METHOD ARTICLE

StateHub-StatePaintR: rapid and reproducible chromatin state evaluation for custom genome annotation [version 2; peer review: 3 approved with reservations]

Simon G. Coetzee¹, Zachary Ramjan²,³, Huy Q. Dinh⁴, Benjamin P. Berman¹,⁴, Dennis J. Hazelett¹,⁴

¹The Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
²Zaxxis LLC, Grandville, MI, 49418, USA
³Van Andel Research Institute, Grand Rapids, MI, 49503, USA
⁴Sammuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA

Abstract

Genome annotation is critical to understand the function of disease variants, especially for clinical applications. To meet this need there are segmentations available from public consortia reflecting varying unsupervised approaches to functional annotation based on epigenetics data, but there remains a need for transparent, reproducible, and easily interpreted genomic maps of the functional biology of chromatin. We introduce a new methodological framework for defining a combinatorial epigenomic model of chromatin state on a web database, StateHub. In addition, we created an annotation tool for bioconductor, StatePaintR, which accesses these models and uses them to rapidly (on the order of seconds) produce chromatin state segmentations in standard genome browser formats. Annotations are fully documented with change history and versioning, authorship information, and original source files. StatePaintR calculates ranks for each state from next-gen sequencing peak statistics, facilitating variant prioritization, enrichment testing, and other types of quantitative analysis. StateHub hosts annotation tracks for major public consortia as a resource, and allows users to submit their own alternative models.

Keywords

epigenomics, chromatin, visualization, methylation, variant annotation, ChIP-seq, bioconductor

Open Peer Review

Reviewer Status

1. Maxwell W. Libbrecht, Simon Fraser University, Burnaby, Canada
2. Yongjin Park, Harvard University, Cambridge, USA
3. Guillaume J. Filion, The Barcelona Institute of Science and Technology, Barcelona, Spain

Any reports and responses or comments on the article can be found at the end of the article.
Amendments from Version 1

The primary differences in the revised article are an expansion and clarification of the method, both in its implementation and in the nature of the output it creates. Figures and figure legends have been updated to clarify the text. A new section has been written describing the scoring of annotations, and their relationship to enhancer prediction.

Any further responses from the reviewers can be found at the end of the article.

Introduction

Chromatin segmentations are increasingly important for a broad area of research that includes regulatory genomics, genetic epidemiology, precision health, and molecular genetics. There is a need for consistent, unbiased resolution of chromatin states to interpret the epigenome and predict function across different tissues and cell types.

Complex, overlapping patterns of post-translational modifications (PTM) to histone subunits signify differing states of chromatin activity. These modifications consist of mono-, di-, or tri-methylation and acetylation of histone 3 lysines 4, 9, 27, and 36. Direct assays for histone PTMs with next-generation sequencing (NGS) using chromatin immunoprecipitation (ChIP-seq) result in a set of genomic intervals with evidence for enrichment over background (input chromatin), using signal intensity.

In addition to ChIP-seq of histone PTMs, there are also NGS methods for histone displacement, including DNase I hypersensitivity (DNase-seq or DHS), Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE-seq), Assay for Transposase Accessible Chromatin (ATAC-seq) and Nucleosome Occupancy and Methylome sequencing (NOMe-seq). Histone displacement, nucleosome positioning and DNA methylation are also detected in genomewide assays (e.g. whole genome bisulfite sequencing). Histone displacement is associated with transcription factor binding and transcriptional activity. In addition, direct binding of transcription factors is measured in ChIP-seq experiments with an antibody directed against a transcription factor or an epitope-tagged version.

All these data are compatible with data represented as genomic intervals (in BED format), including CpG islands, annotated transcription start sites, repeat elements, 3’ UTRs. The input and final (output) processed data format are both represented as browser extensible data (.bed), a flexible standard for different peak calling methods (e.g. “narrowPeak” and “broadPeak” are types of .bed files).

Several machine-learning approaches integrate NGS experiments into annotation tracks. The goal is to discover epigenomic states and aid in understanding “non-coding” genomic elements in an unbiased and biologically meaningful way. Newly discovered states are an amalgam of true functional categories of chromatin biology. The most popular and widely used of these machine learning methods is ChromHMM. Other machine-learning approaches include spectral-based learning, inference based on read counts, dynamic bayesian networks, probabilistic approaches, supervised enhancer detection, and other hidden Markov methods.

The interpretability and general usefulness of the state predictions produced by these algorithms varies. A multitude of states often must be consolidated into simpler, biologically meaningful categories. Hoffman et al. recognized this problem when they proposed a combined meta-analysis of ChromHMM and Segway annotations. However, a software framework for expert or rule-based segmentations is still lacking. Comparisons across heterogeneous data sets, involving different learned models, or slightly different sets of epigenetic marks, must be performed carefully, tracking how annotations are created and which can be considered compatible. In addition, it is necessary to update information about what annotations are appropriate as new evidence about the combinatorial patterns of the epigenome come to light. Such methodology is needed for integrating different experimental data (including non-NGS data) in a reproducible way, reflecting both the novel insights gained from the machine learning methods and our current understanding of genome biology.

Here we introduce StateHub and StatePaintR for generating and documenting chromatin state and other genome segmentation models in a transparent and reproducible fashion. StateHub is a community resource for storing annotation models, state definitions and associated data in a shareable, referenceable form. The StatePaintR package implements these models and state definitions to produce annotation tracks based on histone and other epigenomics marks, sequence features, and gene annotations. We show that StatePaintR can be used to rapidly annotate large collections of public data for summarizing epigenomics data or annotation of variants. We show how annotations gracefully degrade, in that cell types or tissues with missing data types are annotated appropriately based upon available information. We show some use cases and describe how StatePaintR uses ChIP-seq data peak statistics to rank the state prediction for each segment. The priority of the method is to provide a framework to express existing statements about the relationships of genomic annotations and how they combine to reveal underlying chromatin states thereby bypassing de novo learning and annotating of states within each sample and annotating solely based upon simple rules and available data.

Methods

Implementation

StatePaintR is implemented as a software package in the R language freely available from the Bioconductor repository: www.bioconductor.org/packages/release/bioc/html/StatePaintR.html. The package contains functions for generating annotation tracks from called peaks specified as intervals according to the rules specified in a decision matrix and an abstraction layer describing the relationships between specific assays and functional
categories. An abstraction layer may define a single functional category for a collection of assays that represent similar biology, e.g. assays for H3K27ac and H3K9ac may both represent an “Active” functional category. These data are supplied to StatePaintR in the form of BED files, or one of their extensions (e.g. narrowPeaks, gappedPeaks), leaving it to the user to either call areas of enrichment/peaks in the manner they think best, or acquire pre-called peaks from a trusted source. The decision matrix encodes the relationship between these functional categories and specific chromatin states, where the values of any particular cell of this matrix must take on of 4 different values (Table 1) indicating the nature of the relationship. Together the abstraction layer and the decision matrix describe a StatePaintR model.

Each cell of the decision matrix relates functional category to chromatin state in a 2-bit code representing the answers to two TRUE/FALSE questions (see Table 1). Is the functional category required in order to call the state? And, is overlap consistent with the state? For the purposes of explanation, examples below use the nomenclature of our “focused poised promoter model”, but a user may create their own model or modify the decision matrix or abstraction layer of an existing model. The cell of the decision matrix defining the relationship between the state “Poised Promoter Region” (PPR) and the functional category representing narrow peak calls of H3K27me3, “PolycombNarrow” is 3, representing the binary value 11₂. This encoding indicates that in order to call the PPR state on an interval, data representing the “PolycombNarrow” functional category is required to be present, and second, the interval in question must also overlap with a peak described by that functional category. A score of 2 representing the binary value 10₂, as in the cell describing the relationship between PPR and the functional category “Active”, indicates that in order for the interval to be annotated as PPR, data relating to “Active” must be present in the data set, but must not overlap the queried interval. A score of 0 representing the binary value 00₂, as in the cell for the functional category “Core” (which incorporates DHS, ATAC-Seq, and FAIRE peak calls) and PPR, indicates that it is not necessary for data represented by “Core” to be present, however if the “Core” data is present and overlapping the queried interval, the PPR state cannot be called. The category “Translation marks” does not affect PPR in this model, even if it overlaps. Marks that are essentially irrelevant to PPR such as this one are assigned 1 representing binary 01₂.

Thus established, each row (as “state”) in the decision matrix is a unique combination of values describing the relationship of the functional categories to the state, where the rows are organized by the software in order of state complexity. StatePaintR first generates a GRanges list (an R object containing a list of chromosomes and interval coordinates with arbitrary metadata columns attached) of all uniquely mapping segment boundaries from the start and end coordinates of every peak in all files. StatePaintR then evaluates the presence or absence of each functional category and eliminates erroneous states. Next the program assesses overlaps of each segment to determine whether the conditions specified in each cell of the decision matrix are compatible with that segment, producing a boolean value. Rows with perfect matches in all cells are candidate state calls. Since StatePaintR evaluates in order of increasing state complexity, lower complexity states can be overwritten if higher complexity states match. This is very useful for building degeneracy in a model. An example of this is in Figure 1 is illustrated by the states, ER and EAR. If active marks (e.g. H3K27Ac) are not available for a given cell type, StatePaintR will annotate H3K4me1 marks as ER under our default model. In a different cell type for which H3K27Ac data are available, StatePaintR will know to distinguish between H3K4me1 enriched regions as either active or poised based on overlap of this second mark. Thus, a model can specify different state calls as appropriate based on the availability of data for each cell type. StatePaintR includes a peak score for each state drawn from all experiment categories (columns) that have a matrix value of 3, i.e. because they are required for and consistent with that state. The peak scores are rank normalized on a scale of 1 to 1,000, with 1 being the minimum peak size and 1000 being the maximum. If multiple categories are required, StatePaintR selects the median peak score for the annotation. This behavior can be overridden (see documentation for details).

Finally, once all segments are annotated, and scored, StatePaintR is able to export these annotations as BED files that may be viewed in any genome browser. The package includes an R-markdown vignette. The current release version of this vignette is always available from the Bioconductor website.

StateHub is implemented as an interactive website (www.statehub.org). StateHub contains a database implemented in MongoDB and a search engine written with Google Web Toolkit (GWT), which updates dynamically with user input. This database includes all models, model metadata and pre-computed StatePaintR browser tracks. Models are composite JSON objects that include an unique identifier, name, revision number, a searchable text description, and a model matrix (as defined in Table 1). The website also includes links to this manuscript, R-markdown containing code for figures, the latest version of

<table>
<thead>
<tr>
<th>required for state?</th>
<th>consistent with state?</th>
<th>binary value</th>
<th>decimal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>00₂</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>01₂</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>10₂</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>11₂</td>
<td>3</td>
</tr>
</tbody>
</table>
the vignette, links to twitter feed and additional instructional materials.

StateHub models
The main text makes reference to two models in StateHub (statehub.org). The unique identifiers of these models are as follows: “Default” (model ID: 581ff9f246e0fb06b4b6b178) and “Focused Poised promoter” (model ID: 5813b67f46e0fb06b493ce80). In each of the two models presented and discussed in this paper we chose a naming convention for our states reflecting biological function.

Annotation of public datasets
Preprocessed peak calls were obtained from the IHEC and ENCODE websites (see Table 2) for hg19, and where possible hg38. Where possible we used IDR (Irreproducible Discovery Rate) processed narrowPeak calls for DHS and broadPeaks for broad marks (H3K27Ac, H3K4me1, H3K27me3, H3K36me3) unless otherwise specified in the model. A complete manifest with filenames, plus all annotation tracks are available on the StateHub website.

Enrichment calculations
Parkinson’s GWAS variants. To illustrate the use of StatePaintR chromatin state segmentations in GWAS functional annotations, we revisited an earlier study of Parkinson’s disease in which we tested for tissue-specific enrichment of genetic associations. Parkinson’s GWAS variants were obtained from a previously published large scale meta-analysis21. We used a beta-binomial conjugate distribution to estimate the credible range of differences in overlaps between observed (GWAS hits) vs. random variants. To calculate enrichment we selected all variants within 1 MB of the index SNP in each region with a minor allele frequency (MAF) > 0.01, defining foreground as SNPs in linkage disequilibrium with the index SNP at a cutoff of $r^2 > 0.8$ and background as all SNPs inclusive (MAF > 0.01). Enrichment in genomic annotations. Analyses and graphics were produced using the SegTools package22.

Analysis of methylation data
To select methylation variants, we analyzed the Infinium HM450 data of 114 ovarian tumor samples23 and 216 control

![Figure 1. Mapping datasets to functional significance annotations.](image-url)

Experimental data and external database annotations are combined into abstraction layers (columns), integrated to produce chromatin states (rows) from the decision matrix. StatePaintR produces state assignments by iteratively comparing the marks that are present in each segment with each row of data in the table. The values of color-coded squares signify relationship between data and state: 0 (light red) the feature/data type negates the state but is not required to be present, 1 (light green) feature is consistent with the state but not required, 2 (red) if the feature is required to be available and negates the state, and 3 (green) it is both required and consistent with the state. Complexity of states increases from top to bottom. For the example, red dotted arrows, proceeding downward, point to non-matching rows, and green arrows point to matching rows. The state call corresponds to the last matched row. In this example with the presence of H3K4me1 (“Regulatory”), H3K27ac (“Active”) and DNase1 hypersensitivity (“Core”), the first state consistent with the presence of these functional categories is “Enhancer”, followed by the increasingly more complex “Regulatory Site”, “Active Chromatin”, “Active Enhancer”, “Enhancer Core”, “Active Chromatin Core”, and finally “Active Enhancer Core”.

<table>
<thead>
<tr>
<th>Table 2. Annotation of public datasets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from the indicated public consortia were downloaded and processed in StatePaintR. The resulting annotation files and browser sessions are available from the StateHub web page under each model page.</td>
</tr>
<tr>
<td>hg19</td>
</tr>
<tr>
<td>Blueprint (IHEC)</td>
</tr>
<tr>
<td>CEEHRC (IHEC)</td>
</tr>
<tr>
<td>DEEP (IHEC)</td>
</tr>
<tr>
<td>ENCODE</td>
</tr>
<tr>
<td>Roadmap</td>
</tr>
</tbody>
</table>
normal Fallopian tube samples\(^3\). We define differentially methylated regions as those having a difference in beta values of 0.3 (cancer vs. normal) and significance in Mann-Whitney U-test (FDR-corrected p-value < 0.01). We then performed enrichment calculations using overlaps between probes that were hypermethylated in cancer vs. normal and the state calls from two models described above and in the text. The enrichment calculations were done with fisher’s exact test using the complete HM450 probeset as background.

Operation

All code used to generate figures, tables, and this manuscript is included as an R-markdown document (Supplementary File 1)\(^3\). A copy of this document may also be obtained from the StateHub website. In addition, a workflow vignette is available from the bioconductor package and mirrored on the github repository at github.com/Simon-Coetzee/StatePaintR.

Results

A framework for rule-based annotation

In order to assign chromatin states, it is necessary to account for the complex interplay of input from genomic annotations and cell-type-specific experimental data sources that define and demarcate functional regions of the genome\(^1\). Computationally they have to be put in the right order to avoid erroneous overwriting of information-rich categories with information-poor ones.

We initially wrote a model as a decision tree, encompassing a set of basic rules for annotation, but this approach was limited in that any small change to the model necessitated a near complete re-write of our software. Secondary to this, we wanted a solution that would enable us to specify any change in the model and have it produced the same way as all previous models while minimizing software updates. And thirdly, we felt that any such model should be reproducible, documented, citable and extensible to any combination of experiments. Moreover from a bioinformatics perspective, we felt that any two colleagues working separately should be able to produce precisely the same annotations from the same datasets and models. To satisfy these different requirements we separated the model specification from the annotation tool. We implemented model specification as a decision matrix, which has the advantage of separating model specification from software, enabling complete explicit control of the annotation software without computer programming expertise.

We created a searchable website, StateHub, to host a permanent repository of models, document model objects and make them available as a resource to the community. The StatePaintR package retrieves models from StateHub and performs annotations on local data. Thus, StateHub-StatePaintR is a framework to document models and apply them to annotate genomic data. The models in StateHub consist of an abstraction layer, defining the relationships between data sources and functional categories. These categories are integrated to produce annotations (left hand column, “Chromatin States”) via a decision matrix (Figure 1). Within the model each state has associated descriptions of arbitrary length which may contain key words or other relevant details (bottom right).

Annotation scoring

StatePaintR enables rank scoring of all states, allowing prioritization for non-coding variant annotation. No other existing tool does both chromatin state annotation and rank evaluation simultaneously. Thus, while machine learning chromatin segmentation methods are focused on label assignment alone, our paradigm preserves critical quality information from the underlying ChIP-seq data to arrive at overall rank scores. We used these rank scores to generate precision recall statistics for predicting experimentally validated enhancer regions from the VISTA database\(^3\). Our method outperformed most other methods aimed at predicting enhancers (Table 3). Unlike other methods, our tool did not rely on training data and not only was able to predict and score enhancer states, but any other arbitrary states that can be described using the StateHub definition language. No other existing tools provide this functionality with chromatin segmentation.

Table 3. Relative performance of StatePaintR enhancer ranking vs. VISTA enhancers\(^3\).

Columns 2–6 reflect the area under the precision-recall gain (auprg) curve. Highest scoring algorithm noted with *.

<table>
<thead>
<tr>
<th>source</th>
<th>neural tube</th>
<th>mid-brain</th>
<th>hind-brain</th>
<th>limb</th>
<th>heart</th>
<th>average auprg</th>
<th>average rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPTILE</td>
<td>0.86*</td>
<td>0.87*</td>
<td>0.76</td>
<td>0.89*</td>
<td>0.92</td>
<td>0.86</td>
<td>2.0</td>
</tr>
<tr>
<td>StatePaintR†</td>
<td>0.84</td>
<td>0.84</td>
<td>0.79</td>
<td>0.85</td>
<td>0.88</td>
<td>0.84</td>
<td>3.0</td>
</tr>
<tr>
<td>RFECS</td>
<td>0.79</td>
<td>0.85</td>
<td>0.78</td>
<td>0.85</td>
<td>0.92</td>
<td>0.84</td>
<td>3.0</td>
</tr>
<tr>
<td>ENCODE</td>
<td>0.82</td>
<td>0.82</td>
<td>0.80*</td>
<td>0.85</td>
<td>0.88</td>
<td>0.83</td>
<td>3.4</td>
</tr>
<tr>
<td>DELTA</td>
<td>0.81</td>
<td>0.84</td>
<td>0.76</td>
<td>0.84</td>
<td>0.93*</td>
<td>0.84</td>
<td>3.6</td>
</tr>
<tr>
<td>CSIANN</td>
<td>0.72</td>
<td>0.68</td>
<td>0.62</td>
<td>0.69</td>
<td>0.84</td>
<td>0.71</td>
<td>6.2</td>
</tr>
<tr>
<td>EnhancerFinder</td>
<td>NA</td>
<td>0.59</td>
<td>0.63</td>
<td>0.67</td>
<td>0.82</td>
<td>0.68</td>
<td>6.8</td>
</tr>
</tbody>
</table>

†Annotations using “poised promoter” model as described in the text.
Use cases
Segmentation of public datasets
We generated annotations of 119 ENCODE cell lines, 128 Roadmap tissues, 26 cell lines and tissues from CEEHRC (peak calls obtained from the IHEC website), and 23 blood cell types from Blueprint (download at statehub.org). On a desktop PC it takes approximately 12–15 seconds to produce an annotation from a typical cell line, depending on the number of datasets and intervals (see Figure S1). StatePaintR produces genome browser compatible BED files with color-coded state annotations (specified in StateHub model). Figure 2 shows a representative region around the POLR2A gene from a subset of 77 high-quality (minimum 15 million reads) tissue samples and cell lines with H3K27Ac data from Roadmap. A complete manifest for processing these data is included in additional files.

Annotation of genome-wide association studies
A common use of genome annotation is to assign putative function to genetic loci identified by genome-wide association studies (GWAS), particularly for non-coding regions. We previously used a custom annotation of Roadmap tissues based on the approach described in this manuscript to identify locus-specific tissue enrichment in variants associated with Parkinson’s disease. In that study, we displayed locus-by-tissue enrichment as a heat-map. Here we present a similar analysis using our new StateHub model as the basis for an alternative visualization. Since we showed that Parkinson’s disease variants are primarily associated with enhancers and promoters, we plotted the 95% range of credible values for enrichment in enhancers and promoters vs background SNPs (matched for GC content & minor allele frequency). Each locus (row) is plotted against a selection of tissues in Roadmap (Figure 3).

Evaluation of two models with respect to cancer methylation
Our “default” model proposes a class of enhancers and promoters in a poised state, an “Enhancer Poised Region” (EPR) and a “Promoter Poised Region” (PPR). These features have H3K4me1 or H3K4me3 and lack H3K27Ac. This model also classifies H3K27me3 as silenced/polycomb repressed (SCR). To investigate functional enrichment of methylation variants,
we looked at how differentially methylated regions (DMR) in ovarian cancer tumors partition between chromatin states as defined in this model (Figure 1).

From previous work, CpG islands containing temporarily silenced (poised) genes by polycomb repressive complex in normal tissues may acquire DNA methylation during cancer formation resulting in permanent silencing\(^{24,30}\). While the segments called EPR and PPR were associated with hypermethylated probes in ovarian cancer across tissues, the magnitude of enrichment was not great (see Figure 4, “Model 1”), and it remained possible that our state definitions were too broad.

One hypothesis is that poised promoters are distinguishable by the presence or absence of focused H3K27me3, in particular the narrowPeak calls (as opposed to broad, low-level enrichment from broadPeak files used in model 1). To address this hypothesis, we repeated the analysis in Figure 4 for an alternative model (model 2; “focused poised promoter”) in which H3K27me3 is called as both broadPeak and narrowPeaks. We use the H3K27me3 broadPeak file as in the previous model to identify repressed regions, and H3K27me3 narrowPeaks to identify poised states (EPR and PPR). Enhancers lacking H3K27Ac and H3K27me3 were classified as weak enhancers and promoters (“Enhancer Weak Regions”, EWR and “Promoter Weak Regions” PWR, not shown in Figure 4). Regulatory elements with these properties have also been called “primed”\(^{31}\).

We found greater enrichment when we defined poised states in this way (compare model 2 (focused poised promoter) with model 1 (default) in Figure 4). The hypermethylated ovarian cancer CpGs were more enriched in EPR and PPR from the default model fell in a range between 0 and 5. However, the enrichment of the hypermethylated probes in our focused poised promoter model was > 5 in PPR and > 10 in EPR (Figure 4, model 2). Thus, ovarian hypermethylated probes are enriched across Roadmap tissues in H3K27me3+ enhancers and promoters, and we concluded that H3K27me3 narrowPeaks are an important distinguishing feature for this class.

Enrichment of functional annotation

Next, we characterized the distribution of states in our focused poised promoter model relative to Gencode v37 gene annotations and also to enhancers from Ensembl\(^{32}\). Figure 5 shows the relative enrichment of Human mammary epithelial cell (HMEC) chromatin states in each of these features. We found enrichment in Ensembl enhancers for three states: Active enhancer (EAR), Active regions (AR) and Weak enhancer (EWR). The definition of “active enhancer” in the Ensembl build is cumulative across cell types\(^{32}\) and therefore includes many cell-type specific enhancers that would be predicted to be weak (having exclusively H3K4me1) in a particular cell line such as HMEC. These three states were not enriched in any other category of genomic annotations. Likewise, we found enrichment of the inactive enhancers in Transcribed (TRS) and Silenced/Polycomb (SCR). TRS was most enriched in gene body annotations, particularly internal exons and introns. SCR and Heterochromatin (HET) were depleted across all categories. Lastly, the 5\(^{\prime}\), first exon and first intron regions were enriched in active and weak promoters, consistent with the role of these regions in transcription initiation.

Enhancer predictions

To use ChIP-seq data for quantitative analysis, we ranked within each state by peak score from Macs2 output (generic peak height). We programmed StatePaintR to rank each state by
Figure 4. Example of model comparisons. Enrichment as in Figure 3 using either of two different state models (model 1 and model 2) from StateHub, “Default” and “Focused Poised Promoter”, which differ in the treatment of poised promoters. The association of hypermethylated regions in ovarian cancer with poised enhancer (“Enhancer Poised Regions” – EPR) and promoters (“Promoter Poised Regions” – PPR) across roadmap tissues are indicated by odds-ratio in the Y-axis. Y-axis range is the same for both plots. Both models distinguish hypermethylated probes in the poised state but model 2 is more selective than model 1. In this model (2) enhancers with H3K4me1 and promoters with H3K4me3 overlapping narrow regions of H3K27me3 are poised (EPR and PPR), but those without H3K27me3 are called weak (EWR and PWR). Model 1, by contrast, assigns promoters lacking active marks to the poised state.

normalizing on a scale of 1–1000, 1000 being the highest rank. StatePaintR ranks the required dataset(s) for each state (i.e. assigned “3” in the decision matrix). To evaluate the ranking function, we measured area under the precision-recall-gain curve (AUPRG) using the set of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice (VISTA enhancer browse and 27). We randomly sampled 100 enhancers from 7 VISTA tissues to evaluate different aspects of our models (training), and then used the remainder of the data to test our enhancer predictions against previously published predictions using the same data sets.

Some states, including the ones that are germane for enhancer prediction, reference more than one required (matrix value 3) dataset, and therefore it was necessary to optimize the best method for ranking based on > 1 ChIP-seq experiment. We computed the average, median and ceiling functions of ranks across
multiple ChIP-seq tracks. The three methods were comparable, but median and average produced the best results (Figure S2). There are three required marks for active enhancers in our model, but if one of them is not informative for active enhancer prediction, using the ceiling “max” method would produce false positives when this mark has the highest peak rank. Therefore, we interrogated which marks are informative using a leave-one-out approach. We found that leaving out H3K4me1 significantly improved our predictions, whereas leaving out the other marks did not (Figure S3).

Next we assessed AUPRG of different state calls vs. VISTA enhancers and found that predictive power descends in order AR + EAR > EAR > AR > RPS > EPRC > etc (Figure S4). When we tried combinations of states the highest precision recall gain was observed for EAR, EARC, AR and ARC added together (Figure S4), and this was greater than other combinations and than any of the state calls individually. H3K27Ac is the only mark common to all these states, suggesting that H3K27Ac is the most informative predictor of enhancers.

Since H3K4me1 does not improve predictions and is the only thing that distinguishes between AR and EAR (by its presence or absence), an improved model would consolidate AR and EAR into a single state and reassign “1” to H3K4me1 instead of “3”, leaving this mark exclusively to define weak (or primed) promoters.

To validate our method of enhancer prediction, we compared our predictions with ENCODE Encyclopedia, Version 3 (zlab-annotations.umassmed.edu), EnhancerFinder, RFECs, DELTA, CSIANN, and REPTILE for held-out data using AUPRG (Figure S5).

Our predictions are comparable to the Encode model that uses H3K27Ac overlapping with distal DHS, RFECs and REPTILE, which had the lowest average rank across tissues (Table 3, Figure S5). Our predictions compared favorably to EnhancerFinder and CSIANN which had an average rank > 6 across the different tissues; heart, midbrain, hindbrain, neural tube and limb. Predictions are only available for these tissues. Thus, StatePaintR rankings useful for drawing quantitative comparisons between different models, making predictions, or prioritizing regions for functional evidence.

Discussion

We created a platform for hosting, browsing, and generating new genome annotation models called StateHub. The StateHub framework makes it possible to specify combinations of genomic data as they relate to regions of functional significance in epigenetically marked chromatin. In addition, we created a software package, StatePaintR, that facilitates the use of StateHub models to generate browser tracks for bioinformatic analyses. We showed how StatePaintR can be used as part of a workflow with uniformly processed data to generate reproducible annotations from public and private data sources.
Our framework does not replace current machine learning methods, the aim of which is to discover states. But these methods suffer from certain drawbacks that we have addressed with a rule-based approach that provides greater transparency and reproducibility. For example, it is often the case with machine-learning methods that more states are discovered than immediately understood, and there have been different solutions proposed. During discovery, one could iteratively reduce the number of states, minimizing the number of similar or redundant combinations of histone marks. Then the number of discovered states would depend on the number of unique data types used for learning and their distribution around known features. This procedure makes replication in different settings (in different labs or with different types of experiments) nearly impossible. Our method avoids these issues, allowing users to specify a model of the epigenome in a matrix (as in Figure 1) that accounts for all known possibilities. Thus, we built a comprehensive framework for a rule-based annotation, reflecting current hypotheses (or models) of the epigenome.

A significant drawback of our approach is that some unusual combinations of marks that may have biological function will be ignored. This has much to do with the fact that StatePaintR is not for discovering novel states, but rather for annotating the genome according to a specific, existing model. Nonetheless, the label assignment step of other chromatin state discovery tools also suffers the same limitations; states are aggregated or optimized in an iterative fashion based on prior knowledge and assumptions. ENCODE for example has published tracks for both ChromHMM and Segway that include multiple states with similar names (e.g. “Tss” vs. “TssF” from ChromHMM, and “EnhF1” vs. “EnhF3” from Segway). To resolve discrepancies between the two methods, the authors of those studies proposed a combined analysis to simplify the number of state labels and summarize discovery using a rule-based metric not unlike a StateHub model. Thus, they classified regions into 7 types “emphasizing biologically meaningful differences.” In direct comparisons, we found that our own annotations exhibited greater similarity to the combined analysis than to either of the Segway or ChromHMM tracks separately (not shown). Whatever the protocol, the basic problem persists; machine-learning is able to provide insight into what the categories are, but not how many categories there should be. Currently this remains the exclusive province of the biologist.

One of the additional challenges is compatibility between data sets. In order for two or more cell types to be annotated according to the same model, it is necessary to combine each of the cell types for the training step. One solution is concatenation of genomes. Another approach is to jointly model epigenomes in parallel, as proposed in Integrative and Discriminative Epigenome Annotation System (IDEAS). This approach has the distinctive advantage of also modeling segment boundaries. Our approach does not model boundaries, but does offer some advantages. One is reproducibility: StatePaintR always produces the same annotation independently for each cell type from the same model. Secondly, even samples with different types of data or missing data result in compatible annotations because they come from the same model. Third, the models, composed of a 2D matrix with a range of 4 values, are relatively easy to understand and author. Every file produced in StatePaintR contains a record of the model ID, genome version and all the source files. Clinicians working with human genetics will value consistency and reproducibility across datasets. We produced annotations for REMC, ENCODE, IHEC and blueprint and made these available on the StateHub website for the two models described in this paper. The website also has links to browser sessions where they can be explored and used to create figures. A fourth advantage is speed: samples can be processed in parallel and there is no computationally expensive learning step, allowing a typical sample to be annotated in 15 seconds (Figure S1).

A final feature that is very useful is the ranking by peak score (Figure S5). Using this scheme, we investigated what states contribute most to true enhancers (Figure S2–Figure S4). We found that H3K27Ac defined the best predictive subset of annotations for VISTA enhancers. We also investigated different approaches for handling multiple peak calls for a state and found the median to be optimal (Figure S2), and incorporated this method as the default behavior of StatePaintR. When we compared our predictions to held-out data, they were comparable to the best enhancer predictions and ENCODE enhancers and on the web (unpublished).

We demonstrated a workflow wherein new models generate annotations, which are used to test predictions against experimental data, and then in turn to make improvements to old models. We anticipate that this will be valuable in testing new ideas and hypotheses generated from unsupervised methods. The ability to rank features also aids in prioritizing variants for GWAS and studies of somatic mutations. Knowing which variants overlap features in the epigenomic landscape of a particular cell type is key. In the future, other methods may become available for incorporation into StatePaintR but the models described in StateHub will remain stable.

Conclusions

We introduced two new computational resources, an online database of chromatin state models and processed genome segmentations called StateHub, and an R/Bioconductor tool called StatePaintR, which translates epigenomics files into segmentations using these models. One may annotate incomplete datasets rapidly and sensibly according to a single model specification that gracefully degrades to lesser annotations with missing data. Annotations have header documentation with genome version, StateHub model, and the names of source files and their mappings. These tools document segmentations and state labels precisely as they are used in individual studies and to allow comparisons between evolving models of epigenomic states as they relate to NGS experiments. They also enable mixing of epigenomic states with other types of data, such as 3D looping assays, transcription factors, primary sequence features such as position weight matrices, or disease variants.

Software availability

StateHub available from: http://statehub.org/
At the time of publication we have submitted our package to Bioconductor. A new version of the article will be updated once this package is available. For now, the entire package is available on GitHub.

Data availability

The following are additional files containing manifests to run StatePaintR with current releases of all public datasets listed in Table 2, links to segmentation tracks, and all code used for analysis and generation of figures in this manuscript. Complete code generated from R markdown (Rnotebooks/html format) for generating all analyses, figures and tables is available here.

Supplementary material, including Supplementary File 1 and Supplemental Figures 1–5 are available on figshare here: https://doi.org/10.6084/m9.figshare.12195087

Supplementary File 1: Statepaintrh.html: This file contains code for all the examples and use cases in the text of this manuscript, generated as an html from Rmarkdown.

Figure S1: Relationship between data and runtime. StatePaintR takes only a few seconds to run. The exact time depends on the number of unique segments (lines of data) created by overlapping genomic intervals of all input files, cumulative. Thus, 128 Roadmap tissues can be run in 10 sec × 128 = 1,280 sec (21 min).

Figure S2: Predictions with multiple marks. Ranked ChIP-seq peak scores for multiple marks were used to rank active enhancers (H3K4me1 + H3K27Ac + DHS) by 3 methods (median, mean, ceiling) and compared to a sample (n = 100) of experimentally validated enhancers. The average or median of three marks was a better predictor than ceiling. The choice of function is subservient to choice of data for ranking—if one of the three is less informative, it will produce false positives when using the max method—therefore it is better to eliminate uninformative marks. See also Figure S4.

Figure S3: Ranking enhancers with subsets of marks. Combinations of marks were used to predict active enhancers by the max ranking method (as in Figure S2) and compared to enhancer score. “All” includes regulatory (H3K4me1), active (H3K27Ac), and core (DHS). We also tried a leave-one-out strategy for each of these categories in succession. Leaving out H3K4me1 (“no regulatory”) produced superior predictions, suggesting that its inclusion made the predictions less specific.

Figure S4: Chromatin states as predictors of true enhancers. We tested different chromatin states for their ability to predict true enhancers under the poised focused promoter model. Active enhancers exhibited the greatest predictive power under the precision recall gain curve.

Figure S5: Performance of enhancer predictions. Area under precision-recall-gain curves reflect the accuracy of three models of enhancer prediction. True positive enhancers are those validated in the VISTA enhancer browser. The ENCODE method (in blue) and the StatePaintR method (in red) show similar accuracy in retrieving VISTA enhancers showing tissue specific enhancer activity, while EnhancerFinder (in green) is less accurate.

References

Open Peer Review

Current Peer Review Status: ? ? ?

Version 2

Reviewer Report 29 May 2020

https://doi.org/10.5256/f1000research.20361.r63182

© 2020 Libbrecht M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maxwell W. Libbrecht
School of Computing Sciences, Simon Fraser University, Burnaby, BC, Canada

The revision has greatly improved the clarity of the text and the revised version is much more understandable.

I agree with the other reviewers that a performance comparison is necessary to demonstrate the utility of StatePaintR over existing methods. I missed this claim in my first review: "In direct comparisons, we found that our own annotations exhibited greater similarity to the combined analysis than to either of the Segway or ChromHMM tracks separately (not shown)." If true, this is a key result; the results must be shown (as a primary figure, not a supplement).

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: computational genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 28 May 2020

https://doi.org/10.5256/f1000research.20361.r63183

© 2020 Park Y. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Yongjin Park
1 Broad Institute, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
Department of Pathology and Statistics, The University of British Columbia, Vancouver, BC, Canada

Since the last review, I could only find a minute change in the text and no change in the figures. I found no clear reason for using StateHub-StatePaint tool by simply reading this paper. I am sure the authors must have spent lots of time developing the Bioconductor package, but a large portion of details are simply missing in the paper.

- I honestly don’t think there is no systematic performance comparison (doesn't have to be exhaustive).
- There is no mathematical definition of the metrics used in the paper: What is the gold standard for the tests? What is the test statistics? How do you compute enrichment score? How do you estimate the confidence interval?

Since the authors' claim for the paper is really about transparency and reproducibility, these are too important to embedded in the stack of R codes.

Moreover, I would emphasize on why rule-based methods are more transparent and reproducible, compared to other ML-based methods. Readers may disagree on the definition of transparency and reproducibility, but it is important to give them a chance to judge by themselves. It would also nice to have examples that clearly contrast between this method and other methods.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 26 May 2020

https://doi.org/10.5256/f1000research.20361.r63184

© 2020 Filion G. This is an open access peer review report distributed under the terms of the [Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Guillaume J. Filion

Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain

The second version of the article is quite similar to the first, the strong points remain the same, but the weak points about clarity as well.

I was not specific enough in the first version, my bad. The list of issues that must be addressed in my opinion are the following:

1. In Figure 2, indicate what the colors are, even if the color code is defined in Roadmap publications (it cannot be that the legend of a figure is in another paper). Also indicate
somewhere what the legend is for the left bar (possibly in supplementary material, but it has to be defined somewhere in the article).

2. In Figure 3, tell what the points represent. Looking at the figure raises many questions: why some tissues have more points than others? Where does the data come from? What is the nature of the data? What is plotted exactly? What are the grey boxes? What is the definition for "significant enrichment"? What does p in the label of y-axis stand for? The nomenclature suggests it is a probability, why are some values negative then?

3. The same questions apply verbatim to Figure 4, except the y-axis label. In addition, I found some additional typos that the authors may want to correct.

4. Fix "required or state?" in Table 1 (should be "required for state" I suppose).

5. Capitalize "roadmap" in the legend of Figure 3 and Figure 4.

6. The "/" seems to be missing in the label of the y-axis.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
chromatin states were based on different methods, all “optimal” in their own way. However, none of these methods has proved to have a decisive advantage over the others for the following two reasons: First, chromatin states do not “exist”, they are useful representations associated with a particular state of our knowledge and a particular problem at hand. Second, the choice of the input data and the number of states (i.e. the granularity of the segmentation) seems to be the most influential factor on the end result. With these elements in mind, it makes perfect sense to develop a tool aiming to satisfy the needs of the user and the demand for reproducibility and traceability, rather than some mathematical constraint.

Overall, the manuscript is well constructed – and as mentioned above it describes a relevant advance – but it could be streamlined for clarity. Many terms are ambiguous (like “active states”) or are jargon for chromatin specialist (like “PolycombNarrow”). The figure legends are barely enough to understand what is plotted and the axes are not all properly labelled. It is a good thing that the authors give some examples to explain the entries of the design matrix. For didactic purposes, they could give more of those, or make the examples more concrete throughout the manuscript to help the reader understand the logic of their tool.

The manuscript does otherwise a great job at making the work reproducible, explaining the limitations and the scope of their software, and also at giving a high level description of the implementation. To help the authors sharpen the manuscript for more readability, below is a list of typos and minor issues.

Page 3, paragraph starting with “All these data...”: Perhaps a word is missing in the sentence “The input and output (final) data are both [?] as browser extensible data...”.

Page 3, last sentence of the main text: it should read “… PolycombNarrow data is required [to] be present”.

Page 4, second paragraph, fourth sentence from the end: a space seems to be missing in “StatePaintR[space]selects”.

Page 4, third paragraph, fourth sentence: “an unique” should be “a unique”.

Page 4, paragraph “Enrichment calculations”, first sentence. A word seems to be missing in “… an earlier study of Parkinson’s disease in which [?] tested for...”.

Page 6, paragraph “A framework for rules-based annotation”; “rules-based” should be “rule-based”. See https://english.stackexchange.com/q/1366/44109

Page 6, paragraph “Segmentation of public datasets”, second sentence from the end, a space is missing before the parentheses in “...high-quality[space]at least 15m reads”. Also, the “m” probably stands for “million” but in scientific texts it must stand for “metres”. If the authors mean “million”, the best option is to write “million”.

Figure 3, legend: what are “active states”? The authors could give the complete list.

Figure 4, legend: the authors should indicate on the graph what is plotted on the Y axis (and give the unit). Are the data also plotted in “active” states? Whatever the answer, this should be stated
clearly.

Page 8, first paragraph of the main text, last sentence: there is one “been” too much in “... with these properties have been also been called...”.

Page 9, first paragraph, last sentence: “roadmap” should be written with a capital R.

Page 11, second paragraph, second sentence: “rules-based” should be “rule-based” (and again in the last sentence of the paragraph).

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 30 Mar 2020

Dennis Hazelett, Cedars-Sinai Medical Center, Los Angeles, USA

First, I would like to thank the reviewer for their comments and corrections. I address them below. And in the resubmission of the article.

“Overall, the manuscript is well constructed – and as mentioned above it describes a relevant advance – but it could be streamlined for clarity. Many terms are ambiguous (like “active states”) or are jargon for chromatin specialist (like “PolycombNarrow”). The figure legends are barely enough to understand what is plotted and the axes are not all properly labelled. It is a good thing that the authors give some examples to explain the entries of the design matrix. For didactic purposes, they could give more of those, or make the examples
more concrete throughout the manuscript to help the reader understand the logic of their tool."

The reviewer is correct that legends and the decision matrix were sparsely explained, and the explanation of the decision matrix has been made more clear and explicit, and grounded in an concrete set of examples. Also, figure legends have been expanded, and axes have been made clear.

“The manuscript does otherwise a great job at making the work reproducible, explaining the limitations and the scope of their software, and also at giving a high level description of the implementation. To help the authors sharpen the manuscript for more readability, below is a list of typos and minor issues.”

Thank you for the corrections, all issues have been corrected, and implemented in the figure legends.

Competing Interests: No competing interests were disclosed.

Review Report 10 May 2018

https://doi.org/10.5256/f1000research.14699.r33619

© 2018 Park Y. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Yongjin Park

1. Broad Institute, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
2. Department of Pathology and Statistics, The University of British Columbia, Vancouver, BC, Canada

Overall the paper could be quite impactful and the software they developed can be highly usable. But the paper doesn't read well. I assume the authors intended to write a research paper, not a technical note. All of my comments are based on this assumption.

- The authors need to put more efforts to convince ordinary users that StatePaintR is more powerful compared to a single model trained on relevant cell / tissue types. Perhaps expanding from the results in the supplementary section could improve the paper.
- Why not just train chromHMM or segway given current chip-seq tracks? What's a clear advantage of the rule-based method? I don't think the rule-based method can clearly estimate underlying model complexity of epigenomics. I think this is too important information to be omitted:

 In direct comparisons, we found that our own annotations exhibited greater similarity to the combined analysis than to either of the Segway or ChromHMM tracks separately (not shown). Whatever the protocol, the basic problem persists; machine-learning is able to provide insight into what the categories...
are, but not how many categories there should be. Currently this remains the exclusive province of the biologist.

- Does this method help prioritize relevant cell / tissue types?
- Description in the method section is fuzzy. I think a complete paper needs to be self-contained without looking up definitions and terminology from other sources. However, many terms are either vaguely used or never defined. Moreover, the method section needs to be better organized in a top-down fashion instead of enumerating what were implemented.
- Figure 1 is confusing and not so informative. Why don’t you include real-world example such as chip-seq or methylation tracks?
- Perhaps you can combine Table 1 with Figure 1. First of all, is Table 1 really necessary? Why do you need both binary and decimal code (I know why but it is irrelevant to the main story of this paper)? It is probably better to show graphical examples how you assign decimal values.
- How do you define information content? How do you define enrichment? How do you calibrate significance?
- Is Beta-Binomial reasonable assumption? There are more examples in the background. Do you estimate Beta-Binomial by moment-matching of posterior distribution or maximum-likelihood?
- y-axis labels are either missing or badly named (Fig 3 and 4).
- As future direction, how easy is it to implement user-defined enrichment models / methods?

Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
First, I would like to thank the reviewer for their comments and corrections. I address them below. And in the resubmission of the article.

“The authors need to put more efforts to convince ordinary users that StatePaintR is more powerful compared to a single model trained on relevant cell / tissue types. Perhaps expanding from the results in the supplementary section could improve the paper.”

It is difficult to justify a particular segmentation over another. We propose, rather, that the model espoused by StateHub/StatePaintR of rule-based annotation of predicted states provides an alternative to the existing model of learning the states within the relevant cell/tissue types. The priority of the method is to provide a framework to express existing statements about the relationships of genomic annotations and how they combine to reveal underlying chromatin states thereby bypassing denovo learning and annotating of states within each sample and annotating solely based upon simple rules and available data. However, in order to demonstrate the utility of the method in annotating chromatin states, we have expanded the description of the method's annotation scoring and how we may predict experimentally validated enhancer regions from the VISTA database.

“Why not just train chromHMM or segway given current chip-seq tracks? What's a clear advantage of the rule-based method? I don' think the rule-based method can clearly estimate underlying model complexity of epigenomics. I think this is too important information to be omitted.”

It is true that StatePaintR does not discover new states, nor provide a complete model of the underlying epigenomics. What the tool provides is a language to encode existing knowledge of the relationships between genomic annotations of any kind and the underlying epigenomic state, in a manner that is descriptive, robust to missing data, and consistent across diverse data sets.

“Does this method help prioritize relevant cell / tissue types?”

This method allows the user to annotate diverse cell / tissue types with a single model. This may provide useful segmentations for the purpose of describing the chromatin state relative to external data, but the method itself does not prioritize specific samples.

“Description in the method section is fuzzy. I think a complete paper needs to be self-contained without looking up definitions and terminology from other sources. However, many terms are either vaguely used or never defined. Moreover, the method section needs to be better organized in a top-down fashion instead of enumerating what were implemented.”

We agree that the methods were confusing, and have been reorganized and expanded to be more effectively self-contained, clear, and precise.

“Figure 1 is confusing and not so informative. Why don't you include real-world example
such as chip-seq or methylation tracks?"

Figure 1 is intended to be a schematic representation of how the decision matrix and abstraction layer work together to produce an annotation for a genomic segment. To this end, we have clarified and expanded, both in the figure legend, and the Implementation section of the Methods, the nature of the decision matrix and abstraction layer, including concrete examples of how different chromatin marks combine to form a state.

“Perhaps you can combine Table 1 with Figure 1. First of all, is Table 1 really necessary? Why do you need both binary and decimal code (I know why but it is irrelevant to the main story of this paper)? It is probably better to show graphical examples how you assign decimal values.”

While the decimal values lend familiarity to the visualization, by defining the two bits that represent the two questions that are answered in the matrix for each cell, we believe that it streamlines understanding of the decision matrix, and also how it works from an implementation standpoint.

“How do you define information content? How do you define enrichment? How do you calibrate significance?

Is Beta-Binomial reasonable assumption? There are more examples in the background. Do you estimate Beta-Binomial by moment-matching of posterior distribution or maximum-likelihood?”

Information content was an unintentionally misleading term that we used to refer to state complexity, so the term information content has been removed from discussion of the decision matrix.

For calculating the enrichment within genomic states for SNPs or hypermethylated CpG for figures 3 and 4, we calculate enrichment relative to the appropriate background. As mentioned in Methods: Enrichment Calculations, we considered the background rate of SNPs within active chromatin states to be the proportion of all SNPs within a 1 Mb region of the index SNP with a MAF of greater than 0.01 in the population of interest (Europeans, from 1000 genomes), while the foreground is those SNPs with a linkage disequilibrium R^2 > 0.8. For the methylation data, the full HM450 methylation array was considered as the background, while probes on the array with a difference in beta value between cancer and normal of 0.3 and significance in Mann-Whitney U-test at a p-value of < 0.01. For the GWAS data set, we determined the difference between foreground and background by simulation of posterior draws from the two beta distributions. Significance is determined if the credible interval (95%) did not contain 0. We believe that beta-binomial is a reasonable assumption given that we are controlling the background to be within the exact same genomic region from which we are drawing the foreground, thereby accounting for the heterogeneity of the chromatin states across the genome. For the methylation dataset, the odds ratio and the 95% confidence interval where calculated with Fisher's exact test.

“y-axis labels are either missing or badly named (Fig 3 and 4).”
We have corrected the poorly labeled and unlabeled y-axis labels in these figures.

“As future direction, how easy is it to implement user-defined enrichment models / methods?”

It is not currently easy, though it is possible for users to implement a decision matrix and abstraction layer. The difficulty lies in determining if a model is complete, and non redundant. As a future direction, we intend to create a tool on the StateHub website where models may be submitted and checked for validity, and then, optionally, published for others to use.

Competing Interests: No competing interests were disclosed.

Reviewer Report 30 April 2018

[Reviewer Report Link](https://doi.org/10.5256/f1000research.14699.r33280)

© 2018 Libbrecht M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maxwell W. Libbrecht

School of Computing Sciences, Simon Fraser University, Burnaby, BC, Canada

The authors present a method for annotating the genome using genomics data sets such as histone modifications, transcription factor binding and methylation. The algorithm is applied to data from a given tissue. It takes as input a collection of genomics data sets that have been binarized in a preprocessing step, such that each is represented by a binary vector over the genome. The method outputs a genomic vector of one of K states, such as "Promoter" or "Transcribed" (K=20 in their default model). The method uses a "model matrix" which defines, for each state-dataset pair, for a given base to be called as that state, if (1) the dataset *may* be positive for that base, and (2) if that dataset *must* be positive for that base.

StatePaintR is likely to be an impactful method. Genome annotations are a very useful product of epigenomics data sets, as evidenced by the wide array of methods developed for their production. StatePaintR is an alternative to existing algorithms based on probabilistic models that is much simpler and more transparent.

Unfortunately, the manuscript is difficult to understand in its current form because many key definitions are missing. Several examples:
- The term “functional category” is not defined.
- The Introduction uses the term "functional category" to mean a state, where later that term is used to refer to a collection of data sets (such as "silencing marks")
- The form of the input and output are not explicitly mentioned.
- It is not explicitly mentioned that the model matrix is generated manually.

Minor notes:
- It is claimed that the information content of a state equals the sum of the cell values. However, it seems to me that the maximally-permissive value is 1 (neither required nor exclusionary), not 0.
- P3: "3 bit code". Should be 2 bit code.
- Figure 1: "red dotted arrows indicate non-matching rows". I don't understand -- each arrow connects to two rows, not just one.

Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: computational genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 30 Mar 2020

Dennis Hazelett, Cedars-Sinai Medical Center, Los Angeles, USA

1) First, I would like to thank the reviewer for their comments and corrections. I address them below.

"- The term "functional category" is not defined.
- The Introduction uses the term "functional category" to mean a state, where later that term is used to refer to a collection of data sets (such as "silencing marks")"

The definition of “functional category” has been expanded and clarified in the
Implementation section of the methods. Briefly, specific assays may be assigned functional
categories via an abstraction layer implemented in StateHub/StatePaintR, where assays that
may represent similar biology e.g. ChIP-Seq for H3K27ac and H3K9ac may both be
represented by the functional category “Active”. These functional categories may be
combined into states following the rules of the decision matrix.

“- The form of the input and output are not explicitly mentioned.”
The form of the input and output data are now indicated in the Implementation section as
consisting of BED files.

“- It is not explicitly mentioned that the model matrix is generated manually.”

In the expanded explanation of the decision matrix, it has been made clear how they may
be constructed manually, or retrieved from StateHub.

“- It is claimed that the information content of a state equals the sum of the cell values.
However, it seems to me that the maximally-permissive value is 1 (neither required nor
exclusionary), not 0.“

The reviewer is correct, and the language around this concept has been updated
throughout the document. No longer do we refer to information content, as this was an
unintentionally misleading term used to describe the complexity of the state. Revised
language indicates that potential states are organized by state complexity, with lower
complexity states called first. This takes into account the reviewers correct understanding
that 1 is the most permissive state.

“- P3: "3 bit code". Should be 2 bit code.“
This correct and has been fixed in the text.

“- Figure 1: "red dotted arrows indicate non-matching rows". I don't understand -- each
arrow connects to two rows, not just one.”

The figure legend has been updated to reflect the reading of the figure as a series of
arrows, proceeding downward, pointing to the subsequent state. Either red, indicating that
the segment was checked as being consistent with the state, and failing, or green indicating
that the segment was consistent with the state call. In the context of the figure: “In this
example with the presence of H3K4me1 (“Regulatory”), H3K27ac (“Active”) and DNase1
hypersensitivity (“Core”), the first state consistent with the presence of these functional
categories is “Enhancer”, followed by the increasingly more complex “Regulatory Site”,
“Active Chromatin”, “Active Enhancer”, “Enhancer Core”, “Active Chromatin Core”, and finally
“Active Enhancer Core”.”

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com