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Abstract
Shotgun metagenomics sequencing is a powerful tool for the -

characterization of complex biological matrices, enabling analysis of

i i ; ; ; ; : version 3 report
prokaryotic and eukaryotic organisms and viruses in a single experiment, _
with the possibility of reconstructing de novo the whole metagenome or a 2;3'32‘2"19
set of genes of interest. One of the main factors limiting the use of shotgun
metagenomics on wide scale projects is the high cost associated with the b 4 b 4
approach. However, we demonstrate that—for some applications—it is version 2 report report
possible to use shallow shotgun metagenomics to characterize complex published
biological matrices while reducing costs. We measured the variation of 22 Mar 2019
several summary statistics simulating a decrease in sequencing depth by
randomly subsampling a number of reads. The main statistics that were version 1 X x
compared are alpha diversity estimates, species abundance, detection published report report
threshold, and ability of reconstructing the metagenome in terms of length 08 Nov 2018
and completeness. Our results show that a classification of prokaryotic,
eukaryotic and viral communities can be accurately performed even using 1 Alejandro Sanchez-Flores sl

very low number of reads, both in mock communities and in real complex
matrices. With samples of 100,000 reads, the alpha diversity estimates
were in most cases comparable to those obtained with the full sample, and Cuernavaca, Mexico
the estimation of the abundance of all the present species was in excellent
agreement with those obtained with the full sample. On the contrary, any
task involving the reconstruction of the metagenome performed poorly, Plouzané, France
even with the largest simulated subsample (1M reads). The length of the

Autonomous University of Mexico (UNAM)),

2 José F. Cobo Diaz , Université de Brest,

reconstructed assembly was smaller than the length obtained with the full 3 Francesco Dal Grande + Senckenberg
dataset, and the proportion of conserved genes that were identified in the Gesellschaft fur Naturforschung, Frankfurt am
meta-genome was drastically reduced compared to the full sample. Shallow Main, Germany
shotgun metagenomics can be a useful tool to describe the structure of LOEWE Centre for Translational Biodiversity
complex matrices, but it is not adequate to reconstruct—even partially—the Genomics (TBG), Frankfurt am Main, Germany
metagenome.
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;57553 Amendments from Version 1

In this version we incorporated all the suggestions of the
reviewers.

Reviewer Alejandro Sanchez-Flores:

e We added a mock community (sample A1)

e We added several details on sample type and input DNA
quality.

e We clarified that the aim of the work is to estimate the
effect of the sequencing depth on metagenomics studies;
thus, we chose heterogeneous samples to obtain results of
general applicability.

e We added estimate of the detection threshold of rare
species at varying sequencing depths.

e We provide more detail regarding the use of megahit for
de novo assembly. We share online a pipeline to reproduce
the main manuscript analyses.

e We are now performing BUSCO separately on each species
and then reporting average statistics.

e We replaced Krona charts with a barplot. Krona charts are
available online as html interactive graphs.

Reviewer José F. Cobo Diaz:

e We rewrote the introduction to clarify that the aim of the
work is to analyze the effect of varying sequencing depth
in the characterization of complex matrices sequenced
via whole genome shotgun. The first version erroneously
convinced the readers that our focus was on analysis of
functional data and/or on pathogens detection.

e We added estimate of the detection threshold of rare
species at varying sequencing depths.

e We describe parameters used for bioinformatics analysis.
We share online a pipeline to reproduce the main
manuscript analyses.

e \We provide several measures related to species detection
by our approach. Our approach for species classification
is accurate. However, a small number of reads (possibly
due to sequencing errors) is responsible for the inflation of
the number of observed species.

e We incorporated Good’s coverage and Pielou’s evenness
index in the analysis.

¢ We modified the discussion to clarify the aim of the work
and the conclusions that can be drawn based on our
observations.

See referee reports

Introduction

Shotgun metagenomics offers the possibility to assess the
complete taxonomic composition of biological matrices and to
estimate the relative abundances of each species in an unbiased
way . It allows to agnostically characterize complex communities
containing eukaryotes, fungi, bacteria and also viruses.

Metagenome  shotgun  high-throughput  sequencing  has
progressively gained popularity in parallel with the advancing of
next-generation sequencing (NGS) technologies™, which
provide more data in less time at a lower cost than previous
sequencing techniques. This allows the extensive application to
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study the most various biological mixtures such as environmen-
tal samples™, gut samples’”, skin samples', clinical samples
for diagnostics and surveillance purposes''™* and food ecosys-
tems'>'°. Another, more traditional approach currently used to
assign taxonomy to DNA sequences is based on the sequenc-
ing of target conserved regions. Metabarcoding method relies on
conserved sequences to characterize communities of complex
matrices. These include the highly variable region of 16S rRNA
gene in bacteria'/, the nuclear ribosomal internal transcribed
spacer (ITS) region for fungi'®, 18S rRNA gene in eukaryotes',
cytochrome ¢ oxidase sub-unit I (COI or coxl) for taxonomi-
cal identification of animals®, rbcL, matK and ITS2 as the plant
barcode’’. Metabarcoding has the advantage of reducing
sequencing needs, since it does not require sequencing of the
full genome, but just a marker region. On the other hand, given
the commonly used approaches, characterization of microbial
and eukaryotic communities requires different primers and
library preparations”. In addition, several studies suggested that
whole shotgun metagenome sequencing is more effective in the
characterization of metagenomics samples compared to target
amplicon approaches, with the additional capability of providing
functional information regarding the studied approaches™.

Current whole shotgun metagenome experiments are performed
obtaining several million reads>®. However, obtaining a broad
characterization of the relative abundance of different species,
might easily be achieved with lower number of reads.

To test this hypothesis, we analzyed ten samples (eight
sequenced in the framework of this study and two retrieved
from the literature) derived from different complex matrices
using whole metagenomics approach and tested accuracy of
several summary statistics as a function of the reduction of the
number of reads used for analysis. The selection of samples
belonging to different matrices with distinct characteristics
enabled to understand if the results are generally applicable and,
if this is not the case, which are the features with the greatest
impact on results.

In summary, the aim of the present work is to test the effect
of the reduction of sequencing depth on 1) estimates of
diversity and species richness in complex matrices; 2) estimates
of abundance of the species present in the complex matrix, and
3) completeness of de novo reconstruction of the genome of
the species present in the samples. To assess the consistency of
our approach, we selected samples characterized by different
levels of species richness and by different relative abundance
of prokaryotic and eukaryotic organisms and viruses. In addi-
tion, publicly available viral particle enriched sequencing
data was used to extend our analysis to viruses. Finally, we included
in the study a mock community sample with known species
composition.

Some of the samples were predominantly composed by
eukaryotic organisms, while others were composed by
prokaryotes or viruses; some were represented by very few
dominant species while others had greater diversity. Results that
were observed across such dissimilar samples are likely to be of
general validity.
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Methods

Samples description and DNA extraction

The following samples were used in the present work: the mock
community DNA sample “20 Strain Staggered Mix Genomic
Material” ATCC® MSA-1003™ (short name: A1), two biological
medicines (B1 and B2), two horse fecal samples (F1 and F2),
three food samples (M1, M2, and M3), and two human faecal
samples (V1 and V2).

Biological medicines were two different lots of live attenuated
MPRV vaccine, widely used for immunisation against measles,
mumps, rubella and chickenpox in infants. Lyophilised vaccines
were resuspended in 500 pl sterile water for injection and DNA
extracted from 250 pl using Maxwell® 16 Instrument and the
Maxwell® 16 Tissue DNA Purification Kit (Promega, Madison,
WI, USA) according to the manufacturer’s instructions. The
vaccine composition declared by the producer is the following:
live attenuated viruses: 1) Measles (ssRNA) Swartz strain,
cultured in embryo chicken cell cultures; Mumps (ssSRNA)
strain RIT 4385, derived from the Jeryl Linn strain, cultured in
embryo chicken cell cultures; Rubella (ssRNA) Wistar RA
27/3 strain, grown in human diploid cells (MRC-5); Varicella
(dsDNA) OKA strain grown in human diploid cells (MRC-5).

Horse feces from two individuals were processed as follows:
100 mg of starting material stored in 70% ethanol were used
for DNA extraction using the QIAamp PowerFecal DNA Kit
(QIAGENGmbH, Hilden, Germany), according tothe manufacturer’s
instructions.

Food samples were raw materials of animal and plant
origin, used to industrially prepare bouillon cubes. DNA
extractions from those three samples were performed starting
from 2 grams of material each, using the DNeasy mericon
Food Kit (QIAGEN GmbH, Hilden, Germany), according to the
manufacturer’s instructions. The declared sample composition
was Agaricus bisporus for M1, spice (Piper nigrum) for M2 and
mix of animal extracts for M3.

The mock community declared components are: 0.18%
Acinetobacter baumannii (ATCC 17978), 0.02% Actinomyces
odontolyticus (ATCC 17982), 1.80% Bacillus cereus (ATCC
10987), 0.02% Bacteroides vulgatus (ATCC 8482), 0.02%
Bifidobacterium adolescentis (ATCC 15703), 1.80% Clostridium
beijerinckii (ATCC 35702), 0.18% Cutibacterium acnes (ATCC
11828), 0.02% Deinococcus radiodurans (ATCC BAA-816),
0.02% Enterococcus faecalis (ATCC 47077), 18.0% Escherichia
coli (ATCC 700926), 0.18% Helicobacter pylori (ATCC 700392),
0.18% Lactobacillus gasseri (ATCC 33323), 0.18% Neisseria
meningitidis (ATCC BAA-335), 18.0% Porphyromonas gingi-
valis (ATCC 33277), 1.80% Pseudomonas aeruginosa (ATCC
9027), 18.0% Rhodobacter sphaeroides (ATCC 17029), 1.80%
Staphylococcus aureus (ATCC BAA-1556), 18.0% Staphylococ-
cus epidermidis (ATCC 12228), 1.80% Streptococcus agalactiae
(ATCC BAA-611), 18.0% Streptococcus mutans (ATCC 700610).

DNA purity and concentration were estimated using a
NanoDrop Spectrophotometer (NanoDrop Technologies Inc.,
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Wilmington, DE, USA) and Qubit 2.0 fluorometer (Invitrogen,
Carlsbad, CA, USA).

Human fecal samples V1 and V2 derive from a study investi-
gating the virome composition of feces of Amerindians*. The
two samples with the highest sequencing depth were choosen.
Sequences were retrieved from SRA (SRR6287060 and
SRR6287079, respectively).

Whole metagenome DNA library construction and
sequencing

DNA library preparations were performed according to manu-
facturer’s protocol, using the kit Ovation® Ultralow System V4
1-96 (Nugen, San Carlos, CA). Library prep monitoring and
validation were performed both by Qubit 2.0 fluorometer (Inv-
itrogen, Carlsbad, CA, USA) and Agilent 2100 Bioanalyzer
DNA High Sensitivity Analysis kit (Agilent Technologies,
Santa Clara, CA). Obtained DNA concentrations were as
follows: A1 8 ng/ul (total amount = 640 ng), B1 10.7 ng/ul (total
amount = 535 ng), B2 9.41 ng/ul (total amount = 470.5 ng),
F1 42.3 ng/ul (total amount = 4,230 ng), F2 22.6 ng/ul (total
amount = 2,260 ng), M1 16.6 ng/ul (total amount = 1,494 ng),
M2 1.87 ng/ul (total amount = 168.3 ng), M3 16 ng/ul (total
amount = 640 ng).

Cluster generation was then performed on Illumina cBot and
flowcell HiSeq SBS V4 (250 cycle), and sequenced on HiSeq2500
[llumina sequencer producing 125bp paired-end reads.

Samples F1 and F2 were loaded on flowcell HiSeq Rapid SBS
Kit v2 (500 cycles) producing 250bp paired-end reads. The esti-
mated library insert sizes were: 539 bp (A1), 531 bp (B1), 536 bp
(B2), 620 bp (F1), 620 bp (F2), 342 bp (M1), 178 bp (M2), 496
bp (M3). Samples were sequenced in different runs and pooled
with other libraries of similar insert sizes.

The CASAVA Illumina Pipeline version 1.8.2 was used for
base-calling and de-multiplexing. Adapters were masked using
cutadapt”. Masked and low quality bases were filtered using
erne-filter version 1.4.6.”°. Bioinformatics analysis.

The bioinformatics analysis performed in the present work are
summarized in Figure 1; a standard pipeline for reproducing the
main steps of analysis is available on GitHub”'.

Since different read lengths among samples may consti-
tute an additional confounder in analysis, 250 bp long reads
belonging to F1, F2, V1 and V2 were trimmed to a length of
125bp using fastx-toolkit version 0.0.13 (http://hannonlab.cshl.
edu/fastx_toolkit/) before subsequent analysis.

Reduction in coverage was simulated by randomly
sampling a fixed number of reads from the full set of reads.
Subsamples of 10,000, 25,000, 50,000, 100,000, 250,000,
500,000 and 1,000,000 reads were extracted from the raw reads
using seqtk version 1.3. To estimate the variability due to random
effects, subsampling was replicated five times for each simulated
depth and 99% confidence limits were estimated and plotted.
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Base-calling, demultiplexing
(Casava 1.8.2)

Masking (Cutadapt)
Trimming (Erne-filter)

(Optional)
Subsample reads (seqtk)

Classify reads (kraken2)

Estimate diversity and
species richness (R scripts)

De-novo metagenome
assembly (megahit)

Assess de-novo assembly
(BUSCO, R scripts)

Figure 1. Workflow of the main bioinformatics analysis performed in the present work.

To classify the largest possible number of prokaryotes, eukaryo-
tes and viruses, reads were classified against the complete NCBI
nt database using kraken2, version 2.0.6**. The nt database was
converted to kraken2 format using the built-in kraken2-build
script with default parameters. Among the most significant
parameters, kmer size for the database is by default set to 35
and the minimizer length to 31. A simplified representation of
species composition was obtained using Krona™.

Observed number of taxa, Chaol species richness, Good’s
coverage’', Shannon’s diversity index” and Pielou’s index™
were estimated using the R package vegan version 2.4.2%
or base R functions. The number of observed taxa was
computed as the number of species to which at least one read
was assigned. The number of singletons is defined as the number
of species identified by only one read. The number of core
species is the number of species with frequency equal or greater
than 1%o.. We then define the measure S90, obtained as follow:
a) sort species in decreasing abundance, b) perform cumulative
sum of the species abundance, and c¢) report how many of the
ordered species are needed to reach an abundance equal or greater
to 90% of the total number of reads.

Assembly of the metagenome was performed using megahit
version 1.1.2% with default parameters, with kmer sizes varying
as follows: 21, 29, 39, 59, 79, 99, 119, 141. Reconstructed
contigs were classified at the species level using kraken2.
Completeness of the assemblies of each species was assessed
using BUSCO’. For each species, the proportion of the
reconstructed genes was measured as the proportion of genes
that were fully reconstructed, plus the proportion of genes that
were partially reconstructed. For each sample, results were then
averaged over species to provide the average proportion of

reconstructed genes. BUSCO analysis was performed on
prokaryotic database for all the samples with the exception of
M1 (predominanty composed by fungi) for which the fungal
database was used.

Unless otherwise specified, all the analysis were performed
using R 3.3.37.

Results

Sample composition and downsampling

Summary statistics for the full samples included in the study are
shown in Table 1.

The number of reads obtained in the samples selected for the
present study ranged from slightly more than 1 million (sample
V1) to more than 12 millions (sample F1). The number of
species identified in each sample was very high, ranging from
2,508 in sample Bl to 29,661 in sample F1. However, the
20 most abundant species accounted for a large proportion of
the reads in each sample, from 74.62% in M2 to 99.75% in
B1, and the 100 most abundant species accounted for 84.7%
in M2 and 99.8% in B1. In sample Al 98.8% of the reads were
assigned to the 20 declared species, and only 1.2% of reads were
either unassigned or uncorrectly attributed to other species. To
ensure that our conclusions have a general validity, we selected
samples originating from very different sources with different
compositions, and sequenced them at different depths. Figure 2
summarizes the composition of each sample at the Phylum
level. Viruses are aggregated at the division level. Only phyla
more abundant than 1% were plotted. Reads that were either
unclassified or assigned to rare phyla were aggregated under
the name “Unknown/Other”. Samples B1, B2 and M3 where
mainly composed of Chordata, sample M1 was mostly
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Table 1. Summary statistics for the full samples included in the study.

Sample N reads

A1 4,969,245 16 2,571
B1 11,031,061 4 2,507
B2 3,830,083 9 4,597
F1 12,472,553 99 29,660
F2 10,780,450 106 25,607
M1 1,898,011 2 3,206
M2 1,658,976 132 9,637
M3 1,867,879 19 5,566
V1 1,300,221 76 6,372
V2 2,001,984 9 3,177

Core N species Singletons

1,191
11,299)
1,795
14,750
12,374
1,469
3,377
1,999
2,114
1,605

% Top 20

98.91 99.66
99.75 99.81
98.83 99.27
21.16 38.45
19.94 36.67
99.03 99.35
36.68 61.68
95 97.38
73.91 86.05
98.96 99.38

%Top 100 S90

7
1
2
2,795
2,947

1,218

186
2

Core: number of species with frequency greater than 1%.. N species: number of species identified in
the sample; include species identified by one or more reads. Singletons: number of species identified
in the sample by only one read. % Top 20: percentage of reads assigned to the 20 most abundant
species. % Top 100: percentage of reads assigned to the 100 most abundant species. $90: Number of

species accounting for 90% of the reads.

100

75

50

Abundance [%)]

25 -

—

Sample

Phylum

B Actinobacteria
Apicomplexa

Il Arthropoda

Il Ascomycota

[ Bacteroidetes

I Basidiomycota

Il Chiorophyta
Chordata

. Cnidaria
Cyanobacteria

B Firmicutes

™ Mollusca

B Mucoromycota
Nematoda
Platyhelminthes
Proteobacteria

I streptophyta

B Unknown/Other
Viruses

Figure 2. Phylum composition of the samples. Only phyla represented by at least 1% of the reads are shown. Viruses are presented at
division level. Unclassified reads and reads assigned to rare phyla are aggregated under the name “Unknown/Other”.

composed by Basidiomycota, and sample V2 was mainly com-
posed of Viruses. Samples F1, F2 and, to a lesser extent, M2
were characterized by a large proportion of reads unclassified or
assigned to rare phyla. For a more detailed view of raw taxonomy
composition, interactive html Chrona are available for download
on Open Science Framework (https://osf.io/y7¢39/), under the
project “Do you cov me”, DOI: 10.17605/0OSF.I0/Y7C39.

Mock community analysis

The mock community sample “20 Strain Staggered Mix Genomic
Material” (ATCC® MSA-1003™) was used as a reference to
control performance of sequencing and classification procedures
at various depth. The community includes a total of 20 bacterial
species, of which 5 have a frequency of 0.02%, 5 a frequency of
0.18%, 5 a frequency of 1.8% and 5 a frequency of 18%.
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Figure 3 shows the scatterplot (in logarithm scale) of the observed
and expected abundance of organisms of the mock commu-
nity at different taxonomic levels, from Sepcies to Phylum when
using the full-dataset (4.9 M of reads). The correlation between
the two measures is high even at the species level (r=0.87),
and increases for higher taxonomic levels reaching 0.95 at Class
and Phylum level.

The correlation between expected and observed abundan-
cies of the 20 mock species remained high when decreas-
ing sequencing depth, and Pearson’s correlation coefficient
remains stable at 0.87 at all the investigated sequencing depths.
Results for the hwole depth, 1,000,000 reads, 25,000 reads
and 10,000 reads, together with 95% intervals are shown in
Figure 4.

Diversity analysis

Figure 5 shows the variation of several summary statistics as a
function of the number of reads used for the analysis, from
the smallest (10,000 reads) on the left, to the full dataset
on the right. Panels A and B show the observed number
of taxa and the value of Chaol (expected number of taxa)
respectively. The two measures have very similar trend, with a
swift decrease in horse feces (F1 and F2) when going from full
set to 1,000,000 reads, and a relatively slow decrease in all other
samples and subsets.

F1000Research 2019, 7:1767 Last updated: 30 AUG 2019

Downsampling has different effects on the observed and
estimated number of species in different samples. For most
samples, even a robust downsampling led to only a slight
reduction in the estimated species richness. However, for
samples F1 and F2, characterized by a high number of species
including rare ones, the downsampling led to a significant
reduction (panels A and B). Good’s coverage (panel C) remained
nearly constant when more than 100K reads were sequenced.
Lower sequencing depth determined a decrease in Good’s
coverage, especially for samples F1, F2, M2 and V1.

Shannon’s diversity index (panel D) is a widely used method to
assess biological diversity of ecological and microbiological
communities. The effect of sequencing depth on Shannon’s diver-
sity index is negligible for all samples.

Pielou’s index (panel E) is a measure of the species’ distribu-
tion evenness. Values close to 1 denote equifrequent species,
and lower values denote uneven distribution of species relative
abundance. The effect of the number of reads on Pielou’s index is
moderate.

Species abundance and detection threshold

Figure 6 shows the correlation in species abundance estima-
tion between the full dataset and a reduced dataset of 100,000
reads. The linear correlation coefficient between the two
datasets was >0.99 in all five subsampling replicates. The plot
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Figure 3. Log-log scatterplot of observed and expected abundance of bacterial organisms present in the mock community “20 Strain
Staggered Mix Genomic Material” (ATCC® MSA-1003™). In red Actinomyces odontolyticus identified at frequency <0.002%, arbitrarily

plotted at 0.002%.
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Figure 4. Log-log scatterplot of observed and expected abundance of bacterial species present in the mock community “20 Strain
Staggered Mix Genomic Material” (ATCC® MSA-1003™) at varying sequencing depths. In red Actinomyces odontolyticus identified at
frequency <0.002%, arbitrarily plotted at 0.002%. Error bars represent 95% confidence intervals obtained from five resampling experiments.

is in log-log scale to emphasize differences in low abundance
species. Only the relative abundance estimation of species with
frequencies lower than 0.01% (i.e . species represented by 1 read
out of 10,000) was affected by subsampling. The same pattern was
observed in all examined samples.

In Figure 7 we show the results obtained by reducing the
number of sampled reads to 10,000 reads per sample. Simi-
larly to what we observed for 100,000 reads depth, the linear

correlation coefficient between species abundance estimate
in the full and the reduced dataset was high (r>0.95) for all
the samples and in all five subsampling replicates. Only rare
species with frequencies lower than 1/1000 (0.1%) in full dataset
showed some deviation.

Since the reduction of the sequencing depth inevitably affects
the ability of detecting rare species, we determined the
minimum frequency required for a species to be identified
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Figure 6. Correlation of species abundance estimated using the full dataset and a set composed of 100,000 reads. Data for all the five
subsampled replicates are plotted. Each point (colored by sample of origin) represents a given species. Both axis are plotted in log scale to
facilitate visualization of low abundance species. A red box encompasses datapoints of species that were present in the full set and absent
in the reduced set, for which the frequency in the reduced set was set at “<=0.001%".

at each sequencing depth. This detection threshold at any while species with lower frequencies may be lost. At 1,000,000

given sequencing depth was defined as follows: a) for each
sample, identify all the species that are present in all five sub-
sampling replicates; b) among the species identified, for each
sample select the one with the lowest frequency in the full
dataset; c) average the lowest frequencies across all samples.
Table 2 shows the average and standard deviation of the detec-
tion threshold across the ten samples at any sequencing depth. At
10,000 reads depth, the detection threshold was 0.0124%. This
means that species with frequencies higher than 0.0124% in full
dataset were consistently identified also in the reduced datasets,

reads depth the detection threshold was 0.00006% (i.e. 60
reads per million).

Completeness of de novo assembly

We investigated the effect of coverage reduction on the
completeness of de mnovo assembly. We reconstructed the
metagenome of the full and reduced datasets and compared
the completeness of the reconstructed genomes. Results are
summarized in Figure 5 (panel F). As expected, the size of the
assembly was strongly influenced by the sequencing depth.
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Figure 7. Correlation of species abundance estimated using the full dataset and a set composed of 10,000 reads. Data for all the five
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in the reduced set, for which the frequency in the reduced set was set at “<0.01%".

Table 2. Detection threshold as a function of the
sequencing depth. N. reads: Number of reads.
Detection threshold (%): Detection threshold
averaged across the ten samples, SD(%): Standard
deviation of the detection threshold.

N. reads Detection threshold (%) SD (%)

10,000 0.01242 0.006312
25,000 0.00348 0.001719
50,000 0.00189 0.001078
100,000 0.00069 0.000536
250,000 0.0001 6.53E-05
500,000 0.00007 4.77E-05
1,000,000  0.00006 4.9E-05

Assembly size for the full dataset ranged from less than 1 Mb
(V2) to nearly 100 Mb (F1 and F2). A decrease in the sequencing
depth led to a steady decrease in assembly size in all samples. At
1,000,000 reads the size ranged from slightly more than 100 kb
(V2) to slightly more than 10Mb (A1 and M1).

BUSCO analysis™ was used as an additional measure to assess
the completeness of the reconstructed metagenome. The
proportion of reconstructed genes in full (X axis) and reduced
(Y axis) datasets obtained by randomly sampling 1,000,000
reads is shown in Figure 8. In samples Al and M1, on average
80% of the BUSCO genes were reconstructed in the full data-
set. Reducing sequencing depth to 1,000,000 reads lowered the
porportion of reconstructed genes in the two samples to 50% or

less. In the remaining samples the proportion of reconstructed
genes was very low even in the full dataset and the reduction of
sequencing depth did not significantly alter the proportion.

Discussion

We set out to test the effect of the reduction of sequencing
depth on 1) estimates of diversity and species richness; 2) esti-
mates of abundance of the species present, and 3) complete-
ness of de novo reconstruction of the genome of the species
present in complex matrices. We selected ten heterogeneous
samples that underwent whole genome DNA-sequencing.
This was also true for vaccine samples B1 and B2, several compo-
nents of which are ssRNA viruses, and could not be detected using
this approach. Indeed, the determination of the ssSRNA components
in vaccines was not the aim of the present study.

We started by determining the general characteristics of our
samples. All the samples resulted as a mixture of a large
number of species, nearly half of which were singletons
(i.e. represented by one read). A control sample Al comprised
2,572 species, while it should contain only 20 of them.
However, Al core set (species with a frequency of at least 0.1%)
was made up by 16 species. Based on product specifications,
15 species in the mock community had a frequency greater
than 0.1% and we observed all of them. In addition, we errone-
ously identified Staphylococcus lugdunensis (with a frequency of
0.11%), probably due to misclassification of other Staphylococ-
cus reads. We devised the S90 measure which reports the number
of the species (sorted by decreasing abundance) accounting for
90% of the reads. For several samples the S90 is less than 10,
while for highly complex matrices as F1 and F2, is 2,795 and
2,947 respectively. The abundance of rare species might be
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factual for samples with very high complexity such as feces.
Still, species represented by only one read are unlikely
to be real. A proportion of singleton species is probably
originated from sequencing errors and/or from errors in the
classification against the database. In addition, especially for
low input samples, it is possible that contaminants in laboratory
reagents artificially increase the number of observed species™*.
Nevertheless, determining the relative and absolute contribution
of these biases to metagenomics studies is out of the scope of the
present paper.

The choice of the database against which sequences are matched
can affect results. In the present study, we matched our sequences
against the full NCBI nt database, because this allows to clas-
sify reads belonging to any given organism. However, this might
cause some drawback in accuracy. As an example, in the vaccine
sample B1, we identified 61 reads attributed to Elaeophora
elaphi, a nematode, only found as a parasite of the liver of
deers™. It is therefore highly unlikely that such organism might
really be present in the vaccine sample. Repeating the analysis
on the standard database, only consisting of Homo sapiens,
bacteria and viruses, 57 out of 61 reads were assigned to
Homo sapiens and the remaining 4 were unassigned (data not
shown). Possible explanations are that a) some contamina-
tion from Homo sapiens is present in the deposited sequence
of Elaeophora elaphi, or b) some reads belonging to Homo
sapiens are attributed by mistake to genuine Elaeophora elaphi
sequences.

Such marginal missclassification problems do not affect the results
of our study, but clearly indicates that researchers should be very
cautious when reporting contaminants or unexpected results from
metagenomics studies.

In our study we kept the read length constant at 125 bp across
experiments. Previous studies (although limited to targeted
approaches) showed the effect of read length on the evalua-
tion of the composition of complex matrices’. Even though
an extensive assessment of the effect of read length on the
ability to characterize complex matrices was beyond the scope
of the present work, we compared the results obtained for horse
fecal samples (F1 and F2) when using 250 bp long reads. The use
of shorter sequences led to a strong increase in the proportion of
unclassified reads, from 56% to 74% in F1 and from 58% to 75%
in F2.

We performed a benchmark of the entire workflow with the help
of a mock community with known composition. By comparing
the expected and observed relative abundance of the 20 bacte-
rial species included in the mock community we concluded that
the workflow is accurate at all taxonomic levels (Figure 3). One
species, Actynomices odontolyticus, with expected frequency of
0.02%, was observed with a much lower frequency (<0.002%,
represented as a red dot in Figure 3 and Figure 4). Other
species showed only slight deviations from expected frequen-
cies in our experiment. To the best of our knowledge, this is
the first published work reporting the observed frequencies
of a mock community using WGS. However, previous works
performed very extensive studies on target 16s sequencing of
mock communities, and reported large deviations from
expectation, depending on sequencing primers, extraction method
and sequencing platform*. We tested the effect of decrease
in sequencing depth on deviations from expected frequency
(Figure 4) and observed that even when sampling 10,000
reads the average correlation between expected and observed
abundances remained high (r=0.87), although the variance among
resampling experiments was high.
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To assess the requirements in sequencing depth for character-
izing complex matrices, we measured the variation of several
diversity indexes while reducing the sequencing depths. We
measured the number of observed taxa, Chaol (or number of
expected taxa), Good’s coverage, Shannon’s diversity index and
Pielou’s evenness index.

Chaol estimator is obtained as

Chaol — 2 0bs

PRAeA)
2f,+D)

Where S, is the number of observed species in the sample, f,
is the number of species observed once, and f, is the number of
species observed twice.

Under our experimental conditions, the number of observed
and estimated taxa followed similar trends. Both of them
were heavily affected by the small proportion of reads attributed to
unique or rare taxa.

Good’s coverage (G) is defined as

G=1-L
N

where f, is the number of singletons and N is the total number
of reads. G is heavily affected by the sequencing depth.
Significant variation in G is observed when using 100,000 reads
or less.

Shannon diversity index is estimated as

N
H=-p+In(p,)

i=1
Where N is the total number of species and p, is the frequency
of the species i. Thus Shannon diversity index is affected more
by variation in the frequencies of highly abundant species than
by the loss of rare species. In our study, Shannon’s index was very
stable across sample sizes.

Piclou’s evenness index is estimated as

H
J=—
InS

Where H is Shannon’s diversity index and S is the total
number of observed species. The value /n S corresponds to the
maximum possible value of H, observed when all spe-
cies have the same frequency, thus Pielou’s index approaches
1 when all the species are evenly distributed. In our
study, Pielou’s index showed a slight increase as the number of
sampled reads decreased.

Horse fecal samples F1 and F2 are characterized by a very
large number of observed species (29,660 and 25,607,
respectively), while all the other samples have lower number
of species, ranging from 2507 in Bl to 9637 in M2. Chaol
captures this differences, showing that F1 and F2 have greater
diversity estimates Measures such as the number of observed

F1000Research 2019, 7:1767 Last updated: 30 AUG 2019

taxa and Chaol capture this differences, showing that F1 and
F2 have greater diversity estimates. Shannon’s and Pielou’s
indices, on the contrary, rely on the frequency distribution
of the species. Therefore, samples that have a relatively high
number of common species with comparable frequencies tend
to have high Shannon’s diversity indices. Samples (such as M1)
dominated by a single species, have very low Shannon and
Pielou indices. The effect of sequencing depth on nearly all
indices is moderate; we thus conclude that biological matrices
with different levels of complexities, composed by different
admixture of prokaryotes, eukaroytes and viruses can be
satisfactorily characterized via WGS even at sequencing depth
lower than 1,000,000 reads.

We then set out to assess the changes in the estimated
relative frequency of each individual species when reducing the
number of sequenced reads. Accurate estimate of the relative
abundance of each species is an important task when the aim is
a) to detect species with a relative abundance above any given
threshold, b) to differentiate two samples based on different
abundance of any given species composition, or ¢) to cluster sam-
ples based on their species composition. Our results show that
even in case of substantial reduction of the number of sequenced
reads, species abundances as low as 0.1% can be reliably estimated
(Figure 6 and Figure 7).

In addition, we aimed to determine the threshold of detection
for rare species at low sequencing depth. This statistics
is of interest when researchers are interested in detecting
the presence of a species that might be rare in the sample.
Our results show that even very rare species can be accurately
detected at low sequencing depth. When subsampling 1,000,000
reads, the frequency threshold for a species to be detected in
the reduced sample was measured as 60 reads out of 1,000,000
(0.00006%). Even when the number of reads was unrealisti-
cally low (10,000), rare species could still be detected, with a
detection threshold estimated to be 0.012%. While the
detection threshold can vary according to sample characteristics,
we can assume that for most samples rare species can be
accurately detected even at low sequencing depth.

Finally, we assessed the effect of a reduction in the sequencing
coverage on the accuracy of de novo assembly of the metagen-
ome. Our results show that downsampling had a strongly nega-
tive effect on the total length of the reconstructed metagenome
and on the propoprtion of reconstructed genes (Figure 5F and
Figure 8).

BUSCO is widely used for assessing the completeness of
genome and transcriptome assemblies for individual organisms,
and has benchmark datasets for several lineages. Our results
clearly indicate that even 1,000,000 reads is a suboptimal
depth in terms of fully sampling the genes present in the
complex matrices. This observation needs to be taken into
account in the phase of experimental design. Our conclusions
are also important for research interested at reconstruction of an
interesting part of the meta-genome, such as genes involved in
antibiotic resistance”. The decrease in performance observed
in the genes’ recostruction will be likely observed for any gene
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category. Researchers aiming at a de novo reconstruction of the
metagenome (although partial) must keep in mind that several
millions of reads are needed to attain reliable results. In addi-
tion, the proportion of genes reconstructed with BUSCO in
the full dataset was very low for all samples, with the excep-
tion of the two samples M1, predominanty composed by one
fungal species, and Al, composed by a limited number of
small genomes. These results indicate that a complete recon-
struction of the metagenome of a complex matrix requires at
least several millions reads. In the present work we tested the
feasibility of using metagenome shotgun shallow high-through-
put sequencing to analyze complex samples for the presence of
eukaryotes, prokaryotes and virus nucleic acids for monitoring,
surveillance, quality control and traceability purposes. We
show that, if the aim of the experiment is a taxonomical
characterization of the sample or the identification and quan-
tification of species, a low-coverage WGS is a good choice.
On the other hand, if one of the aims of the study relies on
de novo assembly, substantial sequencing efforts are required.
The number of reads required for the reconstruction of the
meta-genome, depends on several factors such as number of
species in the sample, their genome size and abundance and
length of the sequencing reads. An estimation needs to be
performed for each experiment based on specific goals and
sample characteristics.

Data availability

Underlying data

Raw reads generated in the present study are available at NCBI
Sequence Read Archive.

Sample Al is available under accession number SRP174028:
https://identifiers.org/insdc.sra/SRP174028.

Samples F1 and F2 are available under accession number
SRP163102: https://identifiers.org/insdc.sra/SRP163102.

Samples Bl and B2 are available under accession number
SRP163096: https://identifiers.org/insdc.sra/SRP163096;
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In this manuscript the authors aimed at evaluating the use of shallow shotgun metagenomic sequencing
for the characterisation of species diversity and the reconstruction of genomes in complex lllumina read
sets. Overall, the manuscript is well written and contains interesting information that may be useful to
others in figuring out a required metagenomic sequencing depth for a given goal.

The manuscript has been vastly improved in the current version, however | feel that it still needs a
thorough revision to address a few major issues in order to ensure the general validity of the findings.

The three major issues to address are, in my opinion, the following:

1. Overestimation of diversity: Authors decided to base their analyses of diversity on the raw
output from kraken2. However, as mentioned by the authors themselves, "species represented by
only one read are unlikely to be real". This is quite evident in the report from the 20-species mock
community comprising instead >2000 species. | strongly recommend the use of a threshold (e.g.,
0.005% of the total amount of reads) to filter out likely false positives. For this purpose, the authors
could take advantage of the mock community to evaluate results based on different thresholds and
thereby optimise threshold selection.

2. Inaccuracy of species-level abundances: in their analysis the authors assumed that read
abundances reflect species abundance. However, this is often not the case, especially when
closely related taxa are present in the sample; the accuracy of abundance estimation further
depends on the database used (Lu et al 2017). The authors themselves hint at this when
discussing the misclassification of Staphylococcus lugdunensis, likely due to the presence of other
confounding Staphylococcus reads. To address this issue, the authors could use Bracken (from
the same developers of kraken, Lu et al. 2017). Bracken uses the classification results of kraken to
reestimate relative species abundances taking into account how much sequence from each
species is identical to other genomes in the database.
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3. Inaccurate assessment of genome reconstruction ability: considering the classification
biases mentioned above and the complexity of the investigated metagenomic data sets, it might be
better to base the assessment of the effects of coverage reduction on metagenome reconstruction
solely on the mock community data. First, authors would need to bin the metagenomic contigs into
individual species (using kraken2 and/or other binning approaches). The individual bins (i.e.,
species) should then be evaluated for completeness using BUSCO and compared.

In summary, this work (and, by extension, future studies using a similar approach) could greatly benefit
from the inclusion of a baseline estimate for species diversity and metagenome reconstruction, even if it is
derived from a single mock community. The additional data sets could then be used to validate these
estimates against real data.

References
1. Lu J, Breitwieser F, Thielen P, Salzberg S: Bracken: estimating species abundance in metagenomics
data. Peerd Computer Science. 2017; 3. Publisher Full Text

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: metagenomics, metatranscriptomics, community ecology, symbiosis, population
genomics, metabarcoding, biotic interactions

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Author Response 23 Jul 2019
Federica Cattonaro, IGA Technology Services Srl, Udine, Italy

In this manuscript the authors aimed at evaluating the use of shallow shotgun
metagenomic sequencing for the characterisation of species diversity and the
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reconstruction of genomes in complex lllumina read sets. Overall, the manuscript is well
written and contains interesting information that may be useful to others in figuring out a
required metagenomic sequencing depth for a given goal.

The manuscript has been vastly improved in the current version, however I feel that it still
needs a thorough revision to address a few major issues in order to ensure the general
validity of the findings.

We thank the reviewer for the suggestions. We implemented them and updated the manuscript
accordingly.

The three major issues to address are, in my opinion, the following:

1. Overestimation of diversity: Authors decided to base their analyses of diversity on
the raw output from kraken2. However, as mentioned by the authors themselves,
"species represented by only one read are unlikely to be real". This is quite evident
in the report from the 20-species mock community comprising instead >2000
species. | strongly recommend the use of a threshold (e.g., 0.005% of the total
amount of reads) to filter out likely false positives. For this purpose, the authors
could take advantage of the mock community to evaluate results based on different
thresholds and thereby optimise threshold selection.

See answer to point 2.

2. Inaccuracy of species-level abundances: in their analysis the authors assumed that
read abundances reflect species abundance. However, this is often not the case,
especially when closely related taxa are present in the sample; the accuracy of
abundance estimation further depends on the database used (Lu et al 2017). The
authors themselves hint at this when discussing the misclassification of
Staphylococcus lugdunensis, likely due to the presence of other confounding
Staphylococcus reads. To address this issue, the authors could use Bracken (from
the same developers of kraken, Lu et al. 2017). Bracken uses the classification
results of kraken to reestimate relative species abundances taking into account
how much sequence from each species is identical to other genomes in the
database.

We took advantage of suggestions 1 and 2 (and from suggestions from reviewer 1) to
improve the species abundances estimation. After classifying reads with kraken2, we used
bracken to re-estimate species abundance only for species represented by at least 10
reads. Then, using the only gold standard we had (the mock community) we measured
performance at difference detection threshold. Our results suggested that a detection
threshold of 0.1% was the one resulting in the higher F1 score, minimizing false negatives
and false positives while maximizing true positives.

3. Inaccurate assessment of genome reconstruction ability: considering the
classification biases mentioned above and the complexity of the investigated
metagenomic data sets, it might be better to base the assessment of the effects of
coverage reduction on metagenome reconstruction solely on the mock community
data. First, authors would need to bin the metagenomic contigs into individual
species (using kraken2 and/or other binning approaches). The individual bins (i.e.,
species) should then be evaluated for completeness using BUSCO and compared.
Results presented in version 2 of our paper are already based on binning approaches, in
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which we classified contigs using kraken, performed BUSCO for each species and then
averaged the proportion of BUSCO genes across species. However, in version 2 we made
(in our opinion) a mistake, since we averaged the proportion of BUSCO genes across all
species for which at least one BUSCO gene was reconstructed. This led to a slight
overestimation of the number of reconstructed BUSCO genes. We thus repeated the
analysis by averaging the proportion of BUSCO genes over all the species that were above
the detection threshold, including those for which no BUSCO gene was reconstructed. The
new approach is now explained in the methods section, and the new plot is now Figure 7. In
addition, we liked the idea of using the mock community, and we performed a new analysis,
now shown in Figure 6. The result are very interesting and are briefly discussed. Basically,
with the full set of reads (around 5M), the majority of BUSCO genes could be reconstructed
for species with a nominal abundance of 18% and 1.8%, but not for the rarer species (for
which basically no gene could be reconstructed). When only 1M reads are used for the
assembly, the proportion of reconstructed BUSCO genes is nearly unchanged in abundant
species and drops to less than 10% in species with a nominal frequency of 1.8%. The
results and the implications for study designs are briefly discussed in the paper.

Competing Interests: No competing interests were disclosed.

Reviewer Report 25 March 2019
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© 2019 Cobo Diaz J. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

X

José F. Cobo Diaz
Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Université de Brest,
Plouzané, France

| appreciate the changes make along the introduction, because the objective of the present study is now
more clear. Although the manuscript was improved considerably, there is still a big problem with the data
analysis, mainly in reads filtering.

Now that you have included a mock community sample, you need to use this sample to adapt the
parameters of reads filtering, clustering step (I asume you have done some kind of clustering since you
talk about singletons) and taxonomic assignation until you have the number of species expected, 20 in
this case. You can also have some less due to problems with species assignation, but it is crazy to use a
20 species mock community and say that you have 2571 species in this sample. For example, singletons
(clustering groups or OTUs (Operational Taxonomical Units) with a unique sequence) are usually
removed on metabarcoding pipelines, and in some cases OTUs with less than 0.1% of abundance are
removed, assuming that these sequences are sequencing errors (and PCR errors in metabarcoding).
Therefore, you have to estimate the minimum percentage of abundance to be considered real (and not
due to errors) with the mock sample and apply this cut off value to the rest of samples.
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In the same line, to say that 2,507 and 4,597 species were found in vaccines is not correct, where you can
expect the DNA from varicella (the other viruses are ssRNA) and the DNA from human and chicken cells
used for culture.

Some small changes | suggest:
® Rewrite or suppress last paragraph of introduction, which looks more appropriate to Methodology.
® Add some disadvantages of use metabarcoding approach (being the main one the bias due to
primers, with over/under-estimation of some taxa, depending of the primers used).
® Atthe end of the samples description, you need to put what means SRA (and add the
corresponding web-address).
® |n samples description, grammatical mistake with human faecal (have to be human fecal).
® Remove this sentence from results: To ensure that our conclusions have a general validity, we
selected samples originating from very different sources with different compositions, and
sequenced them at different depths.
®  Figure 3, with species and genus level is enough.
Thus, the read filtering and hence all the statistical analysis have to be re-make. | not expect big changes,
also at taxonomical level (where only a reduction of "rare species" and unclassified sequences is
expected), but it is not convenient to present the results with such great over-estimation of species
richness.

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: microbial ecology, metabarcoding sequencing, NGS data analysis, bacterial
communities, fungal communities

| confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Author Response 23 Jul 2019
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Federica Cattonaro, IGA Technology Services Srl, Udine, Italy

| appreciate the changes make along the introduction, because the objective of the
present study is now more clear. Although the manuscript was improved considerably,
there is still a big problem with the data analysis, mainly in reads filtering.

Now that you have included a mock community sample, you need to use this sample to
adapt the parameters of reads filtering, clustering step (I asume you have done some kind
of clustering since you talk about singletons) and taxonomic assignation until you have
the number of species expected, 20 in this case. You can also have some less due to
problems with species assignation, but it is crazy to use a 20 species mock community
and say that you have 2571 species in this sample. For example, singletons (clustering
groups or OTUs (Operational Taxonomical Units) with a unique sequence) are usually
removed on metabarcoding pipelines, and in some cases OTUs with less than 0.1% of
abundance are removed, assuming that these sequences are sequencing errors (and PCR
errors in metabarcoding). Therefore, you have to estimate the minimum percentage of
abundance to be considered real (and not due to errors) with the mock sample and apply
this cut off value to the rest of samples.

In the same line, to say that 2,507 and 4,597 species were found in vaccines is not correct,
where you can expect the DNA from varicella (the other viruses are ssRNA) and the DNA
from human and chicken cells used for culture.

According to your suggestions (and to similar suggestions received from reviewer 3), we now
adopted more stringent criteria for determining the presence of a species. Following the suggestion
of both reviewers, we leverage the mock community to define a threshold. We use Bracken to
refine the species abundance estimation (already providing a very permissive threshold, i.e.
ignoring OTUs with less than 10 reads). We then performed a performance analysis to compare
Bracken results with the known composition of the mock community, and chose the threshold
maximizing the F1 score (harmonic average of precision and recall). The threshold resulting in the
best tradeoff was 0.1%.

As a side effect of filtering OTUs with less than 0.1% frequency we do not have any narrow-sense
singleton. As a consequence, the number of observed taxa and Chao1 diversity index coincide,
and the Good estimator is always 1. We thus removed these two statistics from our panel plot.

In addition, we removed the paragraph on the “detection threshold” and the corresponding Table 2,
since we are now determining a threshold a-priori based on the mock community and this parts are
not needed any more.

Some small changes | suggest:
®  Rewrite or suppress last paragraph of introduction, which looks more appropriate
to Methodology.
We removed the last paragraph.
® Add some disadvantages of use metabarcoding approach (being the main one the
bias due to primers, with over/under-estimation of some taxa, depending of the
primers used).
We added a sentence and a reference regarding limitation of metabarcoding approaches in the
introduction.
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® At the end of the samples description, you need to put what means SRA (and add
the corresponding web-address).
Done.
® |n samples description, grammatical mistake with human faecal (have to be human
fecal).
Amended.
®  Remove this sentence from results: To ensure that our conclusions have a general
validity, we selected samples originating from very different sources with different
compositions, and sequenced them at different depths.
Sentence removed.
®  Figure 3, with species and genus level is enough.
While we were modifying the Figure as per reviewer’s request we realized that indeed the results
presented at the species level in Figure 3 are also presented in the first panel of Figure 4. Since the
results at the genus species did not add much information, we decided to remove Figure 3.

Competing Interests: No competing interests were disclosed.

Reviewer Report 04 January 2019
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© 2019 Cobo Diaz J. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

X

José F. Cobo Diaz
Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Université de Brest,
Plouzané, France

The authors proposed and evaluated the influence of reduce sequencing effort (amount of sequences) for
a whole metagenome shotgun analysis, using the lllumina platform, in the species composition and
diversity index of the communities studied. Although the idea and hypothesis are good, some problems
were found in the experimental design and data analysis.

According to the questions proposed in the peer review form, it is not a new method, only the adaptation
of a current methodology to optimize the cost and increase the potential numbers of samples analyzed
per run of lllumina platform. Although the introduction is clearly explained, the reasons for use shotgun
sequencing, mainly to analyze viruses data and functional data for all the organism, no emphasis on such
points was done in the results and discussion. The samples used (vaccines, horse fecal samples and
food samples) and the introduction remark the detection of pathogens as the main objective of the
approach used, including viruses, which can not be screened by amplicons approaches, like
metabarcoding sequencing. | suggest adapting the text and manuscript to focus on pathogens (mainly
viruses) found along the sub-samples taken for each sample. At that point, some contaminated samples
(or not contaminated samples mixed with known amounts DNA from pathogen viruses) have to be used to
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determine the lowest pathogen concentration that could be detected for each shotgun sequencing
coverage proposed.

Many problems were found with the methodology employed, mainly the parameters used in each step
and/or software employed for data filtering and analysis, which are critical for the results, which can have
strong variations depending of the parameters used. Hence, the methodology proposed does not allow
any replication of the method used. Moreover, there are some mistakes for species designation in the
study, with at least 2508 species found in vaccine samples indicating big problems along read filtering
and data analysis, because this number of species is often found in more complex systems, such as soils
samples from agricultural fields. Moreover, go to species classification using some taxonomical markers,
such ITS or 16SrRNA, is risky with sequences lower than 400 bp, and sometimes with bigger sequences.
In the current manuscript, the use of non taxonomical marker sequences and 150 bp lengths increase
enormously the number of sequences not correctly assigned to species level, and in several cases also
for higher taxonomical levels (genus, family...). Therefore, | suggest to clarify how the species assignment
was done, because it looks like that each gene-species was considered as one species, and each gene
found for a single species was counted as a hew species.

Alpha diversity indexes employed are not the best ones, in my opinion, to describe or compare the
sub-samples proposed in this manuscript. The chao1 index, an estimator of richness, has a strong
influence on the number of singletons obtained in the samples, which due to the complexity of the
samples-data tends to be high. Shannon index is influenced by both richness (number of taxa) and
evenness (equability, Pielou index), and the reduction of richness due to the loss of rare taxa has a strong
influence on this index. | propose to use the number of observed taxa instead of estimated taxa, and any
evenness index, like the Pielou index, instead of the Shannon index. Moreover, the use of a coverage
index, such Good’s coverage index, could be useful to compare the loss of information associated to
sampled size or coverage.

In conclusion, although the raw data can contains some important information, the manuscript has to be
improved with new “pathogen contaminated” samples, and be re-written to focus on the detection of
pathogens in the samples, which due to the low abundance of the samples could not be detected
depending of the shotgun coverage.

Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
No

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
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Partly
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: microbial ecology, metabarcoding sequencing, NGS data analysis, bacterial
communities, fungal communities

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.
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X

Alejandro Sanchez-Flores
Institute of Biotechnology, National Autonomous University of Mexico (UNAM)), Cuernavaca, Mexico

The authors propose and evaluate a whole metagenome shotgun analysis via a low sequencing yield
approach, using the lllumina platform.

In general, the idea and hypothesis are good, but the experimental design itself lacks important controls
and there are many variables that are not analyzed and that can potentially bias the results.

My main concern is that the used samples have many variables and despite using a "replicate" for each
case, samples within the same type were very different. Also the nature of each sample could have an
effect in the DNA isolation, in particular for the vaccine ones. Also, regarding the vaccines, it is not clear to
me, if what they are looking for is DNA of potential contaminants, since all viruses in the vaccine are
ssRNA. That would be my guess, but is not clear from the text.

The main problem is that to test the influence of the sequencing yield, it would be extremely important to
know the initial DNA concentration of each organism in the sample. Therefore, a mock metagenome or
controlled sample would be much better as a reference to compare real life cases. In real life cases, the
presence of certain organisms detected by the presence of its DNA, is not necessarily an indicator of the
availability of alive organisms. Depending on the case, the presence of just the organism DNA could be
an indicator of contamination which in the case of vaccines could be really bad. However, in the case of
food material, finding DNA of pathogens, has to be associated with microbiology tests. However, with low
sequencing yield, is very probable that very DNA in low amounts will be missed, even if this is not
changing diversity indexes such as Chao1 and Shannon.

Finally, the main difference where low yield has a significant impact can be observed in the fecal samples.
This is expected since among all the tested samples, fecal ones are the most diverse and sub-sampling
will really affect them as observed in Figure 3.
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Since the composition of each sample is not known a priori, then there are some factors that can
contribute to biases. As mentioned, the DNA concentration but also its integrity (fragmentation) will affect
the library construction; the cited kit requires DNA amplification which will have a bias towards GC rich
genomic regions; library size was not described and was not mentioned if the samples were pooled with
other libraries with different insert sizes, which affect not only the sequencing quality but the yield.

In terms of bioinformatics analysis, it will be required to put the parameters used for each program, in case
someone wants to reproduce this. For Kraken2, it is important to know what is the kmer size to index the
database. For MEGAHIT assembly it will be important to know the kmer and step sizes used. For the
completeness assessment, the authors used BUSCO, but apparently they are using the whole assembly
to assess the completeness. This is not correct, since they must first separate in bins which genomes
they have really reconstructed and then they can assess the completeness of them. Probably they can
report the an average completeness value for all the reconstructed genomes. By doing the binning they
can have a better analysis of what was really reconstructed and how complete it was.

The use of Krona in Figure 2 is not very convenient. The whole point of a Krona graph is that is interactive.
If authors want to provide the Krona data to be downloaded it would be possible and recommended.
Having said that, | recommend to use bar plots to represent the relative abundance and composition of
the samples at a given taxa level.

Again, the idea is very good but the work needs to be improved before indexing.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
No

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
No

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Genomics, Transcriptomics, Metagenomics, Bioinformatics

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to state that | do not consider it to be of an acceptable scientific standard, for reasons
outlined above.
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Federica Cattonaro, IGA Technology Services Srl, Udine, Italy

We are grateful for the constructive comments. We agree with all of them and we are planning
corrective actions, listed below.

My main concern is that the used samples have many variables and despite using a
"replicate" for each case, samples within the same type were very different.

The observation is correct. Actually, the diversity of the samples was sought by purpose in order to
be able to generalize the conclusions of our paper. The fact that diversity estimate and species
abundance estimation remain reliable even with strong down-sampling for all of the samples is
encouraging us to think that this is a general (although not necessarily universal) observation. The
same is true for the observation that de-novo assembly quickly loses accuracy when decreasing
the number of sequenced reads. Maybe this wasn’'t made clear enough in the paper, and we will
clarify it.

Also the nature of each sample could have an effect in the DNA isolation, in particular for
the vaccine ones.

Quantities of DNA isolated from vaccine samples (B1 and B2) were estimated to be ~2 ug using
Qbit fluorimeter. However, we will provide a table with all the details about quantity, concentration,
quality and size of starting DNA for all samples used in the study.

Also, regarding the vaccines, it is not clear to me, if what they are looking for is DNA of
potential contaminants, since all viruses in the vaccine are ssRNA. That would be my
guess, but is not clear from the text.

The vaccine composition declared by the producer is the following:

Live attenuated viruses: Measles (ssRNA) Swartz strain, cultured in embryo chicken cell cultures;
Mumps (ssRNA) strain RIT 4385, derived from the Jeryl Linn strain, cultured in embryo chicken cell
cultures; Rubella (ssRNA) Wistar RA 27/3 strain, grown in human diploid cells (MRC-5); Varicella
(dsDNA) OKA strain grown in human diploid cells (MRC-5).

By DNA-seq we expected to find Varicella (dsDNA) OKA strain DNA (which was found and
confirmed by variant analysis with respect to AB097932.1 Human herpesvirus 3 DNA, sub strain
vOka). In addition, we found also human and chicken DNA. For human’s, we confirmed MRC-5 cell
origin by mitochondrial genome variant analysis.

Genotyping analyses gave us confidence on the validity of the obtained results, even though they
were beyond the scope of this work.

To identify vaccine’s ssRNA viruses we extracted RNA and performed RNA-seq from the same B1
and B2 samples. This aspect also goes beyond the scope of this work.

The main problem is that to test the influence of the sequencing yield, it would be
extremely important to know the initial DNA concentration of each organism in the
sample. Therefore, a mock metagenome or controlled sample would be much better as a
reference to compare real life cases.

A mock community experiment is already on-going by using ‘10 Strain Staggered Mix Genomic
Material (ATCC® MSA-1001™)’. Of course, the data obtained will be integrated in the analysis
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results.

In real life cases, the presence of certain organisms detected by the presence of its DNA,
is not necessarily an indicator of the availability of alive organisms. Depending on the
case, the presence of just the organism DNA could be an indicator of contamination which
in the case of vaccines could be really bad. However, in the case of food material, finding
DNA of pathogens, has to be associated with microbiology tests.

We agree with the observation of the reviewer. However, the aim of this work is to determine if
low-pass whole genome sequencing can be an appropriate approach to broadly describe a
complex matrix; finding and confirming contaminants in vaccines or DNA pathogens in food
samples was beyond of the scope of the paper.

However, with low sequencing yield, is very probable that very DNA in low amounts will
be missed, even if this is not changing diversity indexes such as Chao1 and Shannon.
Finally, the main difference where low yield has a significant impact can be observed in
the fecal samples. This is expected since among all the tested samples, fecal ones are the
most diverse and sub-sampling will really affect them as observed in Figure 3.

We agree with the reviewer; we add some thoughts just to clarify. We indeed observed that
extremely rare species (with frequencies lower than 1/10000) are lost when subsampling to the
most extreme levels. When subsampling to 100K reads we are losing species with a frequency
around 1/100,000 (very approximate estimate). However, the effect of losing such species on the
global sample diversity as estimated by Shannon diversity index is negligible (see Figure 4, in
which we show that reduction in sequencing depth has no dramatic effect on Shannon’s diversity
index). The situation is different for the Chao 1 estimator. This is expected and is due to the way
Chao1 is computed: this estimator relies heavily on the number of singletons (i.e. species
represented by only one read). By subsampling, singletons (i.e. the rarest species) are very likely
to be lost. The same phenomenon can be inferred by looking at Figures 5 and 6. Those represent a
scatterplot of the relative abundance of species in full sample and reduce samples (100K and 10k
reads, respectively). The plots are shown in log log scale to emphasize differences for
low-frequency species. Only low-frequency species have some variation in frequency estimation.
However, even when sampling only 10K read, species with frequency around 0.1% (i.e. 1/1000)
are appropriately quantified. All of these observations led us to conclude that coverage reduction
doesn’t prevent a satisfactory characterization of complex matrices (with the only exception of
Chao 1 estimator).

Since the composition of each sample is not known a priori, then there are some factors
that can contribute to biases. As mentioned, the DNA concentration but also its integrity
(fragmentation) will affect the library construction; the cited kit requires DNA amplification
which will have a bias towards GC rich genomic regions; library size was not described.

The Nugen Ovation® Ultralow System V4 kit used is a standard kit for NGS library preparation (
https://www.nugen.com/sites/default/files/DS_v2-Ovation_Ultralow_V2.pdf

Itis a standard protocol widely used by the scientific community to perform DNA-seq also from low
input DNA quantities (1 ng), even if in our case input DNA was of moderate quantity. Mock
community experiment will shed light on eventual biases.

DNA concentration and integrity as well as input DNA quantities used in library construction and
libraries insert size will be reported in the version 2 of the paper.
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It was not mentioned if the samples were pooled with other libraries with different insert
sizes, which affect not only the sequencing quality but the yield.

Samples were sequenced in different runs and pooled with other libraries of similar insert sizes.
The number of reads obtained per sample reflects and respects their quantities, i.e. nmols that
were loaded on the sequencer.

In terms of bioinformatics analysis, it will be required to put the parameters used for each
program, in case someone wants to reproduce this. For Kraken2, it is important to know
what is the kmer size to index the database. For MEGAHIT assembly it will be important to
know the kmer and step sizes used.

All these details will be provided in the version 2 of the paper.

For the completeness assessment, the authors used BUSCO, but apparently they are
using the whole assembly to assess the completeness. This is not correct, since they
must first separate in bins which genomes they have really reconstructed and then they
can assess the completeness of them. Probably they can report the an average
completeness value for all the reconstructed genomes. By doing the binning they can
have a better analysis of what was really reconstructed and how complete it was.

This is a good point. While our aim was to estimate the total proportion of BUSCO genes that were
reconstructed, irrespective of the species of the organism to which they belong, we understand
that a practical application is likely to require separating the reconstructed genomes. We will
integrate our analysis by binning the reconstructed genomes.

The use of Krona in Figure 2 is not very convenient. The whole point of a Krona graph is
that is interactive. If authors want to provide the Krona data to be downloaded it would be
possible and recommended. Having said that, | recommend to use bar plots to represent
the relative abundance and composition of the samples at a given taxa level.

We will either provide a link to interactive krona graphs and/or bar plots reporting the relative
abundance and composition of the samples.
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