CASE REPORT

Case Report: Pancytopenia as an indicator for lysosomal storage disease (Gaucher's Disease) [version 1; peer review: 1 approved with reservations]

Alberto Ortega-Rosales, Carlos Burneo-Rosales, Gilda Romero-Ulloa, Gabriela Burneo-Rosales
Hospital General Marco Vinicio Iza, Lago Agrio, Ecuador

Abstract

Introduction: Lysosomal storage disorders are a rare group of diseases with genetic origin in which Gaucher Disease (GD) stands out as the most frequent. GD type 1 is the most common form of this condition, and patients with this pathology present with unexplained cytopenias, in addition to hepatosplenomegaly, bone involvement, and in other cases neurological disorders. A case of a patient is presented, whose results showed thrombocytopenia and leukopenia in addition to hepatosplenomegaly. In Latin America, there are very few reported cases of this clinical entity, and information on this disease is very limited.

Case: We present a case of a patient diagnosed with GD, who presented with thrombocytopenia and leukopenia in addition to hepatosplenomegaly, with the aim of emphasizing the importance of early recognition of this pathology, especially in patients with unexplained cytopenia’s or hepatosplenomegaly’s. In suspicion of GD, enzymatic quantification of β-glucocerebrosidase was performed, showing its deficit in addition to alteration in the GBA gene. Unfortunately, enzymatic replacement could not be done because the Cerazyme (imiglucerase for injection) is not available in Ecuador. Nevertheless, the patient was treated with analgesic (1g of paracetamol generally three times a day) and vitamin supplements (Dayamineral). Currently, the patient is waiting for transfer to a foreign institution; she continues with bicytopenia and hepatosplenomegaly, her conditions are expected to be remit once the enzymatic treatment has been administered.

Conclusion: We believe that the timely recognition of this disease will allow the initiation of enzymatic replacement therapy in an effective manner, in order to reduce morbidity and improve the clinical aspects of the patient.

Keywords
Gaucher disease, lysosomal storage disorders, cytopenia, β-glucocerebrosidase.
Corresponding author: Alberto Ortega-Rosales (alberto.ortega@hmvi.gob.ec)

Author roles: Ortega-Rosales A: Conceptualization, Investigation, Methodology, Resources, Writing – Original Draft Preparation; Burneo-Rosales C: Investigation, Methodology, Writing – Original Draft Preparation; Romero-Ulloa G: Investigation, Methodology, Writing – Original Draft Preparation; Burneo-Rosales G: Investigation, Methodology, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Ortega-Rosales A et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Ortega-Rosales A, Burneo-Rosales C, Romero-Ulloa G and Burneo-Rosales G. Case Report: Pancytopenia as an indicator for lysosomal storage disease (Gaucher’s Disease) [version 1; peer review: 1 approved with reservations] F1000Research 2019, 8:755 (https://doi.org/10.12688/f1000research.18802.1)

First published: 29 May 2019, 8:755 (https://doi.org/10.12688/f1000research.18802.1)
Introduction

Lyosomal deposit disorders constitute a rare group of recessive hereditary monogenic diseases, resulting from the abnormal accumulation of non-degraded material in the lysosomes of different cells of the organism, as a result of the total or partial functional loss of specific lysosomal enzymes or cofactors involved in the degradation of these materials; the resulting lysosomal dysfunction leads to cell dysfunction and clinical anomalies1. The most common lysosomal storage disease is Gaucher disease (GD), with an estimated frequency of 1:40,000 to 1:86,000 inhabitants in the general population, except for the Jewish Ashkenazi ethnic group where it is estimated to be 1:850 births2, characterized by the defective function of the catabolic β-glucocerebrosidase enzyme, which leads to an accumulation of glucocerebroside in the lysosomes of different cells1, causing pancytopenia, hepatosplenomegaly, bone involvement and, sometimes neurological alteration1. The phenotype is variable and there are three clinical subtypes, which are classified by the absence or presence and progression of neurological involvement: type I or non-neuropathic form; type 2, the acute neuropathic form of infantile onset; and type 3, the neuropathic form of juvenile onset3.

In Ecuador, as in Latin America, there are very few reported cases of this clinical entity, and information on this disease is very limited4. In symptomatic patients, GD is usually a progressive disease that, if left untreated, can cause irreversible organ damage, severe morbidity, reduced quality of life and even premature death. Currently there is an effective treatment for GD in enzymatic replacement, which reverses or prevents many of the clinical manifestations of this disorder7.

Despite the availability of accurate and minimally invasive diagnostic tests, patients are often misdiagnosed as a result of the lack of experience with GD and the prolonged delay in accurate diagnosis, and this is likely to be translated into relative rarity of this disease5. Therefore, greater knowledge of the clinical and demographic characteristics of this clinical entity can improve early recognition, reduce the rate of inaccurate or delayed diagnoses for patients with GD, allowing timely treatment aimed at reducing morbidity and preventing irreversible sequels6.

Description of the case

A 29-year-old housewife from Loja-Ecuador, of mixed ethnicity, with no relevant family or personal history, presented to the outpatient service of the Isidro Ayora General Hospital, Loja, Ecuador, in October 2018.

She presented with a pulsating holocranial headache of slight intensity. Concomitantly, she presented with heartburn which responded positively to self-medication with omeprazole; additionally, she mentioned she was experiencing progressive loss of weight, fatigue and pain in the lower limbs and hands. Physical examination showed ecchymosis and petechiae scattered throughout the body. In the abdomen, hepatosplenomegaly was palpable. Routine laboratory results are summed up in the table below (Table 1).

Viral serology tests for hepatitis B, C and human immunodeficiency virus were negative. An ultrasound of the upper abdomen was performed, where there was evidence of a distended liver without occupant injuries and splenomegaly [Figure 1]. Hepatosplenomegaly was observed in the CT-Scan in addition to incipient degenerative osteoarthritis at the dorsal spine. It was decided to perform a bone marrow biopsy, demonstrating abundant cells between the bone trabeculae, consisting of hematopoietic tissue, with a marked decrease in megakaryocytes of hypolobular nuclei, and myeloid-erythroid relationship conserved. In the inter and paratrabecular spaces, abundant clusters of macrophages of the typical broad cytoplasm are observed like “crumpled paper” with small, regular nuclei displaced to the periphery [Figure 2]. The morphological picture is suggestive of lysosomal storage disease, and with the suspicion of GD, quantification of the enzymatic activity of β-glucocerebrosidase was performed, confirming its deficit with a result of 0.27 µmol/L/h (normal range: 2.3 – 12 nmol/h/Ml). Sequential analysis of the GBA gene showed the presence of an apparently homozygous pathogenic alteration in the GBA gene.

Unfortunately, enzymatic replacement could not be performed because Cerazyme (imiglucerase for injection) is not available in Ecuador. Nevertheless, the patient was treated with analgesic (1g of paracetamol generally three times a day) and vitamin supplements (Dayamineral). Currently the patient is waiting for transfer to a foreign institution. Fortunately, the finding of this disease was incidental, and still does not show serious symptoms. At the time of writing the patient is regularly monitored at the Isidro Ayora General Hospital, Loja until the enzymatic medication can be obtained. Currently, the patient persists in good general conditions, without worsening clinical condition. It should be mentioned that she continues with bicytopenia.

Table 1. Laboratory results of patient’s parameters and their normal range.

<table>
<thead>
<tr>
<th>Patient’s parameters</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocytes (White blood cell):</td>
<td>4,500 – 11,000 mm3</td>
</tr>
<tr>
<td>3400 mm3</td>
<td></td>
</tr>
<tr>
<td>Neutrophils:</td>
<td>2.0 – 8.0 K/uL</td>
</tr>
<tr>
<td>1.5 K/uL</td>
<td></td>
</tr>
<tr>
<td>Lymphocytes:</td>
<td>1.0 – 5.1 K/uL</td>
</tr>
<tr>
<td>Red blood cell:</td>
<td>4.0 – 11.0 K/uL</td>
</tr>
<tr>
<td>4.3 K/uL</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin:</td>
<td>12.1 – 15.1 g/dL</td>
</tr>
<tr>
<td>12.5 g/dL</td>
<td></td>
</tr>
<tr>
<td>Hematocrit:</td>
<td>36.1% – 44.3%</td>
</tr>
<tr>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>Platelet 59 K/uL</td>
<td>150 – 400 k/uL</td>
</tr>
<tr>
<td>C-Reactive Protein (CRP) 16.1mg/L</td>
<td>0.0 – 3.0 mg/L</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate (ESR)</td>
<td>0 to < 20 mm/h</td>
</tr>
<tr>
<td>33 mm/h</td>
<td></td>
</tr>
<tr>
<td>Total bilirubin:</td>
<td>0.3 – 1.0 mg/dL</td>
</tr>
<tr>
<td>3 mg/dl</td>
<td></td>
</tr>
<tr>
<td>Direct bilirubin:</td>
<td>0.0 – 0.3</td>
</tr>
<tr>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Indirect bilirubin:</td>
<td>0.1 – 0.5</td>
</tr>
<tr>
<td>2.52</td>
<td></td>
</tr>
</tbody>
</table>
and hepatosplenomegaly, her conditions are expected to be remit once the enzymatic treatment has been administered.

Discussion

This clinical case is a representative example of the clinical, biochemical and genetic characteristics of GD type 1, characterized by the variability in the signs, symptoms, severity and progression of the disease. The most common signs and symptoms are: splenomegaly [95%], hepatomegaly [87%], radiological bone disease [81%], thrombocytopenia [50%], anemia [40%], bone pain [27%].

GD is caused by mutations in the *GBA* gene, located on chromosome 1 (1q21), leading to markedly decreased activity of the lysosomal enzyme, β-glucocerebrosidase, which hydrolyzes the glycolipid glucocerebroside in ceramide and glucose. In the case studied, it was possible to observe a decrease in the enzymatic activity of β-glucocerebrosidase, in addition to alteration of the gene *GBA*. The consequence of this deficiency is attributed to the accumulation of glucosilcerebroside in macrophages, inducing its transformation in Gaucher cells, which under optical microscopy are usually presented as enlarged cells with eccentric nuclei and condensed chromatin and cytoplasm with heterogeneous appearance as “crumpled paper”, similar characteristics to the bone marrow biopsy performed in our patient. In our patient, the basic aspects that guided the diagnosis of GD were the incidental finding of a bicitopenia in a routine laboratory examination, in addition to the presence of unexplained hepatosplenomegaly. Without considering the GD in the differential diagnosis of the patient with this type of symptomatology, the definitive diagnosis can be missed or delayed, because the signs and symptoms frequent other more common conditions, including the malignant neoplasms of hematological origin. Therefore, it is essential to strengthen the knowledge about GD, allowing to reduce the threshold for diagnostic tests and reduce the rate of erroneous diagnoses, in addition to promoting the earliest start of treatment when it is indicated.

GD is usually diagnosed by demonstrating the characteristic “Gaucher cells” in the bone marrow. Microscopically, these cells show a large size, carrying an eccentric nucleus and a cytoplasm that resembles a wrinkled paper. However, the presence of this type of histological pattern has occasionally been described in several malignant hematological malignancies, determination of the enzymatic activity of reduced β-glucocerebrosidase or absence is therefore the gold standard for the diagnosis of all GD variants. In the present study a clearly reduced activity of this enzyme was evident, in addition to an apparently homozygous pathogenic alteration of the *GBA* gene, allowing us to establish a definitive diagnosis of GD.
Conclusion
GD should be considered in the differential diagnosis of patients with unexplained pancytopenia or hepatosplenomegaly. Early recognition will allow the initiation of enzymatic replacement therapy in order to reduce morbidity and improve the clinical aspects of the patient.

Consent
Written informed consent for publication of their clinical details and clinical images was obtained from the patient.

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References

Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 09 July 2019

https://doi.org/10.5256/f1000research.20597.r50548

© 2019 Sidransky E. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ellen Sidransky
Section on Molecular Neurogenetics MGB, National Human Genome Research Institute, Bethesda, MD, 20894-3708, USA

While this case does not report any new information, it fulfills an important role in highlighting rare disease cases worldwide, raising awareness and further informing health care practitioners. However there are several errors that must be corrected.

Abstract

- The English grammar is at times difficult to read, improving translation would increase readability.
- Cerezyme (Imiglucerase) is one drug for enzyme replacement therapy (ERT), there are two others as well as substrate reduction therapy (SRT).
- While more work needs to be done characterizing Gaucher disease in Latin America, currently the ICGG does contain almost 16% of its population from Latin American cases of Gaucher disease (GD) and describing the information as very limited is not entirely accurate. It may certainly be accurate in describing Ecuadorean cases of GD.

Description of the case

- Give the patient’s values its own column in Table 1.
- The case is described well, and the figures add depth to the presentation.
- Referring to this case as an “incidental diagnosis” is not valid as the patient had numerous manifestations. Likewise, it cannot be said that she does not show “serious symptoms”, as it is stated that she had bruising, fatigue, pain, weight loss etc.
- Were there other diagnoses that the medical team considered? The differential list can be of value to those reading the case report.
- The genotype is not provided!

Discussion

- “Glycolipid glucosylceramide into ceramide and glucose”
- GD should not usually be diagnosed by bone marrow biopsy! Bone marrow biopsy is a painful procedure and is not needed to diagnose GD. Enzymatic and genetic testing is the preferred method of diagnosis, as stated in the manuscript.
- The author states that genetic analysis was performed, but the genetic mutations are not included in the case report. This would be very helpful and should be included.
Is the background of the case's history and progression described in sufficient detail?
Partly

Are enough details provided of any physical examination and diagnostic tests, treatment given and outcomes?
Yes

Is sufficient discussion included of the importance of the findings and their relevance to future understanding of disease processes, diagnosis or treatment?
Yes

Is the case presented with sufficient detail to be useful for other practitioners?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genetics, Gaucher disease

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com