Accuracy of linear measurements using low dose cone beam computed tomography protocol versus direct skull linear measurements: An in vitro study [version 1; peer review: 2 not approved]

Nora Aly Al Abbady, Reham Mohamed Hamdy, Sahar Hosny El Dessouky

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Cairo University, Cairo, Egypt

Abstract

Background: Cone beam computed tomography (CBCT) imaging has been widely used for different dental applications over the last few years. It delivers a high dose of radiation compared to conventional imaging modalities. This study aimed to compare the accuracy of linear measurements conducted using a low dose CBCT protocol in comparison with direct skull linear measurements.

Methods: Ten dry human skulls were included in the study. 12 linear measurements were measured directly on each skull between 23 chosen anatomical landmarks using a digital calliper. Radio-opaque markers were then glued on these anatomical landmarks. Each skull was then scanned using low dose CBCT protocol operated at 90 kVp, 7.1 mA, for 9 sec.

Results: There was no statistically significant difference in the accuracy of linear measurements conducted using the low dose CBCT protocol when compared with direct linear measurements. Relative Dahlberg Error value ranged from 0.8% to 1.9%.

Conclusion: Reducing mAs using a low dose CBCT protocol does not affect the accuracy of linear measurements used in craniofacial imaging tasks as compared with those taken directly on the skull by a digital calliper.

Keywords

Cone Beam CT, Linear Measurements, Low Dose.

Corresponding author: Nora Aly Al Abbady (dmoraali@gmail.com)
Introduction

Two-dimensional (2D) imaging techniques have been used in dentistry since 1896. Despite its long clinical success, 2D imaging possesses a number of problems, including superimposition and magnification, which may result in interpretation problems of the images, whether it actually represents the anatomical structures and/or pathological conditions.

Lately, dental imaging techniques have advanced with the introduction of tomography. Cone beam computed tomography (CBCT) is the most recently introduced tomography that greatly approximates the accepted standard for three-dimensional (3D) maxillofacial imaging that can guide diagnosis, treatment planning, and follow-up. CBCT produces accurate images, leading it to be utilized for many dental fields, such as surgical, endodontics, prosthodontics, and orthodontics.

The radiation dose imparted by a CBCT examination varies as it depends on many variables, such as the type of the CBCT machine, the chosen field of view (FOV), the number of basis images, the mode of exposure (continuous or pulsed), and the exposure parameters used for scanning. Varying the machine’s exposure parameters will result in considerable reductions in radiation dose, which is considered advantageous from a biological point of view. However, theoretically, reductions in radiation dose may possibly lead to under sampling artifacts or quantum noise that could adversely affect the diagnostic quality of the images, thus affecting the accuracy of measurements obtained from these images.

This study aimed to compare the accuracy of linear measurements conducted using a low dose CBCT protocol in comparison with direct skull linear measurements.

Methods

The current study was conducted on ten dry human skulls that were obtained from the Anatomy Department, Faculty of Medicine, Cairo University. The study was approved by the Research Ethics committee of Faculty of Dentistry, Cairo University.

Skull preparation

Using a blue permanent marker, 23 anatomical landmarks were identified on each skull by marking small points representing each landmark, then 12 linear measurements were conducted directly on the skull between these anatomical landmarks using an electronic digital calliper (Allendale Electronics Ltd, Hertfordshire, UK) (Figure 1). These linear measurements are shown in Table 1.

Gutta-percha cones, size 80, were cut into 2 mm rod and were glued over the drawn anatomical landmarks on the skull, to be used as radiopaque radiographic markers. After gutta-percha application, the skulls were covered with block of

Table 1. Linear measurements.

<table>
<thead>
<tr>
<th>Linear measurements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS-PNS</td>
<td>From the most anterior point on the maxilla at the nasal base to the tip of the posterior nasal spine of the palate bone.</td>
</tr>
<tr>
<td>OR F-OR F</td>
<td>From the middle of the inferior border of the right orbital foramen to that of the left side.</td>
</tr>
<tr>
<td>Or-Or</td>
<td>From the lower most point on the lower margin of the right orbit to that of the left side.</td>
</tr>
<tr>
<td>MORw-MORw</td>
<td>From the middle of the right medial orbital wall to that of the left side.</td>
</tr>
<tr>
<td>LORw-LORw</td>
<td>From the middle of right lateral orbital wall to that of the left side.</td>
</tr>
<tr>
<td>Or-P</td>
<td>From the lower most point on the lower margin of the right orbit to the highest point on the upper margin of the external auditory meatus of the right side.</td>
</tr>
<tr>
<td>ZY F-ZY F</td>
<td>From the middle of the inferior border of the right zygomatic foramen to that of the left side.</td>
</tr>
<tr>
<td>GP-GP</td>
<td>From the medial wall of the right greater palatine foramen to that of the left side.</td>
</tr>
<tr>
<td>CO-CO</td>
<td>From the most superior posterior point on the head of the mandibular condyle of the right side to that of the left side.</td>
</tr>
<tr>
<td>GO-GO</td>
<td>From the middle of the curvature of the angle of the mandible of the right side to that of the left side.</td>
</tr>
<tr>
<td>ANT R-ANT R</td>
<td>From the most posterior point on the curve of the right anterior border of the ramus to that of the left side.</td>
</tr>
<tr>
<td>Mental F-Mental F</td>
<td>From the inferior border of right mental foramen to that of the left side.</td>
</tr>
</tbody>
</table>
pink wax of 10-12 mm thickness, which was adapted carefully on the facial surface of the skull from the inferior border of the mandible till above the frontonasal suture for soft tissue simulation.

CBCT radiographic examination

CBCT examinations were performed using Planmeca ProMax 3D Mid CBCT unit (Planmeca, Helsinki, Finland).

The skulls were mounted on the machine, and the laser beams were adjusted to centralize the skull within the scanning field. The skulls were then scanned with a low dose protocol of 90 kVp, 7.1 mA, 9 sec, 600 µm voxel size and 20x20 cm FOV.

After scanning each skull, the reconstructed images were viewed on the computer screen using Romexis Viewer 4.4.0.R software. The same linear measurements conducted on the skulls were conducted on CBCT orthogonal images (Figure 2; Table 1).

The CBCT and linear measurements were conducted by two observers; the first observer repeated the reading two times with a time interval of one month between each reading.

Statistical methods

Statistical analysis was performed using SPSS (version 17), and Microsoft office Excel was used for data handling and graphical presentation. For assessment of the agreement between all measurements Dahlberg error (DE) and Relative Dahlberg Error (RDE) were used together with Intra-class Correlation Coefficients (ICC), including the 95% confidence limits of the coefficient calculated assuming analysis of variance two-way mixed model ANOVA with absolute agreement on SPSS. For both inter and intra observer reliability analysis, DE and RDE were used with ICC, including the 95% confidence limits of the coefficient. Significance level was set at P < 0.05 and two tailed test assumption was applied.

Results

There was no statistically significant difference between the low dose CBCT measurements when compared to direct skull measurements. Using the low dose protocol, mean DE was recorded as 0.83. RDE ranged from 0.8% to 1.9% for almost all measurements (Table 2).

Reliability

The ICC for inter- and intra-observer reliability analysis for all measurements were excellent, ranging from 0.96–1.00.

Discussion

For many CBCT machines, it is possible to optimize one or more of the investigated exposure parameters and therefore reduce the patient’s radiation dose, while maintaining diagnostic image quality and accuracy for some diagnostic tasks. Accordingly, the current study aimed to investigate the effect of reducing the
mA and exposure time on the accuracy of CBCT linear measurements as compared with a digital calliper.

The results of the present study revealed that the RDE of almost all the measurements ranged from 0.8% to 1.9%, which didn’t exceed 5%. This percentage has been considered as clinically acceptable and permissible relative error in the medical field, as reported by Tarazona-Álvarez et al.11 and Rokn et al.12.

The highest accepted RDE was recorded on the MORw-MORw horizontal linear measurements, 3.4%. The inverse relation between the RDE and the mean of the gold standard of

<table>
<thead>
<tr>
<th>Linear measurements used</th>
<th>Mean</th>
<th>SD</th>
<th>DE</th>
<th>RDE</th>
<th>Mean of difference (Reference - measured)</th>
<th>SD of the difference</th>
<th>ICC</th>
<th>95% confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SD of the difference</td>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>51.35</td>
<td>2.88</td>
<td>0.99</td>
<td>1.9%</td>
<td>0.83</td>
<td>1.19</td>
<td>0.94</td>
<td>0.70</td>
</tr>
<tr>
<td>Low Dose</td>
<td>50.52</td>
<td>2.92</td>
<td>0.94</td>
<td>1.7%</td>
<td>0.47</td>
<td>1.32</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>ORF-ORF</td>
<td>54.04</td>
<td>4.94</td>
<td>0.59</td>
<td>0.9%</td>
<td>-0.37</td>
<td>0.80</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Low Dose</td>
<td>53.56</td>
<td>4.95</td>
<td>0.59</td>
<td>0.9%</td>
<td>-0.37</td>
<td>0.80</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Or-or</td>
<td>64.80</td>
<td>4.54</td>
<td>0.59</td>
<td>0.9%</td>
<td>-0.37</td>
<td>0.80</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>MOR-MOR</td>
<td>21.37</td>
<td>1.51</td>
<td>0.73</td>
<td>3.4%</td>
<td>-0.42</td>
<td>0.99</td>
<td>0.89</td>
<td>0.58</td>
</tr>
<tr>
<td>Low Dose</td>
<td>21.79</td>
<td>1.69</td>
<td>0.73</td>
<td>3.4%</td>
<td>-0.42</td>
<td>0.99</td>
<td>0.89</td>
<td>0.58</td>
</tr>
<tr>
<td>LOR-LOR</td>
<td>97.08</td>
<td>3.91</td>
<td>0.86</td>
<td>0.9%</td>
<td>0.09</td>
<td>1.28</td>
<td>0.98</td>
<td>0.90</td>
</tr>
<tr>
<td>Low Dose</td>
<td>97.00</td>
<td>4.05</td>
<td>0.86</td>
<td>0.9%</td>
<td>0.09</td>
<td>1.28</td>
<td>0.98</td>
<td>0.90</td>
</tr>
<tr>
<td>Or-P</td>
<td>82.35</td>
<td>4.23</td>
<td>0.65</td>
<td>0.8%</td>
<td>-0.30</td>
<td>0.92</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Low Dose</td>
<td>82.90</td>
<td>4.59</td>
<td>0.65</td>
<td>0.8%</td>
<td>-0.30</td>
<td>0.92</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>ZYF-ZYF</td>
<td>96.03</td>
<td>6.06</td>
<td>0.90</td>
<td>0.9%</td>
<td>-0.69</td>
<td>1.14</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>Low Dose</td>
<td>96.72</td>
<td>5.97</td>
<td>0.90</td>
<td>0.9%</td>
<td>-0.69</td>
<td>1.14</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>GP-GP</td>
<td>30.46</td>
<td>2.19</td>
<td>0.56</td>
<td>1.9%</td>
<td>0.37</td>
<td>0.75</td>
<td>0.97</td>
<td>0.86</td>
</tr>
<tr>
<td>Low Dose</td>
<td>30.09</td>
<td>2.17</td>
<td>0.56</td>
<td>1.9%</td>
<td>0.37</td>
<td>0.75</td>
<td>0.97</td>
<td>0.86</td>
</tr>
<tr>
<td>CO-CO</td>
<td>99.61</td>
<td>3.82</td>
<td>1.04</td>
<td>1.0%</td>
<td>-0.75</td>
<td>1.34</td>
<td>0.96</td>
<td>0.83</td>
</tr>
<tr>
<td>Low Dose</td>
<td>#100.36</td>
<td>3.68</td>
<td>1.04</td>
<td>1.0%</td>
<td>-0.75</td>
<td>1.34</td>
<td>0.96</td>
<td>0.83</td>
</tr>
<tr>
<td>GO-GO</td>
<td>92.78</td>
<td>7.27</td>
<td>1.23</td>
<td>1.3%</td>
<td>-1.03</td>
<td>1.52</td>
<td>0.99</td>
<td>0.92</td>
</tr>
<tr>
<td>Low Dose</td>
<td>93.67</td>
<td>8.06</td>
<td>1.23</td>
<td>1.3%</td>
<td>-1.03</td>
<td>1.52</td>
<td>0.99</td>
<td>0.92</td>
</tr>
<tr>
<td>ANT R-ANT R</td>
<td>82.70</td>
<td>2.65</td>
<td>0.80</td>
<td>1.0%</td>
<td>-0.53</td>
<td>1.05</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>Low Dose</td>
<td>83.23</td>
<td>2.68</td>
<td>0.80</td>
<td>1.0%</td>
<td>-0.53</td>
<td>1.05</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>MENTAL F-MENTAL F</td>
<td>44.82</td>
<td>2.18</td>
<td>0.62</td>
<td>1.4%</td>
<td>-0.53</td>
<td>0.74</td>
<td>0.95</td>
<td>0.75</td>
</tr>
<tr>
<td>Low Dose</td>
<td>45.35</td>
<td>1.96</td>
<td>0.62</td>
<td>1.4%</td>
<td>-0.53</td>
<td>0.74</td>
<td>0.95</td>
<td>0.75</td>
</tr>
</tbody>
</table>
MORw-MORw among all conducted measurements clearly explained its high RDE relative to its low mean of gold standard, which was 21.37%.

The results of Hidalgo et al. was in accordance with this study as it showed that the coefficient of variation for measurements was between 1.0% and 1.3% using different tube voltage and tube current. They concluded that a low dose protocol of 80 kV and 3 mA could be used for clinical practice, which represented as much as a 50% dose reduction compared with manufacturer’s recommendations, while giving the operator the freedom to adjust the mA by +0.5 mA on the basis of their judgments of the patient’s size.

Further confirmation was obtained from Vasconcelos et al. They concluded that there was no association between the increase in milliampere and the reliability of the measurements, and recommended the use of low dose protocols when the purpose of the examination is to obtain linear measurements. They added that the 2 mA and 4 mA should be avoided because they could cause degradation to the image and could affect the visualization of the mandibular cortical bone.

In accordance with the current study, Al-Ekrish results revealed that on decreasing exposure time the reliability and dimensional accuracy of linear measurements for implant site evaluation were not affected.

In conclusion, the results of this study support the idea that decreasing mA and/or exposure time will not affect the accuracy of linear measurements when craniofacial imaging tasks is required.

References

Data availability

Extended data

Open Science Framework: Dataset 1. Additional images of the process of linear measurements using both the digital calliper and CBCT, https://doi.org/10.17605/OSF.IO/NH8FE.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information

The author(s) declared that no grants were involved in supporting this work.
Open Peer Review

Current Peer Review Status: ☠ ☠

Version 1

Reviewer Report 07 June 2019

https://doi.org/10.5256/f1000research.19252.r48149

© 2019 Hermana M et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maman Hermana
Petronas University of Technology, Seri Iskandar, Malaysia
Maya Genisa
YARSI University, Central Jakarta, Indonesia

1. Direct measurement is not comparable technically to the slicing measurement method of landmark point.

2. Definition of statistical significance needs to be explained in more detail from statistical data.

3. Dose/exposure is not a variable of this work. Needs additional work by varying the dose/exposure to support the conclusion.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
No

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
No
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I have a good background in physics and experienced in medical physic and medical imaging work

We confirm that we have read this submission and believe that we have an appropriate level of expertise to state that we do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Author Response 02 Mar 2020

Nora Al Abbady, faculty of dentistry cairo university, Cairo, Egypt

1 - The direct and the cbct measurements were taken at the same points
2 - Didn’t get what explanation you need more for statistical significance ...would pls clarify more
3 - We used different exposure one normal and the other low dose and we have another paper with ultra low dose
Could you pls explain to me what results u need more to support conclusion
Thanks in advance

Competing Interests: No competing interests were disclosed.

Reviewer Report 15 February 2019

https://doi.org/10.5256/f1000research.19252.r44500

© 2019 Watanabe P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Plauto Christopher Aranha Watanabe
Department of Stomatology, Public Health and Forensic Dentistry, University of São Paulo, Ribeirão Preto, Brazil

The study "aimed to compare the accuracy of linear measurements conducted using a low dose CBCT protocol in comparison with direct skull linear measurements". I have serious doubts if "CBCT protocol operated at 90 kVp, 7.1 mA, for 9 sec" is really low dose CBCT. The authors cite Hidalgo et al. that used 80 kV and 3 mA and Vasconcelos et al. that used 2, 4, 6.3, 8, 10, 12, 15 mA and 60 kV, 10.8 seconds. Another problem, it was that the skulls not were placed in a polystyrene box filled with water before the CBCT examination to simulate soft tissue attenuation. This situation would cause more artifacts on the tomographic images. So, the conclusion is not fully real.

References
2. Sheikhi M, Ghorbanizadeh S, Abdinian M, Goroohi H, Badrian H: Accuracy of linear measurements of
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
No

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Dental radiology area

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com