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Abstract

Background: Basic and clinical scientific research at the University of
South Florida (USF) have intersected to support a multi-faceted approach
around a common focus on rare iron-related diseases. We proposed a
modified version of the National Center for Biotechnology Information’s
(NCBI) Hackathon-model to take full advantage of local expertise in
building “Iron Hack”, a rare disease-focused hackathon. As the
collaborative, problem-solving nature of hackathons tends to attract
participants of highly-diverse backgrounds, organizers facilitated a
symposium on rare iron-related diseases, specifically porphyrias and
Friedreich’s ataxia, pitched at general audiences.

article can be found at the end of the article.
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Methods: The hackathon was structured to begin each day with
presentations by expert clinicians, genetic counselors, researchers focused
on molecular and cellular biology, public health/global health,
genetics/genomics, computational biology, bioinformatics, biomolecular
science, bioengineering, and computer science, as well as guest speakers
from the American Porphyria Foundation (APF) and Friedreich’s Ataxia
Research Alliance (FARA) to inform participants as to the human impact of
these diseases.

Results: As a result of this hackathon, we developed resources that are
relevant not only to these specific disease-models, but also to other rare
diseases and general bioinformatics problems. Within two and a half days,
“Iron Hack” participants successfully built collaborative projects to visualize
data, build databases, improve rare disease diagnosis, and study
rare-disease inheritance.

Conclusions: The purpose of this manuscript is to demonstrate the utility
of a hackathon model to generate prototypes of generalizable tools for a
given disease and train clinicians and data scientists to interact more
effectively.

Keywords
Hackathon, Data Science, Ataxia, Porphyria, Rare Diseases, Friedreich’s
Ataxia, Clinical Informatics, Bioinformatics
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Introduction

Iron Hack: Genesis of a new hackathon model

Hackathons are an effective avenue for the generation of soft-
ware prototypes in the biomedical informatics space, sev-
eral of which have been sponsored by the National Institutes
of Health (NIH NCBI). A long-standing interest and active
research programs on rare diseases, including Friedreich’s
ataxia and porphyrias at the University of South Florida (USF),
prompted us to modify the traditional NCBI Hackathon model
and initiate a specific disease-focused hackathon'~*. Our event
“Iron Hack” was named after the rare diseases upon which we
focused.

Because of the diverse scientific and bioinformatic backgrounds
of hackathon participants, the organizers felt it necessary to
have a symposium on rare iron-related diseases, and specifically
ataxia and porphyrias, in the early part of each of the three days.
During the symposium, renowned scientists, clinicians and inves-
tigators in rare iron-related disease research covered the major
aspects of Friedreich’s ataxia, porphyrias and sideroblastic
anemia and emphasized pressing questions that need to be
addressed for advancement of the field. As a result of the hacka-
thon, we developed resources that are relevant not only to rare
iron-related diseases, but also to other rare diseases and some
general bioinformatics problems. The objective of this report
is to demonstrate the utility of a hackathon model to develop
generalizable tools for evaluation, diagnosis, and management
of a given disease.

Rare iron-related diseases: Hurdles to overcome

Rare diseases have a large impact on the population, with 7,000
orphan diseases collectively affecting about 1 in 10 to 20 people’.
These diseases place a heavy burden on patients and families,
with a diagnosis taking up to ten years to identify, if ever.
Limited patient-numbers and resources for each disease
severely hamper research, prognoses, diagnoses, and treatments.
Although quite disparate in symptoms, these conditions all
stem from problems with iron metabolism or heme synthesis.
A brief description of these rare diseases is provided below to
provide context for the “Iron Hack™ team projects.

Porphyrias

Biochemical basis and clinical manifestation. Porphyrias
are a group of rare metabolic disorders caused by malfunc-
tion of the enzymes involved in heme biosynthesis™*>. There
are eight different types of porphyria, each of which arises from
mutation(s) in the genes for each of the eight enzymes of the
heme biosynthetic pathway”**’. With the exception of porphyria
cutanea tarda (PCT), all other seven porphyrias are inherited as
autosomal-dominant, autosomal-recessive, or X-linked traits>***.

All porphyrias are characterized by the accumulation and excre-
tion of porphyrins or porphyrin precursors, though each type
has disparate clinical manifestations (including neurovisceral
and/or cutaneous symptoms) depending upon which enzyme of
the pathway is defective'’. In general, neurological disturbances
are manifested in the form of acute attacks (e.g., extreme abdomi-
nal and chest pain, vomiting, confusion, constipation, fever,
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high blood pressure, low blood sodium levels, and seizures),
while photosensitivity is at the root of cutaneous manifestations
(e.g., skin blistering, redness, scarring, and pain when exposed to
the sun)**'""">. Suggested treatments and disease-outcomes also
vary with the particular pathway-defect'*'*-°.

Diagnosis. Acute porphyrias can prevail undiagnosed for 10-15
years following the onset of symptoms'’. Perhaps not surpris-
ingly, diagnosis of porphyrias remains challenging: they are
rare, and their symptoms are nonspecific, often mimicking other,
more common disorders''. Thus once porphyria clinical symp-
toms are recognized, biochemical laboratory testing should be
performed to identify the specific type of porphyria'’. Genetic
testing, normally targeted gene sequencing, becomes critical to
define the mutation(s) in a family and make genetic counseling
possible. However, diagnosis of porphyrias are often overlooked
due to, a large extent, the difficulty in performing the specific
biochemical assays and absence of specialized porphyria

20-22

centers, particularly in developing countries™ .

Prevalence. In the United States, porphyrias collectively afflict
fewer than 200,000 people, with similar prevalence in the
European Union*'**. Estimates of porphyria prevalence vary
by type, with values of 1 in 10,000 for the most common type
of porphyria, PCT (OMIM 176090) and 1 in 1,000,000 for
congenital erythropoietic porphyria (CEP; OMIM 263700)".
Many people with a genetic mutation associated with the disease
never experience signs or symptoms, a phenomenon known as

incomplete or reduced penetrance™.

Friedreich’s ataxia

Biochemical basis and clinical manifestation. Friedreich’s
ataxia (FRDA, FA; OMIM 229300) is a rare autosomal-recessive
disease associated with progressive spinocerebellar ataxia,
cardiomyopathy, scoliosis, diabetes, and vision and hearing
impairment'””. Most FRDA patients are largely asympto-
matic during the first 5 — 10 years of life. But, with advancing
gait and limb ataxia, they require use of a wheelchair and are
unable to perform daily activities independently, often during
adolescence™ .

Symptoms result from reduced synthesis of the mitochon-
drial protein frataxin, an iron chaperone that, by shielding this
metal, prevents the production of reactive oxygen species (ROS)
and renders it bioavailable as ferrous iron’**’. When frataxin
levels are low, iron accumulates in the mitochondria, largely in
an oxidized and insoluble form®'. The accumulated iron can
participate in Fenton chemistry leading to formation of extensive
reactive oxygen species (ROS) that cause damage and cell death.
While there is a general agreement that frataxin is critical for
mitochondrial iron metabolism and cellular iron homeostasis,
its precise biological role remains a controversial matter’>*.
Involvement of frataxin in 1) iron delivery to the iron—sulfur
cluster assembly and repair machinery, 2) repair of oxidatively
inactivated [3Fe—4S] aconitase to yield an active enzyme,
3) delivery of ferrous iron to ferrochelatase for heme biosynthesis,
4) detoxification of iron by catalyzing the oxidation of Fe(II)
to Fe(Ill) and storing the metal as a ferrihydrite mineral within

Page 4 of 22


https://www.omim.org/entry/176090
https://www.omim.org/entry/263700
https://www.omim.org/entry/229300

structurally organized frataxin oligomers are among the
reported functions ascribed to frataxin®®’'**=*l, Despite the
lack of consensus, frataxin and heme biosynthesis are linked.
Frataxin may participate in the assembly of the [2Fe-2S] clus-
ter, an essential cofactor for an active human ferrochelatase,
the terminal enzyme of the heme biosynthetic pathway* .
Alternatively, by maintaining and chaperoning iron in a reduced
form, frataxin may donate Fe(Il) to ferrochelatase, which has
strict physiological specificity for Fe(Il) as substrate’’-***=,
Clearly, a combination of these two functional possibilities
cannot be ruled out.

Prognoses and treatment. Presently, there is neither a cure nor a
U.S. Food and Drug Administration (FDA)-approved treatment
for FRDAY. Advances in understanding the underlying mech-
anism of FRDA, in particular the recognition that frataxin
deficiency is the root cause of FRDA, have prompted the devel-
opment of therapeutic strategies. Since increased oxidative stress
and mitochondrial respiratory chain dysfunction have been asso-
ciated with the pathogenesis of FRDA, antioxidants and inhibi-
tors of free radical formation (e.g., idebenone, L-acetylcarnitine,
resveratrol, and RT001 and other deuterated polyunsaturated
fatty acids) have been assessed as a promising treatment
option*’~". Tron chelators, such as deferiprone, have been
considered as a therapeutic approach of FRDA by control-
ling iron accumulation and decreased frataxin synthesis™'.
Regulation of frataxin gene expression by increasing either
histone acetylation or transcription of the frataxin gene, rep-
resents yet another treatment possibility being explored™>.
Histone deacetylase inhibitors reverse or, at least, dimin-
ish silencing and the reduced transcription of the frataxin
gene observed in FRDA patients™. While protein interferon-
increases transcription of the frataxin gene and consequent
production of the frataxin, its therapeutic benefit remains to be
established’ . Frataxin gene replacement is also being devel-
oped for as a potential treatment for FRDA. Because of the scope
of this report, an evaluation of the therapies for FRDA can be
neither extensive nor complete*’.

Prevalence. FRDA affects about 1 in 150,000 individuals of Cau-
casian descent and accounts for 50% of overall cases of hereditary
ataxia and for 75% of those with onset before age 25",

Genetics of porphyrias and FRDA: a tractable problem?

The robust evidence suggesting these devastating, rare diseases
named porphyrias can largely be pinpointed to dysfunction in a
single pathway of eight enzymes, caused by mutation(s) inher-
ited in well-understood, classical Mendelian patterns made them
an attractive case for potentially-impactful tool-development.
However, even in these seemingly straightforward cases of
diseases exhibiting classical Mendelian inheritance, disease
phenotypes are not entirely explained by the presence of known
pathogenic variants. The discrepancy between the low pen-
etrance of symptomatic patients for autosomal-dominant acute
intermittent porphyria (AIP; OMIM 176000) and the high fre-
quency of pathogenic mutations led Chen er al. to propose that
predisposing- or protective-modifier genes alter expression of
the AIP phenotype™. Indeed, a small number of modifier-genes,
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regulatory and pathophysiological mechanisms have since been
identified to contribute to onset of porphyrias, though these
findings remain insufficient to explain the disease-penetrance
puzzle®*.

In rare diseases resulting from trinucleotide copy-number repeat-
variation, such as FRDA, there is some degree of relationship
between severity of disease phenotype and copy-number’-’.
In FRDA, expanded trinucleotide (GAA) tracts in intron 1 of
the FXN gene, commonly between 600 and 900 repeats, result
in pathologically decreased levels of frataxin®~’. However,
number of trinucleotide repeats are not reliably predictive of
disease severity, further suggesting the importance of as-yet
unknown modifying genes or environmental factors that may
contribute to disease outcomes"’.

The number of disease-phenotypes entirely decided by single-
gene variants are in the minority”>. Most inherited diseases
are likely to have a more complicated etiology determined by
some combination of genomic variants, impacted by myriad

environmental factors as well.

Critical gaps Iron-Hack projects sought to address

We organized Iron Hack to address these challenges, includ-
ing the great need for genomics tools to handle rare-disease
data, such that new data-mining concepts and computational
tools could be developed and further adapted to serve the rare-
disease communities. We established five Iron Hack teams to
develop five computational-tool prototypes broadly focused on
(1) exploration of consumer-genomics data, (2) large-
scale RNAseq data mining, (3) genomic data visualization,
(4) rare-disease variants discovery, and (5) genotype-to-pheno-
type mapping. These team-efforts have led to the convergence of
iron-research communities and genomics data-science research-
ers to produce promising computational tools, strengthened
through an iterative process of soliciting ideas and feedback from
domain experts.

The remainder of this report is organized into subsections by
project, beginning with a detailed description for the five projects,
the motivations behind them and the gaps they seek to fill. We
next describe the methodologies and implementations of the
projects into usable software applications, how to operate the
software applications, and results produced using the software
applications. Finally, we discuss the pros and cons of this new
highly-interdisciplinary and community-driven twist on more
traditional hackathons.

Project descriptions and goals

Project 1: UPWARD

Uniting People Working Against Rare Diseases (UPWARD)
will be a Health Insurance Portability and Accountability Act
(HIPAA)-compliant database which will allow people with rare
diseases to declare interest in participating in research studies,
and subsequently share their personal disease stories, clinical
symptoms, and consumer genetic testing data with researchers
and clinicians. Figure 1 shows that, as consumer-genetic
testing data are submitted, they are analyzed alongside 43
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Figure 1. UPWARD - Uniting People Working Against Rare Disease. UPWARD opens with a web interface designed to clearly
communicate research and advocacy goals to the public, request consent and gather data in a HIPPA-compliant manner.

porphyria-related pathogenic SNPs currently held in UPWARD. A
set of statistical computation and machine learning methods can
be used downstream to parse out the novel modifiers of diseases
as well as the interactions of genetic loci underlying patholo-
gies. This information with be compiled and analyzed within
UPWARD using, in part, a program which identifies all rare
disease-related pathogenic or likely-pathogenic Single Nucleotide
Polymorphisms (SNPs) that are currently included on SNP
microarray chips used by common consumer genetic test-
ing companies. Table | shows that variants sourced from Clin-
Var, a crowdsourced genotype-phenotype database hosted by
NCBI, against consumer-genetics data sourced from Illumina
OmniExpress and GSA microarray chips used by Ancestry and
23andMe. These resulting 43 variants will be used in analysis
of patient-submitted consumer-genomics results. The goal of
this platform is to facilitate data-driven discovery of rare-disease
determinants, such as modifiers that affect penetrance, by lev-
eraging the growing data of consumer genomics. To facilitate
use of this database, UPWARD has focused its tools to benefit
people living with porphyria, and porphyria research as a whole.

When people with porphyria access UPWARD, they are met
with a survey built to collect consent, contact information and
disease-associated information, such as clinical symptoms,
genetic and environmental data, including targeted questions
concerning environmental factors suspected to trigger acute
porphyria attacks. Participants are given the option to share this

survey with family members and friends, both those with
and without porphyria symptoms. Although family members
and friends without symptoms at the time of the survey will
likely never develop symptoms (due to the low penetrance of
porphyria-associated mutations), we seek to identify modifying
genes and environmental factors that contribute to the pheno-
type through comparing genotypes of these individuals with
those of people reporting latent and active porphyria®. We plan
to explore the possibility of recruiting participants by
adding UPWARD links to the SNPedia research database, as well
as through collaborating with porphyria advocacy and patient-
education groups, and clinical partners.

Project 2: Variants Discovery and Rapid Clinical Diagnosis
Many different mutations can contribute to the onset and pro-
gression of porphyria®. We designed a method to search for
underlying genetic variants associated with symptoms of con-
genital erythropoietic porphyria (CEP). The first diagnostic
steps to confirm CEP often happen after referral to a genetic
counsellor, who recommends targeted screening for a panel of
known-pathogenic porphyria-associated SNPs. In cases where
no known-pathogenic variants are found, whole-exome sequenc-
ing may be recommended of both the patient and their par-
ents to catalog variation in the symptomatic person versus their
asymptomatic parents. These variants filtered from the parent-
child “trio” data can then be annotated with available disease-
associated information, if any, using existing tools (such as
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Table 1. List of porphyria-related pathogenic SNPs. UPWARD includes a tool built to map highly-
pathogenic and likely-pathogenic porphyria-associated variants.

Name
NM_000374.4(UROD):c.603A>G (p.Pro201=)
NM_000374.4(UROD):c.842G>A (p.Gly281Glu)
NM_000374.4(UROD):c.842G>T (p.Gly281Val)
NM_000374.4(UROD):c.874C>G (p.Arg292Gly)
NM_000374.4(UROD):c.912C>A (p.Asn304Lys)
NM_000374.4(UROD):c.932A>G (p.Tyr311Cys
NM_000374.4(UROD):c.995G>A (p.Arg332His
NM_000309.4(PPOX):c.-90G>T
NM_001122764.1(PPOX):c.199delC (p.Leu67Terfs)
NM_001122764.3(PPOX):c.502C>T (p.Arg168Cys)
NM_000097.5(CPOX):c.814A>C (p.Asn272His)
NM_000410.3(HFE):c.187C>G (p.His63Asp)
NM_000410.3(HFE):c.193A>T (p.Ser65Cys)
NM_000410.3(HFE):c.845G>A (p.Cys282Tyr)
NM_000031.5(ALAD):c.823G>A (p.Val275Met)
NM_000031.5(ALAD):c.718C>T (p.Arg240Trp)
NM_000031.5(ALAD):c.397G>A (p.Gly133Arg)
NM_000031.5(ALAD):c.36C>G (p.Phe12Leu)
NM_000375.2(UROS):c.683C>T (p.Thr228Met)
NM_000375.2(UROS):c.673G>A (p.Gly225Ser)
NM_000375.2(UROS):c.244G>T (p.Val82Phe)
NM_000375.2(UROS):c.217T>C (p.Cys73Arg)
NM_000375.2(UROS):c.184A>G (p.Thr62Ala)
NM_000375.2(UROS):c.10C>T (p.Leu4Phe)
NM_000190.4(HMBS):c.445C>T (p.Arg149Ter)
NM_000190.4(HMBS):c.499C>T (p.Arg167Trp)
NM_000190.4(HMBS):c.500G>T (p.Arg167Leu)
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NM_000190.4(HMBS):c.500G>A (p.Arg167GIn)
NM_000190.4(HMBS):c.601C>T (p.Arg201Trp)
NM_000190.4(HMBS):c.606G>T (p.Val202=)
NM_000190.4(HMBS):c.1075G>A (p.Asp359Asn)
NM_001382.3(DPAGT1):c.1177A>G (p.lle393Val)
NM_001382.3(DPAGT1):¢.994T>G (p.Phe332Val)
NM_000374.4(UROD):c.603A>G (p.Pro201=)
NM_000309.4(PPOX):c.-186C>A
NM_000410.3(HFE):c.187C>G (p.His63Asp)
NM_000190.3(HMBS):c.-65C>T
NM_000190.4(HMBS):c.88-14G>A
NM_000190.4(HMBS):c.613-19C>A
NM_001382.3(DPAGT1):c.*427T>G
NM_001382.3(DPAGT1):c.*417T>C
NM_001382.3(DPAGT1):c.*265A>G
NM_001382.3(DPAGT1):c.1177A>G (p.lle393Val)

Gene

UROD

UROD

UROD

UROD

UROD

UROD

UROD

PPOX

PPOX

PPOX

CPOX
HFE|LOC 108783645
HFE|LOC108783645
HFE

ALAD

ALAD

ALAD

ALAD

UROS

UROS

UROS

UROS

UROS

UROS

HMBS

HMBS

HMBS

HMBS

HMBS
DPAGT1|HMBS
HMBS
DPAGT1|HMBS
DPAGT1|HMBS
UROD

PPOX
HFE|LOC 108783645
HMBS

HMBS

HMBS
DPAGT1|HMBS
DPAGT1|HMBS
DPAGT1|HMBS
DPAGT1|HMBS

RSID
rs2228084
rs121918057
rs121918057
rs121918059
rs121918065
rs121918061
rs121918066
rs115158839
rs786204784
rs121918325
rs1131857
rs1799945
rs1800730
rs1800562
rs121912981
rs121912982
rs121912980
rs121912984
rs121908014
rs121908020
rs121908016
rs121908012
rs28941775
rs121908015
rs118204120
rs118204101
rs118204095
rs118204095
rs118204109
rs1131488
rs144949995
rs643788
rs138544311
rs2228084
rs2301286
rs1799945
rs589925
rs17075
rs1784304
rs28990975
rs7759
rs28990974
rs643788

Chip
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
GSA
OmniExpress
OmniExpress
OmniExpress
OmniExpress
OmniExpress
OmniExpress
OmniExpress
OmniExpress
OmniExpress

OmniExpress
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dbNSFP and WGSA)*’. With our Variants Discovery tool,
we aimed to generate a workflow which operates on trio-data to
identify, categorize and then rigorously assess candidate disease-
causing mutations in cases where the underlying mutation is
unknown, modeled after existing workflows for whole-exome
sequence analysis (Figure 2)°.

Tier 1 variants are known disease-causing mutations in known
disease-causing genes. Tier 2 variants are uncharacterized
de novo mutations predicted to be damaging (see Methods) in
known disease-causing genes. Tier 3 variants are uncharacter-
ized, damaging, inherited mutations in known disease-causing
genes (parents are not affected). Tier 4 variants are functional
mutations with unknown significance in known disease-causing
genes. Tier 5 variants are damaging mutations in the extended
gene list (e.g. those genes associated with symptoms of dis-
ease). Candidate disease-causing variants are categorized into
five evidence-based tiers, where Tier 1 variants are known-
pathogenic and have the highest support. We intend to expand
this workflow so that it might be used to assist in the diagnosis
of patients with other difficult-to-identify conditions.

Project 3: MassiveSeq: Automated meta-analysis of RNA-
Seq Data from GEO data

The fields of biology and medicine have undergone swift changes
to the manner in which ribonucleic acid (RNA) can be studied
using deep-sequencing techniques to investigate expression-
differences in possible RNA species that may be associated with
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deleterious disease outcomes®. RNA-Seq technology has revo-
lutionized detection and analysis of aberrant RNA transcripts
associated with disease®.

In rare disease research in particular, obtaining sample-sizes
enabling confident identification of disease-associated tran-
scripts is a considerable challenge. The amount of RNA-seq data
contributed to NCBI's Gene Expression Omnibus (GEO), a pub-
lic repository for functional genomics data, is increasing at a rapid
pace. A simple query for “Expression profiling by high through-
put sequencing” yielded 14,200 unique datasets as of March
6, /2019. The availability of these massive quantities of data
creates an open opportunity in many research areas for meta-
analyses using these published datasets to strengthen ana-
Iytical power. Our massive parallel-sequencing analysis tool,
MassiveSeq, provides an opportunity for researchers and bio-
informaticians to easily extract and process meaningful infor-
mation (such as quantitative gene expression, novel transcripts
and their isoforms, alternative splice-site variants, SNPs or
copy-number variation) from these large datasets to evaluate
the associations between biological processes, gene expres-
sion and disease outcomes. MassiveSeq automates downloading
and processing of large-scale RNA-seq datasets with the aim of

70-73

easing computational time and complexity’"".

MassiveSeq differs from conventional, comprehensive RNA-
seq pipelines in that it combines multiple RNA-seq data-
sets to increase analytical power (Figure 3)"*7°. The search is

dbNSFP/WGSA If variant is Yes If varia:t is ) Yes
H associated wit|
annotated reported in -
. HGMD or ClinVar patient
variants databases phenotype
No
If iant is i Y
variant s in Yes If variant is £ If variant is de Yes
known disease d N
related genes amaging novo
No
No
No If variant is eQTL v
regulating known €s
disease causing
genes
If variant in genes Yes
associated with If variant is Yes
symptoms of damaging

disease

Figure 2. Overview of the Variants Discovery pipeline to report possible pathogenic variants associated with Mendelian diseases.
Abbreviations: dbNSFP, database for nonsynonymous SNPs’ functional predictions; WGSA, whole genome sequencing annotator; HGMD,
Human gene mutation database; eQTL, expression quantitative trait loci.
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#MassiveSeq Flow Diagram for Iron Hack

Quality
Control (QC)

v

\

Differential

Py Expression
(DE)

Prepare input SnakeMake
Get meta-data .
Hisat2
Take text file and put into format that ( )
BCBio can parse out
*Get control samples
*Get affected samples (cases) Transcript
(Count info)
RNA
\4 Variants I »| Megablast
Multiply by n

Figure 3. Flowchart for Massiveseq Methodology. The pipeline takes metadata from the Sequence Read Archive (SRA) and parses it
for quality control (QC). The primary work takes place in a custom snakemake script that aligns sequences with Hisat2 and then quantifies
transcripts with Stringtie in a parallelized fashion across available machines and cores.

confined to samples meeting the criteria, e.g., disease, library
source (genomic, transcriptomic or metagenomic), platform
(Illumina, PacBio), or instrument (Genome Analyzer, Hiseq,
Nextseq). MassiveSeq additionally allows exploration of novel
clustering methods to enable meta-analysis of differential gene
expression. Initial steps in processing raw sequencing reads on
even a single, traditional dataset are often computationally inten-
sive, and obtaining additional publicly-available RNAseq data-
sets at a massive scale for such processing is resource-consuming
as well. MassiveSeq takes raw-sequencing data (fastq format)
automatically streamed from NCBI’s Short-Read Archive (SRA)
as input, using a GEO query specifying parameters such as
disease and experimental type (e.g., high-throughput RNAseq).
Datasets can be further filtered as needed. The MassiveSeq
pipeline next utilizes dockerized HISAT2 (version 2.1.0) and
StringTie (v1.3.5) to enable automated, parallel processing of
each experiment’”’*. Reads are automatically streamed directly
from SRA, mapped to a reference genome, assembled into
transcripts--including novel splice-variants--and annotated in paral-
lel within each dataset. The MassiveSeq pipeline allows uniform
processing of multiple, independent RNAseq datasets, enabling
powerful identification of differentially expressed genes and
transcripts associated with diseases of interest. We applied
MassiveSeq to 99 Friedreich’s Ataxia SRA datasets to identify
disease-associated transcripts for Iron Hack”".

Project 4: Phenogeno Viz: Rapid aberrantly-expressed
gene identification from RNA-Seq

Abnormal gene-expression patterns can cause a broad range
of diseases. However identifying abnormally-expressed genes
and correctly interpreting expression data across experiments
can be complicated by inconsistencies in gene-expression

normalization strategies, as well as inadequate filtering of noisy
data. Here, we developed an algorithm to rapidly identify genes
with abnormal gene expression patterns in samples of inter-
est (e.g., disease-presenting patient) as compared to controls
(Figure 4). This method was built utilizing ~2000 RNA-Seq
datasets publicly available on GTExPortal””. The package imple-
ments three commonly used RNA-Seq normalization meth-
ods: Fragments per kilobase of transcript per million mapped
reads (FPKM), transcripts per million mapped reads (TPM)
and differential gene expression analysis based on the negative
binomial distribution (DEseq). A Gaussian-mixture model is
utilized here to remove RNA-Seq noise and the DE-Seq method
is finally implemented to capture abnormally expressed genes
corresponding to query tissue. Simulation data were generated to
test algorithm performance, and we intend to expand this system
so that it might be used to assist in the diagnosis of patients with
difficult to identify conditions™.

Project 5: Phenotype-to-Genotype Mapping: Assessing
combinatorial variant-contribution to disease phenotypes
Disease-phenotypes are unlikely to be entirely explained by
the presence of single pathogenic variants. Pleiotropy, modu-
lating genes and combinatorial effects are the rule, rather than
the exception; however assessing combinatorial effects under-
lying disease quickly becomes computationally expensive,
with a practically-infinite number of variant-combinations that
could be assessed. We developed a tool-set to enable thought-
ful reduction of variants to feasibly assess the role of modifying
genes in rare diseases such as Friedreich’s ataxia.

Most of the alleles a person inherits are unlikely to be involved
in modulating the disease phenotype, and models incorporating
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tissue could Patient
related to RNA-Seq
disease

I: The genes related
to patient

Figure 4. The work flow chart for identifying abnormal genes based on RNA-Seq. After RNA-Seq is performed on a patient sample, the
program searches the Genotype-Tissue Expression Project (GTEx) database for RNA-Seq data from the specific tissue potentially associated
with the disease. Three methods are used for RNA-Seq normalization (Fragments per kilobase of transcript per million mapped reads
(FPKM), transcripts per million mapped reads (TPM) and Differential gene expression analysis based on the negative binomial distribution
(as implemented in DESeq)), and the data were fit to a Gaussian mixture model to remove noise within samples. The differentially expressed
genes in the patient sample are finally captured by using the R program DESeq.

many extraneous variables are unnecessarily cumbersome
and perform more poorly than models incorporating domain-
specific feature-selection. Therefore the first step of our
pipeline was to reduce the disease-associated variant search-space
to genes fitting a profile of interest.

We focused on broadly-applicable features of likely disease-
causing variants (as opposed to disease-specific features) for
our first layer of feature-selection in this first iteration of our
pipeline. Input variant-call data are filtered based on the like-
lihood that any particular variant is deleterious (as predicted
by Polyphen-2 scores) and by residual variation inheritance
scores® . As features-of-interest for disease-associated variants
should change depending upon the particular disease, phenotype,
and available domain-specific knowledge, the feature-selection
component of our tool is intended to be easily extendable
for investigating the combinatorial contributions of multi-
ple variants to disease phenotypes by any number of charac-
teristics. We incorporated two existing annotation packages
(Open-CRAVAT (version 1.4.0) and ANNOVAR version (On
2018Aprl6)) to thoroughly annotate available information
for each variant, any of which can be filtered on in the feature-
selection module®. Highly ranked variants are then assessed for
their contribution to disease-phenotype via the equally modu-
lar “analysis” part of our pipeline. Our current analysis module
utilizes the APRIORI algorithm to detect variant co-occurrence
relationships with disease, though the output from the feature-
selection module is in a common format to facilitate

application of other machine-learning approaches to identifying
combinatorial interactions, all implemented via a simple web-user
interface®.

We developed this pipeline with modularity being a primary
goal. The APRIORI algorithm is currently implemented to
identify genes that frequently co-occur in the feature-selected
set of genes. Future work will implement tools that check for
over-representation of gene ontology terms among the genes
determined to have deleterious alleles.

Methods and implementation
Key concepts informing methods
each project are described below.

and implementations of

UPWARD

To build a database of pathogenic or likely pathogenic SNPs, we
sourced Rapid Stain Identification Series (RSID) information
from the Illumina OmniExpress & Illumina Global Screening
Array (GSA) microarray chips (used by Ancestry and 23andMe
respectively), then filtered out non disease-associated genes
using the NCBI ClinVar database. For specific application to
porphyrias, we selected all genetic polymorphisms annotated
to be associated with any of the porphyrias, as well as their
associated RSID, SNP location in the genome, and degree of
pathogenicity®*°. Participants’ raw genomics data and environ-
mental data are stored in a non-relational database, which has
been proven to be more efficient than relational databases for

Page 10 of 22


http://genetics.bwh.harvard.edu/pph2/
http://annovar.openbioinformatics.org/en/latest/user-guide/download/
http://annovar.openbioinformatics.org/en/latest/
https://www.ancestry.co.uk/dna/
https://www.23andme.com/en-gb/?utm_source=google&utm_medium=cpc&utm_campaign=Search-Alpha-Brand&utm_content=23c_Search_Paid_Brand&gclid=Cj0KCQjwh6XmBRDRARIsAKNInDH6CDnf1QpNyIBoGo0GQoOlEq1MFCTyYSX9gwgvMfvMuHWeXPYaxqoaAvC8EALw_wcB&gclsrc=aw.ds
https://www.ncbi.nlm.nih.gov/clinvar/

storing and accessing genomic data®*. A secure, HIPAA-
compliant human subject meta-information database will be
built as part of the next iteration of development®™’. A secure,
HIPAA-compliant human subject meta-information database
will be built as part of the next iteration of development™”.
At that time, the database will be expanded to capture the
following information: 1) patient-reported phenotype and symp-
tom information of people identified as potentially carrying
a pathogenic or likely pathogenic variant in a porphyria gene
and 2) people with a clinical diagnosis of porphyria, as well as
de-identified information on their family members to try to
capture data on asymptomatic people.

Our system currently consists of a cloud-database built on
MongoDB Community Edition, and a web server run through
NGINX to accept input data from participants. The entire system
is containerized and orchestrated by Docker Compose for ease
of replication and to enable application to other diseases.

Variants Discovery and Rapid Clinical Diagnosis

Our pipeline categorizes patient variant-data into five tiers of
pathogenic certainty based on quality of evidence, the logic
of which is broadly outlined in Figure 2. The pipeline accepts
dbNSFP or WGSA-annotated patient variant-files (in tab-
delimited format, one variant per line). Annotated variants are
first checked against known disease-associated variant databases,
namely HGMD and ClinVar, to identify any previously reported
pathogenic mutations matching the patient phenotype; these
known, disease-causing variants in known disease-causing
genes are categorized into the most confident classification,
Tier 1. All variants not represented in the HGMD and ClinVar
databases are next checked to see if they are located in genes
that are involved in known disease-associated pathways.
Variants in disease-associated pathways are then evaluated for
probability of being deleterious (with start-loss, stop-gain, essen-
tial splicing variant, frameshift, indel or missense-mutations
being highly likely to be deleterious). Damaging variants in
known disease-causing genes are then contrasted against vari-
ant files from the non-affected parents to distinguish de novo
(Tier 2, uncharacterized, damaging de novo mutation in known
disease-causing gene) from inherited (Tier 3, uncharacterized,
damaging inherited mutation in known disease-causing gene)
variants. Non-deleterious variants are not considered further.

Damaging variants not occurring in known disease-causing
genes themselves, but mapping to known expression-Quantitative
Trait Loci (eQTLs, loci associated with expression-changes in
transcripts from known disease-causing genes), are stratified
into Tier 4. We report all other damaging variants in or associ-
ated with genes that are related to symptoms of the disease as
Tier 5 (damaging mutation in the extended gene list). Any
other known disease-causing mutations associated with unre-
lated diseases are additionally reported in an extended report to
allow for possible incidental or secondary findings.

MassiveSeq
We planned the main snakemake (version 5.4.2) to automate
dispatching of jobs depending on the available cores and
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memory of a machine’’. Here, the core steps involved Hisat2 for
alignment, followed by Stringtie (v1.3.5) for transcript annota-
tion and de novo annotation. Finally, reads were quantified by
using featureCounts to measure at the exon level from the subRead
(version 1.6.3) package™. This quantification pipeline follows
a common, recently published protocol on Stringtie and
Hisat2”. It allows for both known as well as novel isoform
transcripts to be identified and measured.

Once the gene counts were fully quantified for each sample, we
analyzed the overall dataset comprised of all 4 studies using
the R package metaSeq (version 1.22.1)**. This package adapts
the non-parametric NOISeq method for differential RNA-
seq analysis to allow for multiple studies in a meta-analysis
framework™.

We used the gene counts with GSVA (Gene Set Variation
Analysis, version 1.30) to estimate per-same GSEA (Gene Set
Enrichment Analysis) pathway enrichments for the 50 hall-
mark datasets from MSigDB**”’. We used these pathway enrich-
ments as features (a binary up- or down-regulated pathway) for
a deep learning model, along with the remaining gene estimates.
We used the fast.ai library to construct a Convolutional
Neural Network (CNN)”. One of the novel features of fast.ai,
especially for our data, is that it facilitates rapid construction of
neural networks with tabular data via embeddings similar to
Word2Vec”. The training split was 70/30; afterwards the CNN
was trained for 5 epochs (cycles of the data), with a learning
rate of 0.1.

We are also in the early stages of adapting the GATK RNA-
seq best practices to this pipeline so that we can rapidly call
variants on these samples'”’. Our workflow for the procedures,
and methods used can be found in Figure 3.

Phenogeno Viz

This package is designed to detect abnormal genes exhibited
differential expression compared with normal tissue cell. For
each patient RNA-Seq result, we first download the gene expres-
sion level from normal tissue same as patient tissue. Then for
multiple gene expression RNA-Seq samples available in web-
site. GTExportal (https://gtexportal.org/home/), three normalized
methods including TPM, FPKM and DEseq are available. The
Gaussian-mixture model is utilized to remove RNA-Seq noise.
The basic idea is to use the EM algorithm to find two best
fitted Gaussian distribution and only maintain the distribu-
tion with relative higher mean value as a true signal. After
noise reduction, DEseq algorithm is used to identify significant
up or down regulated genes in patients.

Phenotype to Genotype-Mapping

This tool is envisioned to be most useful for analyzing variant-
call data from networks of families affected by rare disease
(Figure 5). Currently the input data are variant-call files (.vcf)
obtained from patients with a rare disease; future versions will
incorporate additional genomic information from family members.
The user uploads patient .vcf files through a web-app interface,
then selects features on which to filter (currently a maximum
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Feature selection module
Goal: Identify genes most likely to be involved in phenotype
Strategy: Select genes by severity of mutation, function...
Software: Open-Cravat, ANNOVAR...

Analysis module
Goal: Identify trends in the selected genes
Strategy: |dentify genes or pathways that tend to be modified in individuals with the phenotype
Software: APRIORI algorithm, mixture model, gene ontology analysis, Medline integration

Report

Figure 5. Phenotype-to-Genotype Mapping: Assessing combinatorial variant-contribution to disease phenotypes general workflow.
Input data are variant-call files in .vcf format collected from patient samples. The feature-selection module collects all available annotation
information for each identified variant, then narrows down to variants most likely to be associated with the phenotype based on user-specified
parameters. These feature-selected variants are then analyzed for combinatorial contribution to the disease using the tools in the analysis
module. The output of the analysis modules are tables and graphs that summarize the results.

and minimum score for residual variance-intolerance, a meas-
ure of gene-tolerance to variation based on population allele-
frequencies). The web interface can be run locally to keep patient
data secure. The back-end next runs the files through CRAVAT
and ANNOVAR to assemble annotation information on all vari-
ants compiled from multiple databases that the user selects upon
install (including ClinVar, Pubmed, etc). These annotation data
are then filtered according to user-specification using the feature
selection module.

Operation

Operation can be performed on a computational cluster with
multiple cores. The system can use a Lustre parallel file system
for fast Input and Output. Remote mounting onto the cluster
should be available for flexible data access and movement.

UPWARD

The only requirement to build this system is having Docker
and Docker Compose installed on your machine. For instruc-
tions on running the system refer to the associated GitHub
readme at bit.ly/UPWARD 1901102,

Variants Discovery and Rapid Clinical Diagnosis
GitHub readme and description available at
1y/2FGqky710%104,

https://bit.

“Massive” RNA-seq Combined Analysis of Multiple
Datasets

For full instructions on how to clone and implement the
code, please refer to:

The MassiveSeq github repository: https:/bit.ly/2HKAG 1y,

PhenogenoViz: Rapid abnormal gene identification based
on RNA-Seq

Running the web app requires the installation of Ruby, R, and
Python on the server. The instructions for installing Ruby on
Rails on Windows 10, Ubuntu, and OS X can be seen here, and
should be similar for different OS versions'”’. Install Python 3
from here and install R from here!"*!'””, The web application is
available on GitHub at https:/bit.ly/2V3Hpo2 and instructions
for installation are detailed on the ReadMe''"!"".

Phenotype to Genotype-Mapping
GitHub readme and description available at https://github.com/
NCBI-Hackathons/pheno_geno_ataxia''>!!3,

Lessons learned

Throughout this process we identified several areas where improve-
ments could be made for future disease-focused hackathons.
A few of these are described below.
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1) We were successful in prototyping for a specific disease.

2) It was helpful to learn more about the diseases and
current problems that need to be solved before starting
the projects.

3) If trying to solve a clinical problem, such as how to
improve and speed up the rate at which patients receive
a diagnosis for rare diseases, include clinicians as part
of the group.

4) It may also be advantageous to have the didactic
presentations about the diseases in advance of the hacka-
thon such that everyone has a basic understanding of the
issues and disease symptoms and time for brainstorming.

5) Having a team meeting prior to the hackathon to
assign roles and discuss overall flow for each day was
helpful.

6) Providing literature to read about the disease/genetic
condition was also useful background for preparing
for the hackathon.

7) Having two leads on each team increased efficiency,
as each could take turns fielding questions from less-
experienced team-members while the other could keep
the hacking on-task for the day.

8) A few things some specific teams learned

a) UPWARD: Forming a team composed of people
with a variety of training backgrounds (e.g. clini-
cians, researchers, organizers, computer scientists,
biologists, geneticists, etc.) brings strength and
utility to team ideas and project results. Additionally
devoting a portion of the first day or meeting
period to brainstorming, idea proposal, and argu-
ments facilitates the formation of a plan which team
members are able to agree upon and work towards
while reducing the chance of a schism further
down the road.

b) MassiveSeq: We initially overscoped/planned on
a completely different toolset. Scaling back to a
core set of tools that we were comfortable with
made completing the project feasible. People
were coming in from really different backgrounds
(choice of programming language, familiarity with
genomics data formats, etc.) and in retrospect we
would have liked to have planned a bit more for
some specific tasks.

Results

UPWARD

After identifying porphyria-related pathogenic SNPs cur-
rently included on Illumina OmniExpress and Illumina GSA
microarray chips, 43 porphyria-related pathogenic SNPs were
found. This list (presented in Table 1) will be maintained
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and updated at the UPWARD GitHub repository (labeled as
pathogenic SNPs.csv)!’!. This list will be compared against partici-
pant-submitted consumer genomics test results within UPWARD
once the project is reviewed and approved by the Institutional
Review Board (IRB).

Variants discovery and rapid diagnosis

We examined the genetic basis with the following examples of
porphyria genetics. Using our developed pipeline, we success-
fully identified several candidate SNPs (in Tier 1, Tier 2 and
Tier 4) that were previously unnoticed in a porphyria patient
in a clinical setting. These SNPs are located in genes known
to cause different kinds of porphyria, e.g. UROS and CPOX
genes. The discovered SNPs can, based on the prediction using
our pipeline, affect the transcription of the candidate genes,
their translation or both. All of these possibilities would result
in functional abnormalities of the final gene product. For
example, two of the identified SNPs were eQTL (expression
quantitative trait loci), which led to significantly decreased
expression level of the UROS gene (Figure 6 and Figure 7).

These variants examples demonstrated that our pipeline can
help physicians and/or clinical geneticists quickly filter out
the vast majority of neutral variants and report the remaining
variants in clinically meaningful tiers to facilitate further
experimental validation and explanation.

MassiveSeq

Using Metaseq we identified over 2000 genes upregulated in
Friedreich’s Ataxia patients compared to controls (Figure 8).
However, we emphasize that this analysis was merely a proof
of concept, and further work needs to be done to explore
methods and techniques for standardizing phenotypes (data
harmonization) alongside the meta-analysis itself in Friedreich’s
Ataxia. (Figure 8).

We used fast.ai to train a CNN on an embedded feature-space
of these counts as well as 50 gene-set enrichment features from
Msigdb (see Methods). The trained model had an overall accu-
racy of (.75, which seems promising given the number of
features and low number of samples for training.

MassiveSeq’s implementation of HISAT2 and StringTie identi-
fied novel-isoform transcripts in various samples. We focused
our analyses on the FXN gene, as trinucleotide GAA-repeats
at this locus are causative of FRDA. We identified multiple
novel-isoform transcripts within 1kb up and downstream of
FXN in affected, unaffected and carrier-patients (Table 2). We
were able to visualize the truncation of the FXN transcripts from
the above samples using IGV. Shallow read-coverage of the
whole transcriptome from this particular study made it difficult
to confirm the reliability of the identified transcript truncation.

Phenogeno Viz: Rapid abnormal gene identification based
on RNA-Seq

For each input patient RNA-Seq data, the RNA-Seq data related
to query tissue are extracted from the database. The available
tissues and number of RNA-seq data are listed in Table 3.
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Single-tissue eQTL

Tissue Samples NES p-value m-value NES (with 95% Cl)
Ovary 122 -0.0834 0.2 0.00 S
@ Whole Blood 369 0133 20e-6  0.00 —-
Adipose - Visceral (Omentum) 313 -0.188 1.1e-10  0.00 -
Uterus 101 -0.207 0.01 0.823
) Breast - Mammary Tissue 251 -0.218 3.0e-12  0.829 -
Lung 383 -0.224 2.6e-23  0.962 -
Brain - Cerebellar Hemisphere 125 -0.232 1.8e-6 1.00 —_—
Brain - Spinal cord (cervical c-1) 83 -0.236 3.5e-3 0.942
® Vagina 106 -0.238 1.0e-3 0.943 —
Prostate 132 -0.256 4.8e-5 1.00 —
Minor Salivary Gland 85 -0.281 1.6e-3 1.00
’ Colon - Transverse 246 -0.325 3.9e-16  1.00 -
Artery - Coronary 152 -0.337 7.8e-9 1.00 -_—
@ Adrenal Gland 175 -0.338 8.6e-8 1.00 ——
@ Artery - Tibial 388 0339 52636 1.00 -
@ Thyroid 399 0339 87e27 1.00 —-
@ Pancreas 220 -0.345  1.0e-11  1.00 —i—
® Adipose - Subcutaneous 385 -0.351 22e-33 1.00 - -
@ Small Intestine - Terminal lleum 122 -0.360 2.1e-5 1.00 —_—l
Pituitary 157 -0.366 2.7e-11 1.00 _——
@ Esophagus - Mucosa 358 -0.370  1.0e28 1.00 ——
® Artery - Aorta 267 -0.386  6.0e-22 1.00 ——
@ Skin - Not Sun Exposed (Suprapubic) 335 -0.401 1.6e-27 1.00 —.—
Brain - Cerebellum 154 -0.402 4.7e-13  1.00 _—
® Spleen 146 -0.414  4.5e-8 1.00 —_—
Colon - Sigmoid 203 -0.417 6.5e-17  1.00 —
Stomach 237 -0.422 5.5e-17  1.00 -_—
Nerve - Tibial 361 -0.430 2.5e-28 1.00 s gl
Cells - Transformed fibroblasts 300 -0.439 1.2e-47 1.00 -
Esophagus - Muscularis 335 -0.440 2.6e-41  1.00 -
@ Skin - Sun Exposed (Lower leg) 414 -0.447  8.3e-40 1.00 - -
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Testis 225 -0.871 3.6e-49 1.00 -
I -d.8 -0|.6 -OI.4 -d.2 010
NES

Figure 6. Expression change of the UROS gene caused by eQTL SNP No. 1 across all tissue types in the Genotype-Tissue Expression
Project (GTEX). There is significant down-regulation of UROS gene associated with this variant in all tissues (except ovary). NES: normalized
effect size.

Page 14 of 22



Tissue
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Brain - Cortex
Testis

Samples NES
122 -0.0834
369 -0.129
313 -0.188
101 -0.207
251 -0.218
383 -0.225
125 -0.232
83 -0.236
106 -0.238
132 -0.266
85 -0.281
246 -0.320
388 -0.337
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175 -0.338
399 -0.339
220 -0.346
385 -0.352
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154 -0.402
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414 -0.447
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491 -0.472
80 -0.498
111 -0.535
264 -0.570
108 -0.573
153 -0.588
144 -0.598
109 -0.609
117 -0.620
272 -0.624
130 -0.669
118 -0.672
111 -0.714
88 -0.756
136 -0.794
225 -0.867

p-value

0.2
4.2e-6
1.1e-10
0.01
3.0e-12
3.6e-23
1.8e-6
3.5e-3
1.0e-3
2.7e-5
1.6e-3
2.0e-15
3.0e-35
7.8e-9
8.6e-8
1.2e-26
1.3e-11
1.3e-33
2.1e-5
2.7e-11
1.2e-28
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1.6e-27
4.7e-13
4.5e-8
6.5e-17
6.0e-17
2.9e-28
4.4e-46
2.0e-40
8.3e-40
7.4e-25
1.7e-73
1.3e-8
2.4e-24
1.9e-41
7.3e-18
2.7e-20
6.0e-30
8.9e-26
1.6e-17
1.8e-39
6.5e-28
4.0e-26
1.9e-22
1.0e-22
1.3e-43
2.1e-47

m-value

0.00
0.00
0.00
0.840
0.883
0.905
0.948
0.975
0.914
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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1.00
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Figure 7. Expression change of the UROS gene caused by eQTL SNP No. 2 across all tissue types in the Genotype-Tissue Expression
Project (GTEX). There is significant down-regulation of UROS gene associated with this variant in all tissues (except ovary). NES: normalized

effect size.

Page 15 of 22



250

200

150

100

50

o_

o_

0_

0_

O_

F1000Research 2019, 8:1135 Last updated: 19 JUL 2019

0.00

025

0.50

075 1.00

Friedreich's Upregulated p-value

Figure 8. Significance of up-regulated genes from metaseq analysis; red bar denotes .05 significance cutoff. Distribution of significance
in downregulated genes from metaseq analysis; no genes were significant at 0.05 threshold.

Table 2. List of novel-isoform transcripts within 1kb of the FXN gene.

Novel Transcript

SRR8038380_chr.30572
SRR8038380_chr.30573
SRR8038387_chr.17699
SRR8038389_chr.19844
SRR8038390_chr.21253
SRR8038399_chr.26427

9

9
9
9
9
9

Table 3. Available RNA-Seq
data samples in Genotype-
Tissue Expression Project

(GTEX) for different tissues.

Tissues Number of
RNA-Seq data

Adipose 797

Adrenal 190

Bladder 11

Blood 536

Blood 913

Brain 1671

Breast 290

Cervix 11

Colon 507

Esophagus 1021

Fallopian 7

Heart 600

Kidney 45

+

+

Chr. Strand Start

69035259
69107926
69035259
69035751
69035259
69035259

End

69100178
69108217
69079076
69074850
69100178
69079076

FPKM

1.787076
0.136139
0.274068
1.070571
1.033484
3.126959

TPM

3.825795
0.291447
0.490055
1.139182
1.298192
7.802162

Tissues

Liver
Lung
Muscle
Nerve
Ovary
Pancreas
Pituitary
Prostate
Salivary
Skin
Small
Spleen
Stomach
Testis
Thyroid
Uterus
Vagina

Disease
Friedrich Ataxia
Friedrich Ataxia
Carrier
Unaffected
Unaffected
Unaffected

Number of
RNA-Seq data

175
427
564
414
133
248
183
152
97
1203
137
162
262
259
446
111
115
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For convenience, brain tissue is selected here for the follow-
ing discussion. Considering different sequencing depth for each
sample, we provide three methods for data normalization: DEseq,
FPKM, and TPM. As there are a large number of samples,
we used uniform sampling to select n genes for visualization.
As shown in Figure 9, n = 20 genes are shown here to compare
different normalization methods. DEseq normalization results
show relative lower fluctuation compared with the other two
methods (F-test p < 2.2el16), indicating better performance of
DEseq. Except for Bladder, Cervix, and Fallopian, most tissues in
our database exhibit large RNA-Seq sample number. Therefore,
a method is required to select the data with relatively high

F1000Research 2019, 8:1135 Last updated: 19 JUL 2019

signal/noise ratio. A Gaussian-mixture model is fit for each gene
and returns the posterior probability to be ‘true’ signal for each
RNA-Seq sample (Figure 10). The top ten samples with the
highest average posterior probability are picked as background
and compared with patient samples. Then, DEseq is used for

differential expression gene identification. As shown in
Figure 11A, the green dots represent significant differential

expression gene (p-adj < 0.01) between patient and samples
from database. Figure 11B shows top 10 abnormal genes and
their genelD in patients.

(‘Neuroblastoma’ related genes is used here).

Brain_2966 —+---- ----A Brain_3079 — +--IN-------- 1 Brain 3422 —{+-R------ 4
Brain_2217 —{+---- M- ---- 4 Brain_3514 — + I -------- 1 Brain_2552 — + I ------ - 4
Brain_2594 —+--- - - --- 1 Brain_2010 — +- {HIN-------- 1 Brain 2394 —{+-M------ 4
Brain_2429 —+--- M- ---- 1 Brain_3298 — +- I -------- 4 Brain_2487 —+ I ------ J
Brain_2030 —+----[----- 1 Brain_2890 - - 1 Brain_3181 - ------ q
Brain_2414 —+--- [N ----+ Brain_2144 — +- - -------- 1 Brain 2719 —{+- JIIN------- 4
Brain_3020 —{+----[N----- 1 Brain_3370 — +- I ------- 1 Brain 2853 — +-[I------- 1
Brain_2778 —+----[HM----- 1 Brain_3562 — +- I -------- 1 Brain_ 2051 —{+-[N------- 4
Brain_3081 —+-----JM----A Brain_1947 — +- I -------- 1 Brain 3411 —+- IR} ------ 1
Brain_2993 —+----{HlM----- 1 Brain_2647 — +- NI -------- 1 Brain_2254 —{+- R ------ 4
Brain_2566 — +--- N ----- Brain_3409 — +-IM-------- 1 Brain_2195 —{+-N------- 4
Brain_2708 —{+---- {l------ 4 Brain_3059 — +- I ------- 4 Brain_3340 —{ - ------- 4
Brain_2079 —+----[N----- 4 Brain_3170 — +- (NI -------- 1 Brain_2378 —{+ I ------ 4
expDataSamplingVector.2 —+----[----- 1 Brain_2978 — +- NI ------- 1 Brain_3419 —+ JIN------- 4
Brain_2697 —+---- M ----- 1 Brain_3494 — - -------- 4 Brain 2738 —{+ IR ------ - 4
Brain_2224 —|+----N----- 1 Brain_3475 N | EEEEEEEE 1 Brain_3508 —{+-N------- q
Brain_2295 —{+--- M- ---- 4 Brain_3466 — +-IN-------- 4 Brain_2304 — + - -- 4
Brain_2312 —+--- IN----- 4 Brain_2036 — +- I -------- 1 Brain_ 3154 —+- - --- - 4
Brain_2182 —{+----[M------ 1 Brain_2988 — +--[IIN-------- 1 Brain_2351 —+ I ----- - 4
Brain_3203 —|+---- [N} ----- 1 Brain_2134 —{ +- - -------- 1 Brain_2064 — - ------- 4

deseq_normalization

T T T T T 1
0 2 4 6 8 10

FPKM_normalization
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Figure 9. n = 20 genes are sampled here to compare different normalization method: Fragments per kilobase of transcript per million
mapped reads (FPKM), transcripts per million mapped reads (TPM) and Differential gene expression analysis based on the negative
binomial distribution (DESeq).
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Figure 10. The Gaussian mixture model is implemented here to filter out noise. Hist plot shows the distribution of gene expression level
for gene ‘CELSR2’ in 1671 different brain RNA-Seq samples. The Gaussian mixture model is fitted by the EM algorithm and the noise is filtered

out by posterior probability bigger than 0.5.
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Figure 11. Differential gene expression analysis based on the negative binomial distribution (DESeq) is used here to find differential
expression genes between patient and database. A) Scatter plot shows significant differential genes (green dot, p-adj < 0.01). B) Boxplot
shows top 10 abnormal genes in simulation compared with data from database.

Phenotype-to-Genotype Mapping

The code was tested using the related individuals from the
1000 genomes project. Flagging the genes most likely to have
deleterious alleles decreased the search space enough to allow the
APRIORI algorithm to run on the dataset.

Conclusion and next steps

Common questions in the community about hackathons include
whether they can focus on specific diseases and how clini-
cal personnel can interact more effectively with data scien-
tists. We found that it was indeed possible to focus on a given
disease while developing generalized tools in a hackathon.
In fact, we found it helpful to have cases to use in our analyses
from a specific disease. Finally, we found it was to the benefit of
everyone to have clinical personnel involved, especially in the later
stages of the event.

Software availability
UPWARD
Source code: https://github.com/NCBI-Hackathons/UPWARD

Archived source code: http://doi.org/10.5281/zenod0.3236567'%
License: MIT

Rapid Clinical Diagnostics
Source code: https://github.com/NCBI-Hackathons/Rapid_Clini-
cal_Diagnostics

Archived source code: http://doi.org/10.5281/zenodo.3236563'*

License: MIT

MassiveSeq
Source code: https://github.com/NCBI-Hackathons/MassiveSeq/

Archived source code: http://doi.org/10.5281/zenodo.3236565'%

License: MIT

PhenoGeno Viz
Source code: https://github.com/NCBI-Hackathons/Phenogeno_
Viz

Archived source code: http://doi.org/10.5281/zenodo0.3236561'"!

License: MIT

Phenotype-to-Genotype Mapping
Source code: https://github.com/NCBI-Hackathons/pheno_geno_
ataxia

Archived source code: http://doi.org/10.5281/zenodo0.3236569'"*
License: MIT

Data availability

Underlying data

All data underlying the results are available as part of the article
and no additional source data are required.
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