy decreases locoregional relapse, increases survival and palliates symptoms; after breast-conserving surgery (BCS), it is an essential component of treatment. In oncology, progression free survival (PFS) referred to the length of time during and after the treatment of a cancer, that a patient lives with it but it does not get worse and refers to situations in which a tumor is present, as demonstrated by laboratory, radiology, and/or clinical evidence. In developing countries, survival rates are poorer than those in developed countries. Approximately 30% patients with early-stage cancer develop metastases, whereas metastatic breast cancer occurs in 6 – 7% of newly diagnosed patients. The 5-year survival rate with metastasis is 25%, and the overall survival (OS) is reported to be 24 months. Adjuvant radiotherapy reduces the incidence of locoregional recurrence from 30% to 10.5% at 20 years and decreases deaths by 5.4% at 20 years.

This study aimed to assess PFS in patients treated by hypofractionated three-dimensional conformal radiotherapy (3DCRT) and correlate PFS with patients’ clinical and pathological profiles.

Methods
Study design and setting
We retrospectively reviewed 299 women who were consecutively treated at Baghdad Radiation Oncology Center between October 2017 and May 2018. Patients were included if they planned to undergo adjuvant 3DCRT. Medical records were reviewed in detail after approval was obtained from our institution. All women were treated after completing chemotherapy cycles in a period not less than 13 weeks from the last cycle.

Inclusion criteria
1. T3, T4 stages.
2. All patients with node positive status.
3. All patients after breast conservative surgery.

Exclusion criteria
1. Significant pre-existing cardiac or lung disease.
2. Scleroderma.
3. Limited shoulder mobility.

Data collection
Individual data and information on primary and advanced disease were collected. The following variables were studied as possible prognostic factors for specific clinical outcomes: age, tumor-node-metastasis staging, lymph nodes (LN), histopathology, grades, estrogen receptors, progesterone receptors, human epidermal growth factor receptor 2 (HER2) neu, surgery types, body mass index (BMI), period between the last cycle of chemotherapy and radiotherapy, date of radiotherapy, follow-up time, and metastatic or recurrent events (brain, supraclavicular LN, axillary LN, liver, chest wall scars and bones).

Radiotherapy doses
1. 4005 cGy in 15 fractions over 3 weeks adopted in mastectomy, the indications are: involvement of one or more axillary lymph nodes.
2. T3 (>5 cm tumor), T4 (skin/chest wall invasion) or stage III tumor.
3. Positive surgical margin.
5. Multiple primary tumors (multi-centricity).

Data analysis
Data were first entered into an Excel file, then transferred for statistical analysis into SPSS v22. For categorical variables, such as age, histotype, ER, PR, HER2, the frequency distribution calculated and analyzed with Fisher’s test and chi-squared. Correlation coefficient (r) was used to detect significance relations. Kaplan-Meier survival curves for PFS were used, which is a way of graphically displaying the time until the study developed an endpoint, often death, or an event such as recurrence of cancer, which was obtained during follow-up.

Ethical considerations
Written informed consent was obtained from the patients, for the use of their data in this study, and the study was conducted according to the ethical standards established by the 1964 Declaration of Helsinki. The Medical Ethical Committee of College of Medicine, Baghdad University approved this study (code: 6/2018), which covers the Baghdad Radiation Oncology Center.

Results
Patient characteristics
The majority of patients were in the age group 46–55 years (115, 38.5%). BMI revealed that the majority of the patients were either overweight (60, 27.2%) or had moderate obesity (73, 33%) (Table 1).

Luminal A breast cancer type present in 197 patients (67.2%), while non-luminal A phenotypes were recorded as luminal B subtype (34, 11.6%), triple negative (33, 11.3%) and HER2 enriched (29, 9.9%) (Table 1).
Staging and molecular subtypes
The T2 stage was predominant (156, 53.9%), which mostly comprised luminal A (105, 36.3%). Other stages and subtypes presented in different proportions (Table 2). The results showed a high frequency of N1 in 109 patients (37.2%), related to molecular luminal A (69, 23.4%) (Table 2).

ER, PR and HER2 neu receptors
A significant result was obtained between age, BMI, and T stage when correlated to molecular subtypes, ER and HER2 neu receptors. Age correlated to molecular subtypes \((r = +1); \) there was good correlation (2-tailed = 0.46 and \(P = 0.043 \)). BMI was significantly correlated to estrogen receptors (ER) \((r = +1, \text{2-tailed} = 0.5 \text{ and } P = 0.046) \). Furthermore the correlation between T stages and HER2 neu receptors showed a significant value \((r = +1, \text{2-tailed} = 0.99 \text{ and } P = 0.001) \).

Relapse patterns
Relapse occurred in 35 (11.7%) women, while the reminder (264, 88.3%) were non-relapsed (Table 1). The waiting period from last cycle of chemotherapy to the date of starting radiotherapy in weeks of this study had median 17 weeks and mode about 9 weeks, which ranged from 4 to 30 weeks (Figure 1).

PFS in this study presented in 264 women, while relapsing was evident in 35 cases. Chest wall relapse occurred in 9 patients (25.7%). Other relapses included liver metastasis, bone secondaries, axillary LN relapse, lung metastasis and supraclavicular LN in 8 (22.9%), 6 (17.1%), 5 (14.3%), 4 (11.4%), 3 (8.6%) patients, respectively (Figure 2).

The luminal A subtype relapsed in 69% of patients which represented major subtypes reliable for relapse, while HER2 enriched and triple negative subtypes occurred in 14% patients for both and 3% for luminal B (Figure 3).

Progression free survival
Kaplan Meier survival curve estimation of PFS is shown in Figure 4. The PFS rates for relapse were 35 (11.7%) versus 264 (88.3%) for non-relapse, estimated using this curve, which indicated that when a woman received adjuvant radiotherapy, she was about nine times more likely to survive beyond the time than someone who did not receive adjuvant radiotherapy.

Table 1. Iraqi breast cancer patient characteristics.

<table>
<thead>
<tr>
<th>Variables</th>
<th>N (%)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) Range: 25–27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–35</td>
<td>36 (12)</td>
<td></td>
</tr>
<tr>
<td>36–45</td>
<td>70 (23.4)</td>
<td></td>
</tr>
<tr>
<td>46–55</td>
<td>115 (38.5)</td>
<td></td>
</tr>
<tr>
<td>56–65</td>
<td>61 (20.4)</td>
<td></td>
</tr>
<tr>
<td>66–75</td>
<td>17 (5.7)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>BMI (m²/Kg) Range: 18–43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight (<18.5)</td>
<td>2 (0.9)</td>
<td>29±5.2</td>
</tr>
<tr>
<td>Normal (18.6–24.9)</td>
<td>51 (23.1)</td>
<td></td>
</tr>
<tr>
<td>Overweight (25–29.9)</td>
<td>60 (27.2)</td>
<td></td>
</tr>
<tr>
<td>Moderate obesity (30–34.9)</td>
<td>73 (33)</td>
<td></td>
</tr>
<tr>
<td>Severe obesity (35–39.9)</td>
<td>29 (13.1)</td>
<td></td>
</tr>
<tr>
<td>Morbid obesity (>40)</td>
<td>6 (2.7)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>221 (78 missing)*</td>
<td></td>
</tr>
<tr>
<td>Molecular subtypes (n=293)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2 enriched</td>
<td>29 (9.9)</td>
<td></td>
</tr>
<tr>
<td>Triple negative</td>
<td>33 (11.3)</td>
<td></td>
</tr>
<tr>
<td>Luminal B</td>
<td>34 (11.6)</td>
<td></td>
</tr>
<tr>
<td>Luminal A</td>
<td>197 (67.2)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>293 (6 missing)*</td>
<td></td>
</tr>
<tr>
<td>Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-relapse</td>
<td>264 (88.3)</td>
<td></td>
</tr>
<tr>
<td>Relapse**</td>
<td>35 (11.7)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>299 (100)</td>
<td></td>
</tr>
</tbody>
</table>

*Total sample sizes and numbers missing may differ due to missing values for selected variables.
**Relapsing include: chest wall relapse, liver metastasis, bone secondaries, axillary LN relapse, lung metastasis and supraclavicular LN relapsed.
The follow-up period was 12 months; the Kaplan Meier estimates of PFS for all the patients was censored at 9 months and the last was at 35 months. There was a trend for better PFS in patients receiving adjuvant radiotherapy, so radiotherapy was significantly associated with prolonged PFS.

Discussion

In the present study, the age of patients was 25–75 years with a mean± standard deviation of 49.9±10.99 years, with the majority of patients in the group of 46–55 years (115, 38.5%). This is similar to the results of previous studies conducted in Iraq: Al-Rawaq et al., 2016, Al-Khafaji et al., 2010, and Al-Naqqash et al., 2009. Age represents an important factor both for occurrence and management of breast cancer. In our study, the median age of onset was > 10 years younger than that shown in studies in Europe and North America. It has been proposed that these differences are due to differences in exposure to hormones, diet, physical activities, and other risk factors.

Table 2. Tumor-node stages in relation to molecular subtypes.

<table>
<thead>
<tr>
<th>T stages</th>
<th>Molecular subtypes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luminal A (%)</td>
<td>Luminal B (%)</td>
</tr>
<tr>
<td>T1</td>
<td>36 (12.4)</td>
<td>10 (3.4)</td>
</tr>
<tr>
<td>T2</td>
<td>105 (36.3)</td>
<td>18 (6.2)</td>
</tr>
<tr>
<td>T3</td>
<td>40 (13.8)</td>
<td>5 (1.7)</td>
</tr>
<tr>
<td>T4</td>
<td>13 (4.5)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Total</td>
<td>194 (67.1)</td>
<td>34 (11.7)</td>
</tr>
</tbody>
</table>

Fisher’s Exact test=9.15, Chi-square=9.5, P = 0.031

<table>
<thead>
<tr>
<th>N stages</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>43 (14.6)</td>
<td>6 (2.0)</td>
<td>7 (2.3)</td>
<td>5 (1.7)</td>
<td>61 (20.8)</td>
</tr>
<tr>
<td>N1</td>
<td>69 (23.5)</td>
<td>16 (5.4)</td>
<td>12 (4.1)</td>
<td>12 (4.1)</td>
<td>109 (37.2)</td>
</tr>
<tr>
<td>N2</td>
<td>56 (19.1)</td>
<td>10 (3.4)</td>
<td>5 (1.7)</td>
<td>12 (4.1)</td>
<td>83 (28.3)</td>
</tr>
<tr>
<td>N3</td>
<td>29 (9.9)</td>
<td>2 (0.6)</td>
<td>5 (1.7)</td>
<td>4 (1.3)</td>
<td>40 (13.6)</td>
</tr>
<tr>
<td>Total</td>
<td>197 (67.2)</td>
<td>34 (11.6)</td>
<td>29 (9.9)</td>
<td>33 (11.2)</td>
<td>293 (6 missing)*</td>
</tr>
</tbody>
</table>

Fisher’s Exact Test=6.2, Chi-square=6.23, P = 0.004

*Total sample sizes and numbers missing may differ due to missing values for selected variables.

Figure 1. Waiting period (weeks) between last cycle of chemotherapy and date of radiotherapy.

The follow-up period was 12 months; the Kaplan Meier estimates of PFS for all the patients censored at 9 months and the last was at 35 months. There was a trend for better PFS in patients receiving adjuvant radiotherapy, so radiotherapy was significantly associated with prolonged PFS.

Discussion

In the present study, the age of patients was 25–75 years with a mean± standard deviation of 49.9±10.99 years, with the majority of patients in the group of 46–55 years (115, 38.5%). This is similar to the results of previous studies conducted in Iraq: Al-Rawaq et al., 2016, Al-Khafaji et al., 2010, and Al-Naqqash et al., 2009. Age represents an important factor both for occurrence and management of breast cancer. In our study, the median age of onset was > 10 years younger than that shown in studies in Europe and North America. It has been proposed that these differences are due to differences in exposure to hormones, diet, physical activities, and other risk factors.
In most Arabian countries, breast cancer is commonly diagnosed in women younger than 50 years, which is consistent with the findings of our study, unlike in the US, where women aged 50 years and older are most commonly affected18.

The molecular subtype plays an important role in follow-up survival and prognosis in breast cancer. Luminal A (67.2%), luminal B (11.6%), triple-negative (11.3%), and HER2-enriched (9.9%) subtypes were observed in the present study. These results are similar to those found in Cheang’s study18 and unlike those of other studies, such as Al-Naqqash et al., 200916, Al-Sarraf et al., 201515, and El-Fatemi and Chahbounil, 201220. In the present study, luminal A relapse was recorded in 69% of patients, while the reminder were non-luminal A; HER2-enriched, triple-negative and luminal B occurred in 14%, 14%, and 3% of patients, respectively. These results were inconsistent with the results of Fitzgibbons et al., 200021 and Al-Sarraf et al., 201515. Luminal A has the most favorable prognosis, with locoregional relapse rates of only 3–8% at 10 years20. HER2-enriched groups exhibit the highest rates of local recurrence and regional relapse21.

Tumor size (T stage) was directly correlated with survival and metastasis in the present study. Size rank is among the strongest predictors of metastasis, disease-free survival (DFS), and OS. Although tumor size correlates strongly with the presence of axillary LNs, this is clearly an independent prognostic factor5,21. Among those with documented negative nodes, tumor size remained a strong and independent predictor5. Many studies showed a 20 year DFS of 79% for those with tumors smaller than 2 cm, compared with 64% for those with tumors larger than 2 cm5. This study demonstrated T2 stage was the most common (53.9%), followed by T3, T1 and T4; regarding the T stage related to molecular subtype, T2/luminal A was most common (36.3%). These results were similar to those of Al-Rawaq et al., 201614, Al-Khafaji et al., 201015, and Al-Naqqash et al., 200916, but different than those of Goldhirsch et al., 20133 and Cheang et al., 20092.
The status of LN is an important prognostic factor related to survival and predictors of systemic micro-metastases, disease recurrence, and poor prognosis. In the present study, the N1 frequency was 37.2% followed by N2, N0, and N4. The N1/luminal A frequency was 23.5%, which was recorded commonly, whereas the N3/luminal B frequency was the lowest (0.6%). These agree with the results of Al-Rawaq et al., 2016 and Al-Khafaji et al., 2010, while they disagree with those of Goldhirsch et al., 2013 and Cheang et al., 2009.

In the present study, the PFS, which was obtained using Kaplan Meier survival curves, estimated an association between receiving adjuvant radiotherapy and/or locoregional or recurrence rates and/or distant metastasis and/or the end point (death). The estimated resampling study findings in the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) in 2011, found that after BCS, radiotherapy halved the rate of recurrence and reduce the death rate by about a sixth, which was similar to that reported in the EBCTCG study in 2014, which found that radiotherapy beyond mastectomy and axillary dissection reduced both recurrence and mortality.

In the present study, non-relapse represented a large group (88.3%), whereas relapse was recorded in 11.7%, after a follow-up period from 6 to 12 months. Both proportional and absolute reductions in the recurrence rate are large in the first year, whereas the reduction in death becomes definite after the first few years.

Conclusions

The fifth decade of life is the most common age of presentation for breast cancer in this Iraqi population, and the luminal A phenotype is the most common molecular subtype. The commonest stage is T2 and N1, while the least common is T4 and N3. There was a strong correlation between age, BMI, and staging for molecular subtypes and hormonal status. Adjuvant radiotherapy treatment reduced locoregional recurrence, distant metastasis and death rates, and the period of waiting from last chemotherapy cycle to the date of radiotherapy represented a risk factor that affected the survival curve. Chest wall recurrence is most common site of disease progression.

Data availability

Underlying data

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Grant information

The author(s) declared that no grants were involved in supporting this work.
References

Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 12 March 2019

https://doi.org/10.5256/f1000research.19214.r45102

© 2019 Montero-Luis A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Angel Montero-Luis
Department of Radiation Oncology, Hospital Universitario Sanchinarro, Madrid, Spain

It is a very interesting job. The authors have conceived a serious and exhaustive analysis of their own data. The study is well justified, and the characteristics of the patients and the intervention are clear and concise, both in the text and in the tables. The results are in agreement with the existing data in the current scientific literature.

However, the authors state that the observed progression-free survival data allows them to argue that adjuvant radiotherapy reduces the risk of recurrence and significantly increases PFS, which is a gratuitous statement since it has not been compared to any control arm without radiotherapy and, therefore, the conclusion is only an extrapolation of the data of a particular series.

It would be much more correct for the authors to limit their conclusions to presenting their own data, very satisfactory and consistent with the evidence, rather than maintaining statements that cannot be substantiated scientifically in the analyzed data. Finally, the article is well structured and written and the bibliography is consistent and updated.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes
Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical oncology, radiation oncology, brachytherapy

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com