The impact of physical activity to the child’s quality of life: a bibliometric study [version 1; peer review: awaiting peer review]

Jernej Završnik 1, Peter Kokol 2, Helena Blažun Vošner 1,3

1 Community Healthcare Center Dr. Adolf Droč Maribor, Maribor, 2000, Slovenia
2 Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, 2000, Slovenia
3 Faculty of Health and Social Sciences Slovenj Gradec, Slovenj Gradec, 2380, Slovenia

Abstract

Background: The application of bibliometrics in healthcare research is becoming popular, however at present it is still an under-researched area.

Methods: In our study we used a bibliometric technique called bibliometric mapping to visualize the published research regarding the influence of physical activity to children’s quality of life. The research was visualized in the form of both chronological and cluster science landscapes. Science landscapes, contrary to conventional reviews, capture the relationships between multiple topics and concepts, enabling the generation of "synthetic reviews".

Results: Evolutionarily, three distinct research phases appeared, namely research on influence of physical activity on various chronic non-communicable diseases; research on quality of life and childhood diseases related to physical activity; and outcome-related research. The research consists of six main topics: asthmatic child and exercising, blood diseases, health-related quality of life, obesity and chronic diseases, childhood obesity and behaviour, and depression and health outcomes.

Conclusions: The study identified some research that may be helpful to general paediatricians whose everyday practice or research is not focused on physical activity and child’s quality of life, but wants to learn about the taxonomy of the topics, the most interesting discoveries, guidelines and practices and the state of the art in the field. It also revealed some hidden association, otherwise not easily identified, even by informed researchers and clinicians.

Keywords
Physical activity, Health related quality of life, Bibliometric mapping, Scientific landscape
Corresponding author: Jernej Završnik (jernej.zavrsnik@zd-mb.si)

Author roles: Završnik J: Conceptualization, Methodology, Project Administration, Resources, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Kokol P: Conceptualization, Data Curation, Formal Analysis, Methodology, Software, Supervision, Validation, Visualization, Writing – Review & Editing; Blažun Vošner H: Conceptualization, Data Curation, Methodology, Project Administration, Supervision, Validation, Visualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Završnik J et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Završnik J, Kokol P and Blažun Vošner H. The impact of physical activity to the child’s quality of life: a bibliometric study [version 1; peer review: awaiting peer review] F1000Research 2019, 8:672 (https://doi.org/10.12688/f1000research.18838.1)

First published: 16 May 2019, 8:672 (https://doi.org/10.12688/f1000research.18838.1)
Introduction
The role of bibliometrics in healthcare research has been excellently described by Lewison and Devey\(^1\): “Bibliometrics is to scientific papers as epidemiology is to patients.” Indeed, in 1990 bibliometrics first became a medical subject heading. Consequently, the application of bibliometrics by health professionals to analytical, clinical, informational and academic areas of interest is becoming more extensive; however, at present it is an unexploited area of a fruitful research\(^2\).

Interdisciplinary research concerning the influence of physical activity and sport on children’s quality of life is increasingly becoming more and more important. In their review paper Buttitta et al.\(^3\) reported that several factors are associated with children’s quality of life; among them physical activity is one of the most important, especially in those with pre-existing diseases. Various malignant diseases and anticancer therapy in children both drastically affect daily life activities, including high-performance sports. However, both random and non-random feasibility studies show positive effects of physical activity on clinical and psychosocial outcomes. Consequently, every effort should be made to maintain physical activity during paediatric cancer therapy\(^4\). Comparable findings for congenital heart diseases, were reported by Dufier et al.\(^5\).

Since our research area interest is multidisciplinary, we had an opportunity to employ a bibliometric technique called bibliometric mapping. Bibliometric mapping visualizes academic research in the form of scientific landscapes\(^6\). Science landscapes, contrary to conventional reviews, which focus on particular research questions, extract information at various levels and capture the relationship between multiple topics and concepts, creating “synthetic reviews”. Scientific landscapes are still relatively rarely used; however, those published have been well received by the scientific community\(^7\).

Methods
Bibliometrics could be defined as the application of mathematical, statistical and heuristic methods to scientific publications\(^8\). Bibliometric mapping is a recent addition to techniques already used in bibliometrics in medicine\(^9\). Bibliometric mapping aims to visualize different facets of literature production based on different co-occurrences (i.e. words, authors, organisations, journals)\(^8\), co-citations\(^10\) and bibliographical coupling\(^11\). Bibliometric mapping can be automated using various software tools. Among open licence software tools, VOSviewer\(^12\) is very versatile and easy to use\(^13\). Both bibliometric mapping and VOSViewer have been successfully used in health related fields\(^14\).

Bibliographical dataset and corpus
The corpus was extracted from the Scopus bibliographical dataset, because of Scopus broad coverage of various journals, book chapters and conference proceedings on one hand and on the other hand because of Scopus’ extensive and easy to use search and analytical functions. The search was made on 12th January 2019 using the search keyword string child\(^*\) AND (“physical activity” or “sport”) AND “quality of life” in information source titles, abstracts and keywords for the whole period covered by Scopus.

Data extraction and analysis
Publication year, source title and author’s country of affiliation were extracted by Scopus services. Abstracts were exported as comma separated values (CSV) files to enable further analysis by the VOSviewer (V1.6.9) and Excel software (Version 2016). Cluster and chronological scientific landscapes were generated for all terms with an occurrence frequency larger than 30. Common words such as report, significance, trial, study and baseline were ignored using a customised thesaurus file (see Underlying data\(^15\)). Similarly, synonyms like body mass index and BMI were integrated into one term. The Attraction was set to 4, Min. Cluster size to 8, Resolution to 1.25; all other VOSViewer parameters were set to default values.

Meta-synthesis
The popularity of a term (size of the term font and associated square) and relatedness between terms (terms located near each other are more related than those further apart) in both cluster and chronological scientific landscapes were analysed using meta-synthesis\(^16\). An appropriate topic was determined for each cluster based on the analysis of most popular terms belonging to the cluster.

Results
The search resulted in 2334 publications (1637 articles, 419 reviews, 66 conference papers, 50 editorials, 35 notes, 29 book chapters, 19 letters, 19 short communications and 24 other types of publications; see Underlying data\(^17\)). The most popular journals in which the above publications appeared are shown in Table 1. The most prolific journal was BMC Public Health with 31 publications. The highest ranked journal in the selected field was Pediatrics, with 21 publications (621\(^*\) place according to SCImago Journal Rank - SJR, which ranks within the top 2% of scientific journals). The search resulted in 2334 publications (1637 articles, 419 reviews, 66 conference papers, 50 editorials, 35 notes, 29 book chapters, 19 letters, 19 short communications and 24 other types of publications; see Underlying data\(^17\)). The most popular journals in which the above publications appeared are shown in Table 1. The most prolific journal was BMC Public Health with 31 publications. The highest ranked journal in the selected field was Pediatrics, with 21 publications (621\(^*\) place according to SCImago Journal Rank - SJR, which ranks within the top 2% of scientific journals).

<table>
<thead>
<tr>
<th>Source title</th>
<th>Number of publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC Public Health</td>
<td>42</td>
</tr>
<tr>
<td>Quality of Life Research</td>
<td>39</td>
</tr>
<tr>
<td>Haemophilia</td>
<td>36</td>
</tr>
<tr>
<td>Pediatric Blood and Cancer</td>
<td>32</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>27</td>
</tr>
<tr>
<td>Cochrane Database of Systemic Reviews</td>
<td>24</td>
</tr>
<tr>
<td>PloS One</td>
<td>20</td>
</tr>
<tr>
<td>BMC Pediatrics</td>
<td>19</td>
</tr>
<tr>
<td>Developmental Medicine and Child Neurology</td>
<td>17</td>
</tr>
<tr>
<td>Epilepsy and Behaviour</td>
<td>17</td>
</tr>
<tr>
<td>Health and Quality Of Life Outcomes</td>
<td>17</td>
</tr>
</tbody>
</table>

\[\sum = 290\] (12.4%)
of all source titles indexed by SciMago. Interestingly, all of the most prolific source titles are ranked in the top quarter of all journals. Their contribution to the total literature production on our topic of interest accounts for 12.4%. As expected most of the most prolific source titles are from the field of paediatrics, others relate to quality of life or from general areas. Surprisingly no source titles related to sport or physical activity were ranked among the most prolific source titles – the first (American Journal of Sports Medicine) is in 15th place with 11 publications.

The most productive countries are presented in Table 2. All of them have advanced heath, industrial and economic systems, high BDP and are also leading countries in research and development. The top 10 countries produced more than 83% of all publications, indicating that literature production is regionally centred.

**The trends in research literature production and evolution of research topics**

Shen et al. proposed a model of science discipline development based on literature production dynamics. Following their example, a graph was constructed (Figure 1) which reveals three distinguished phases in the production of publications regarding influence of physical activity to children’s quality of life, namely:

- initial phase in the period 1975–1989 when publications were scarce, most three publications per year;
- initiation phase in the period 1990–1999 when number of publications linearly increased from 6 to 23; and

Figure 2 presents the term map on the topic of research, the influence of physical activity to children’s quality of life. According to the figure the research development went through three main phases, namely:

1. **Research on the influence of physical activity on non-communicable diseases** (approx. period from 1975 to 2011 – violet and blue colours). The associations between (1) hypertension, diabetes, cardiovascular diseases, mortality, exercise and positive/beneficial effects, and (2) asthma, cystic fibrosis, medication, illness, sport and daily activity, were the main stream of research in the first phase.

2. **Research on frequent childhood diseases and physical activity** (green and light blue colours – approx. period from 2012 to 2013). The research was focused on associations between (1) chronic diseases, society, pregnancy, birth, sedentary lifestyle, prevention strategies, and risk increase (2), nutrition, promotion, blood pressure, obesity, physical activity and, fitness and (3) anxiety, depression, stress, juvenile idiopathic arthritis, haemophilia, injury and health status.

3. **Measuring quality of life** (light green and yellow colours – state-of-the-art research). The research in the most recent period is concerned with association between (1) inclusion, adherence, protocol, cancer and health outcomes, (3) sedentary behaviour, weight status, physical activity level and physical activity interventions and (4) quality of life indicators, physical functioning and physical health.

The cluster science landscape (Figure 3) consists of six clusters. Meta-synthesis revealed six topics, as shown in Table 3.

**Discussion**

It is interesting to note some details evident from the derived topics above and associations between terms:

- The quantity of research concerning physical activity in relation to asthma, but not only as a single disease, but also in combination with obesity and diabetes. Di Genova et al. claim that growing evidence shows the existence of an “obese asthma” phenotype characterised by difficult-to-manage asthma. Additionally, Atay and Berket show that obesity results in various co-morbidities in children and adolescent.

- The increasing incidence of psychosomatic diseases and the beneficial effects of physical activity. Hrafnskldottir et al. reports that less screen time and more intense physical activity lowers the risk of mental health problems.

- The broadness of the spectrum of diseases related to child’s quality of life and physical activity. Studies highlighted that children with overweight/obesity and related co-morbidities and lifestyle behavioural risk factors, had significantly lower healthy-related quality of life.
Figure 1. The dynamics of literature production on the topic of research, the influence of physical activity to children’s quality of life.

Figure 2. The chronological science landscape of the influence of physical activity to children’s quality of life.
Figure 3. The cluster science landscape on the topic of research, the influence of physical activity to children’s quality of life.

Table 3. Topics derived from the cluster science landscape.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Cluster colour</th>
<th>Popular terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childhood obesity and behaviour</td>
<td>Green</td>
<td>Childhood obesity, BMI, behaviour, community, obesity, weight</td>
</tr>
<tr>
<td>Chronic diseases and lifestyle</td>
<td>Blue</td>
<td>Diabetes, cardiovascular diseases, hypertension, chronic diseases, risk, life style, morbidity</td>
</tr>
<tr>
<td>Asthmatic child and exercising</td>
<td>Yellow</td>
<td>Asthma, asthmatic child, exercise, physical fitness, positive effect, awareness, medication</td>
</tr>
<tr>
<td>Health-related quality of life and physical and social functioning</td>
<td>Red</td>
<td>Health-related quality of life (HRQOL), paediatric quality of life (PEDSQL), social functioning, physical functioning, physical health, life inventory, Kidscreen, pain</td>
</tr>
<tr>
<td>Illness and sport</td>
<td>Light blue</td>
<td>Illness, daily activity, sport, friend</td>
</tr>
<tr>
<td>Depression and regular physical activity</td>
<td>Violet</td>
<td>Depression, anxiety, stress, fatigue, physical activity intervention, health outcome, social support</td>
</tr>
</tbody>
</table>
• The introduction of modern technology such as various sensors in both research and practice supporting the empirical research in areas that were previously very subjective. Traffic-related air pollution and noise may lead to adverse health outcomes, including increased blood pressure, myocardial infarction, and respiratory health in paediatric population. Measuring the physical activity and environmental factors revealed that such measurements can lead to better understanding of the relation between above factors23. Another study investigated the use of a carbohydrate intake based on continuous glucose monitoring trends during physical activity of children with diabetes to objectively assess the association between these two variables24.

• The state-of-the-art efforts in the development of specific child’s quality of life indices and instruments to measure their relatedness to other paediatric indices. Moghaddasazadeh et al.25 measured the paediatric quality of life indicators and their relations to enjoyment levels and physical attractiveness.

• The relationship between acute lymphoblastic leukaemia and haemophilia, and physical activity. Acute lymphoblastic leukaemia treatment in children can result in muscle weakness and motion limitations. A study showed that active dorsiflexion range of motion combined with physical activity had a positive correlation with strength/agility standard score26. Haemophilia management recommends physical activity in children with haemophilia. In a study researchers adapted and validated the adult Haemophilia & Exercise Project-Test-Questionnaire (HEP-Test-Q) for children aged 6–17 years, reformulated questionnaire items to make them understandable to children27.

Conclusion
Using bibliometric mapping we created two scientific landscapes on the topic of research, the influence of physical activity to children’s quality of life. To the best of our knowledge, this is the first such attempt in the paediatric field. We identified six distinct topics and also visualised the chronological aspect of the research literature production. The study revealed some knowledge that might be helpful to an “outsider” who wants to learn about the taxonomy of the topics, the most interesting discoveries, guidelines and practices and the state of the art in the field. It can also help the “seasoned insiders” better understand more specialised research including that is out of their immediate scope of interest. Additionally, it can reveal hidden facts, not easily identified, even by informed researchers and clinicians.

Data availability
Underlying data

This project contains the following underlying data:

- Map.txt (Map file for VOSViewer software)
- Network.txt (Network file for VOSViewer software)
- Scopus1.csv (Extracted articles from Scopus 2011–2019)
- Scopus2.csv (Extracted articles from Scopus 1975–2010)
- Thesaurus_terms.txt (Customised thesaurus file defining terms to be omitted and synonyms)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information
The author(s) declared that no grants were involved in supporting this work.

References
6. Kokol P, Blažun Vošner H, Železnik D: Clinical Simulation in Nursing: A

8. Belleis ND: Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics. Lanham, Md: Scarecrow Press; 2009: 450. Reference Source


The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com