RESEARCH ARTICLE

Patient treatment pathways of multidrug-resistant tuberculosis cases in coastal South India: Road to a drug resistant tuberculosis center [version 1; peer review: 1 approved with reservations]

Priya Rathi 1, Kalpita Shringapure 2, B. Unnikrishnan 1, Abhinav Pandey 3, Abhirami Nair 3

1Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
2Department of Preventive and Social Medicine, Medical College Baroda, Baroda, Gujarat, India
3Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India

Abstract

Background: Delays in initiating multidrug-resistant tuberculosis (MDR TB) treatment adds risk to individual patients and the community due to disease progression, and on-going transmission. The Government of India offers free TB diagnosis and treatment, however many presumptive MDR TB patients wander within the Indian healthcare system and delay accessing the programme. To better improve access to care, it is imperative to understand the treatment pathways taken by MDR TB patients. We aimed to describe the diagnostic and treatment pathway taken by presumptive MDR TB patients registered in the Programmatic Management Drug-resistant TB Program (PMDT).

Methods: We conducted a cross-sectional study of all patients registered during August 2016 – April 2017 at one PMDT center of a district in Karnataka, India. A semi-standardized questionnaire collected the number, type (private vs public sector), and dates of healthcare facilities (HCFs) visits prior to the initiation of MDR TB treatment. Delays were the number of days, expressed in medians and interquartile range (IQR), from the date of onset of illness until the date of initiation of MDR TB treatment.

Results: We found that patients preferred private HCFs; however, due to lack of treatment and unaffordability they shifted to public HCFs. Median delay to register under the program was more in private HCFs (180 days) in comparison with public HCFs (120 days). We also found that the diagnosis of MDR among presumptive MDR cases (detection rates) were much higher (80%) in public HCFs.

Conclusion: Awareness regarding the availability of free standard diagnosis and appropriate treatment under the TB program should be increased in the general population and private practitioners. The government should involve private HCFs to provide standard diagnostics and treatment to the patients seeking a private facility.
Keywords
Diagnostic delay, Treatment delay, Patient delay, Health care system delay
Programmatic management of Drug resistant TB, detection rate, Private health care facility, Public health care facility.

Corresponding author: Priya Rathi (priya.rathi@manipal.edu)

Author roles: Rathi P: Conceptualization, Data Curation, Formal Analysis, Methodology, Project Administration, Resources, Software, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Shringapure K: Conceptualization, Formal Analysis, Methodology, Project Administration, Validation, Writing – Review & Editing; Unnikrishnan B: Methodology, Project Administration, Resources, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Pandey A: Data Curation, Methodology, Software, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Nair A: Data Curation, Formal Analysis, Methodology, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Rathi P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Rathi P, Shringapure K, Unnikrishnan B et al. Patient treatment pathways of multidrug-resistant tuberculosis cases in coastal South India: Road to a drug resistant tuberculosis center [version 1; peer review: 1 approved with reservations]
F1000Research 2019, 8:498 (https://doi.org/10.12688/f1000research.17743.1)

First published: 16 Apr 2019, 8:498 (https://doi.org/10.12688/f1000research.17743.1)
Introduction
Multidrug-resistant tuberculosis (MDR TB), is defined as tuberculosis (TB) bacilli resistant to at least two first-line drugs — rifampicin and isoniazid. According to the Global TB Report 2017 published by the World Health Organization (WHO), India ranks first globally in the burden of TB and MDR TB with an incidence rate of 27% and 24% of global burden. Nearly 3% of new TB cases and 12% of previously treated patients in India are MDR TB.

To reduce transmission of MDR TB, the Government of India developed and implemented a national policy for the programmatic management of drug-resistant TB (PMDT) in 2007. The strategies and objectives of PMDT complement the National Strategic Plan for TB Elimination (2017–2025), and include treatment of MDR TB, enhancing laboratory systems for faster diagnosis, and offering social protection and supportive systems to ensure uninterrupted treatment with shorter, less toxic regimens.

Delays in MDR diagnosis and appropriate treatment initiation impacts individual patients, through advance disease progression, additional costs, and poor quality of life; but also in the community through increased risk of ongoing transmission to other individuals. The time taken to seek care, type of health care facility being sought and reasons for shifting from one health care facility to other are important factors for understanding delays in diagnosis, PMDT treatment initiation, poor outcomes. Describing health seeking behaviors and pathways taken by persons presumed tobe MDR TB case is a vital step in developing and implementing interventions that bridge the gap between timely diagnosis and treatment, and policies that improve the overall health system.

In India, approximately 20% of the persons needing MDR TB treatment actually receive it, and among those who do receive treatment, less than half (48%) who start treatment finish successfully. These poor outcomes are largely due to persons who are lost to follow-up and premature death. In 2017, the proportion of deaths during MDR TB treatment in India was higher than the global average (21% vs. 14%).

Therefore, in this study we aimed to determine the health-seeking pathway of presumptive MDR TB patients prior to treatment at the PMDT center. We also assessed the median time taken, and reasons for shifting from one health care facility (HCF) to another.

Methods
Study setting
We conducted a cross-sectional study of all patients registered during August 2016 – April 2017 at one PMDT center of a district in Karnataka, India. The PMDT center is on the campus of a 150-year-old district hospital, which has recently been awarded the Kayakalp prize, a district hospital, which has recently been awarded the Kayakalp prize in Karnataka, India. The PMDT center is on the campus of a 150-year-old district hospital, which has recently been awarded the Kayakalp prize in Karnataka, India.

Operational definitions. Multidrug resistant TB (MDR-TB): Patients with sputum-smear positive pulmonary TB, and at least one M. tuberculosis isolate with demonstrated resistance to at least isoniazid and rifampicin.

Pathway: The various type of HCF visited by a presumptive MDR patient before registering for PMDT treatment in a chronological sequence. The various HCF were merged into two broad types: private and public health care sectors. Public
HCFs include Primary Health Centers (PHCs) and Public Referral Hospitals (PRHs), including secondary and tertiary referral centers. Private HCF include secondary and tertiary referral center participating in Revised National Tuberculosis Control Program, non-participating allopathic clinics and practitioners (registered and unregistered) and Ayurveda Yoga Unani Sidda Homeopathy (AYUSH) practitioners.

Time delays in the health care pathways: The total delay is the time interval from the onset of illness until the initiation of anti MDR-TB drugs. It is the sum of two-time intervals: 1) diagnostic delay (time interval between the onset of symptoms and labelling of the patient as a MDR-TB patient); 2) treatment delay (time interval between MDR-TB diagnosis and initiation of anti MDR-TB drugs).

The total delay is also the sum of patient delay (time interval between onset of symptoms and presentation to first health care provider) and healthcare system delay (time interval between the date of health-seeking behavior at a health care provider and the initiation of anti MDR-TB treatment), since it can be attributed to these types of delay.

Reasons for shifting from one HCF to another: treatment not available, the appropriate treatment for the symptoms was unavailable in that HCF; treatment not affordable, cost of treatment was beyond the paying capacity of patient and its family; referred, patient was asked to visit another HCF for review/consultation or appropriate treatment; not satisfied, symptoms did not alleviate or the patient perceived that the services being provided were inadequate.

Results

During the study period, a total of 55 patients were initiated on treatment at the PMDT center; however only 40 patients consented to participate in the study. The mean age in our study was 40 years (SD: 13.9). There were 28 (70%) male patients and 12 (30%) female patients. In total, 35 patients were educated at least until primary level, while only 12.5% of patients were illiterate. A total of 65% of the study participants belonged to rural areas while only 14 patients lived in an urban area.

Details of first visit and shift from one HCF to other HCF

Out of 40 patients interviewed, 15 went to a public HCF and 25 went to a private HCF as their first clinic encounter (Figure 1 and Figure 2). In total, 23 (57.5%) were diagnosed with MDR TB during this encounter.

Amongst the 15 patients who went to the public HCF at the first encounter, 12 (80%) were diagnosed with MDR and were transferred directly to the PMDT center, whilst the remaining three patients required additional visits before MDR diagnosis (two went to public HCF and one went to private HCF).

Among the 25 patients who went to the private sector at the first clinical encounter, 11 (44%) were diagnosed with MDR, and were transferred directly to the PMDT center. The remaining 14 required addition visits before MDR diagnosis (9 went to public HCF and 5 went to private HCF).

Details of second visit and shift from one HCF to other HCF

All 40 patients underwent a second visit: 18 went to DRTB center, 15 opted for public HCF, while 7 went to private HCF. Out of the 17 undiagnosed patients, 14 (82.3%) were diagnosed.

Out of the 15 who went to public HCF for second visit, four were already diagnosed (two from public HCF and two from private HCF) and 11 were undiagnosed. Of the 11 undiagnosed, 10 were diagnosed on this visit and were referred to the DR TB center. One undiagnosed patient went to another public sector. Out of four previously diagnosed patients, two were referred to DR TB center and two again shifted to another public sector HCF. Hence a total of 12 patients out of 15 shifted to DRTB center and three visited other public HCF.

Seven patients went to private HCF for a second visit. Out of these seven, one was previously diagnosed in other private institution and six were undiagnosed (five came from private HCF and one from public HCF). In this visit, of the six patients who were undiagnosed, four were diagnosed. Five patients (one previously diagnosed and four newly diagnosed) visited DR TB center from a private HCF. Two still remained undiagnosed. One went to the DR TB center. The other undiagnosed patient visited another private sector HCF.

Overall, 18 patients (12 from public HCF and six from private HCF) visited DRTB center in their third visit.

Details of third and fourth visit and third shift from one HCF to other HCF

Of the 40 patients, 22 patients underwent a third visit to HCF. Among them, 18 came to DR TB Center, three went to public HCF while one went to the private sector. Out of the three who went to public HCF, one was undiagnosed and two were previously diagnosed (1st visit). The undiagnosed case received a diagnosis and went to the DR TB center. The two previously diagnosed patients also went to DR TB center in their fourth visit.

One undiagnosed patient from the private HCF was diagnosed and referred to DR TB center in the fourth visit.

Time delay in treatment pathway of MDR patients

The median (IQR) patient delay was found to be 25 (10, 60) days. For patients contacting public HCF as their first point of health care contact, the median patient delay was 30 days, while for those contacting private HCF, it was found to be 20 days.

In the first visit among the 23 patients who were diagnosed to have MDR TB, the median delay in reaching the DR TB center after contacting the first HCF was 120 (30, 240) days. Median (IQR) delay in a public health care facility was 105 (60, 382) days with the highest being 1825 days, while in a private health care facility the median delay was 180 (10, 240) days with the highest being 300 days.
Among the patients diagnosed in second visit, the median delay in reaching DRTB center was 210 (82,270) days from the day of first HCF contact. In public HCF, this delay was found to be 195 (82,247) days with the highest being 365 days while it was 255 (105, 341) days in private HCF with the highest being 365 days.

One patient who remained in the public sector was diagnosed at his third visit with a delay of 210 days. Similarly, a patient who remained in the private sector was diagnosed after a delay of 120 days on his third visit.

Furthermore, median delay among female patients (30 days) was more than male patients (20 days). Also patients aged more than 45 years had more median delay of 30 days as compared to those below 45 years.

The most common reason for shifting from first to second HCF was referral (both public and private) followed by non-affordability (only seen in private HCFs) and non-satisfaction (seen more in private HCFs). Similarly, the reasons for shifting from 2nd to 3rd HCF were referral (mostly in public), non-satisfaction and non-affordability in private. In the third shift, only reason given was referral to DR TB center (Table 1).

Discussion

MDR TB is an emerging disease in India. The disease is difficult to treat and treatment outcomes are poor, making it a potential public health threat in the future. Our study sheds light on patients’ treatment pathway and reasons for shifting between health care providers for diagnosis and treatment for MDR TB.

In our study, 63% of patients went to private health care facilities (HCF) as first point of health care contact, which was slightly more than the average 48% as seen in a systematic review from India[9,10]. This pattern is also seen in other studies done in India and in other developing countries[10–16]. The health seeking behavior of a patient depends on the knowledge about the
disease, severity of symptoms and social support available, especially in a communicable and stigmatized disease like TB17. Studies conducted in India showed that most people had poor awareness about TB-related symptoms, transmission, and the services offered by the national TB control programs18,19. Moreover, patients in India have reported treatment barriers, such as, long distance between the TB centers and their homes, lack of confidence in the efficacy of government supplied medication, and the lack of privacy during directly observed treatment sessions12,18,20. All these reasons suggest a preference for private HCF as their preferred health provider for TB diagnosis and treatment.

A study done by Arinaminpathy et al.21 shows that the quality of care meted out to TB patients is sub-optimal22. This negligence in treatment of TB cases later gives rise to DR TB as

Table 1. Reasons for shifting from one HCF to other.

<table>
<thead>
<tr>
<th>Reasons for shifting</th>
<th>Public, n (%)</th>
<th>Private, n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First to second visit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment not available</td>
<td>1 (50)</td>
<td>1 (50)</td>
<td>0.31</td>
</tr>
<tr>
<td>Treatment not affordable</td>
<td>0 (0)</td>
<td>8 (100)</td>
<td></td>
</tr>
<tr>
<td>Referred</td>
<td>13 (54.2)</td>
<td>11 (45.8)</td>
<td></td>
</tr>
<tr>
<td>Not satisfied</td>
<td>1 (16.7)</td>
<td>5 (83.3)</td>
<td></td>
</tr>
<tr>
<td>Second to third visit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not affordable</td>
<td>0 (0)</td>
<td>2 (100)</td>
<td>0.23</td>
</tr>
<tr>
<td>Referred</td>
<td>14 (82.4)</td>
<td>3 (17.6)</td>
<td></td>
</tr>
<tr>
<td>Not satisfied</td>
<td>1 (33.5)</td>
<td>2 (66.7)</td>
<td></td>
</tr>
</tbody>
</table>
the bacterial strains achieve antimicrobial resistance. Further, the private sector poses many hurdles in TB control. Studies show that the sectors’ disorganization produces gaps in TB surveillance due to irregular notification of cases and absence of guidelines.

However, there was a delay on the part of patients to report to their first point of health care contact after appearance of symptoms. The median delay was found to be 20 days which is slightly more than two weeks of the cough criterion issued by RNTCP for TB screening. This was in line with studies done by Dhanvij et al. (20 days), Nimbarte et al. (19 days) and Ananthakrishnan et al. (18.3 days), while at the same time was quite less than shown in studies done by Goel et al. (30 days), Kulkarni et al. (8 weeks), Selvam et al. (28 days) and Shamim et al. (>30 days). This shows the diversity in patient delay across India. Also, the median delay was found to be more among female patients as compared to male patients. This has been shown in various studies done in India as well as in some developing countries. However study done by Nimbarte et al. in Central India shows that the delay is less among females than in males. Further, we also found that patients above the age of 45 years postponed seeking health care as compared to younger patients. This is in line with the study done by Charles et al. The median delay was found to be greater among those who had public HCF as their first point of contact which has also been seen in the study done by Nimbarte et al.

In our study, 57.5% of the patients were diagnosed at their first point of contact, while 82.3% were diagnosed at their second point of contact. The results are similar to those seen in the study done by Ananthakrishnan et al. Among the 55% of patients who made a second visit to a different HCF other than DR TB center, 68% of the patients went to a public HCF. This is also seen in the study done by Charles et al. Also we find that in all the visits, the yield of diagnosis at public HCF was always more than that at private HCF. This could be due to improper tests done for detection or lack of technologies for doing the same, as seen in a review by Satyanarayana et al.

The most common reason for shifting between HCF other than referrals was unaffordability followed by dissatisfaction. This is in contrast to the study done by Charles et al. where the major reason was found to be dissatisfaction with the available HCF followed by unaffordability. In public HCF, the most common reason was referral which was in accordance to the PMDT guidelines. This was followed by patient reasons such as dissatisfaction.

Conclusion

The present study found that there was substantial patient delay and total delay in diagnosis and treatment of DR TB patients. Since the patient delay was more in females and elderly people, they can be prioritized for screening and diagnosis by active and enhanced case finding methods.

The study also projects the importance of a public-private collaboration in treating DR TB cases. As stated by many patients that their reason for shifting from one private HCF to the other was non-affordability of the treatment, hence provisions of standard diagnostic services and treatment at low to no costs can reduce the delay in treatment. This can be achieved by incentivizing treatment and providing standard diagnostic modalities to private sector under RNTCP.

Actions should be taken from the government side to improve the quality of services provided in a public HCF, better infrastructure and human resources. Hence stigma and dissatisfaction related to public health services can be tackled and better awareness about government disease control programs can be created.

Data availability

Underlying data

According to the IEC of Medical College Mangalore, we are not permitted to share data with any external agency for protection of data as it contains information which is personal and can be identified. However, if required by anyone, the data can be requested from the corresponding author after full justification of usage of the information. Conditions of access: researchers must use the data for similar research or sufficiently anonymize and give due credit to the authors of this study.

Extended data

Open Science Framework: Patient treatment pathways of multidrug-resistant tuberculosis cases in coastal South India: Road to a drug resistant tuberculosis center: Structured questionnaire, https://doi.org/10.17605/OSF.IO/TQNU

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information

The author(s) declared that no grants were involved in supporting this work.

Acknowledgments

We acknowledge Dr Patrick K Moonan, U.S. Centers of Disease Control and Prevention, Division of Global HIV and Tuberculosis, Atlanta USA for his valuable inputs and contributions in the study.

References

Sharath Burugina Nagaraja

Department of Community Medicine, Employees State Insurance Corporation Medical College and Post Graduate Institute of Medical Sciences and Research, Bengaluru, Karnataka, India

I congratulate your efforts on working on treatment pathways of drug resistant TB patients. Overall, the manuscript reads well. However, I have few comments for your consideration which will help in betterment of the manuscript. The comments are mentioned separately below.

Comments:

1. The authors in the introduction state that “we aimed to determine the health- seeking pathway of presumptive MDR TB patients prior to treatment at the PMDT center”. The manuscript lacks clarity on identifying the presumptive MDR-TB patient under the programmatic settings. Probably, the authors should specifically say that the presumptive MDR-TB is based on laboratory diagnosis rather than a clinical presumption.

2. Study settings: The authors have to specify the name of the hospital, location of the PMDT centre with the names and population of the districts it is catering to. They should also briefly describe about the types/numbers of public and private health facilities in the districts.

3. The statement “the patient is released to outpatient care for continuation of care at Directly Observed Treatment (DOT-Plus) centers throughout the community” needs to be modified because under programmatic conditions the patients are referred for domiciliary care in the community.

4. The name of the institution which has accrued ethics approval needs to be mentioned.

5. Data collection: It is found that the details were collected from the time the patients experience TB symptoms. These details are not analysed and was beyond the scope of the study. For a patient, there is a thin line of difference from being a presumptive TB case and a presumptive DR-TB case. There could be a lot of subjective variability in remembering the things which have occurred in the
past. It is better if the authors explain the measures taken to negate such variability during the process of interview and increased their accuracy of findings.

6. Data analysis: Please mention the reference for adobe illustrator trail version.

7. Time delays in health care pathways: I feel the definitions needs further clarity. The starting point for delay calculations is the point of onset of illness. We presume that the authors are taking into account that it is from the point when the patient has a laboratory diagnosis of DR-TB. The authors should explicitly mention in their definitions.

8. Reasons for shifting from one HCF to others: These are the options or answers expected from the patients. They have to be presented in the results as the findings of patients' interviews. Hence, should be removed from the method section.

9. Results: For better understanding the authors have to describe their findings as numbers (percentages). The ‘p’ values mentioned in table 1 should be removed, it has no relevance.

10. Among the 25 patients who went to private sector, 11 were diagnosed as MDR TB. What type of diagnosis did the private sector facilities made? Clinical or laboratory diagnosis? It is also mentioned that the patients are transferred to PMDT centres. Under programmatic settings, the transfer happens from one RNTCP administrative unit to the other.

11. There is a scope for authors to present the findings of proportions of patients who underwent 1, 2, 3 and 4 HCF visits as a bar diagram/table stratified by public and private facilities.

12. Discussions: The authors should remain focused on the study context. There has been much comparison with other studies. This tends to lose the focus of the readers. The recommendations have to be relevant to the study findings.

13. Limitations: The authors can add a paragraph on limitations of the study (response rate, sample size, generalizability, definitions-subjective variability).

14. Conclusion: The conclusion should be specific and should be described in a paragraph.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes
Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Tuberculosis, HIV, Diabetes - Operational Research

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com