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Abstract
: Basic and clinical scientific research at the University ofBackground

South Florida (USF) have intersected to support a multi-faceted approach
around a common focus on rare iron-related diseases. We proposed a
modified version of the National Center for Biotechnology Information’s
(NCBI) Hackathon-model to take full advantage of local expertise in
building “Iron Hack”, a rare disease-focused hackathon. As the
collaborative, problem-solving nature of hackathons tends to attract
participants of highly-diverse backgrounds, organizers facilitated a
symposium on rare iron-related diseases, specifically porphyrias and
Friedreich’s ataxia, pitched at general audiences.

: The hackathon was structured to begin each day withMethods
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: The hackathon was structured to begin each day withMethods
presentations by expert clinicians, genetic counselors, researchers focused
on molecular and cellular biology, public health/global health,
genetics/genomics, computational biology, bioinformatics, biomolecular
science, bioengineering, and computer science, as well as guest speakers
from the American Porphyria Foundation (APF) and Friedreich’s Ataxia
Research Alliance (FARA) to inform participants as to the human impact of
these diseases.

: As a result of this hackathon, we developed resources that areResults
relevant not only to these specific disease-models, but also to other rare
diseases and general bioinformatics problems. Within two and a half days,
“Iron Hack” participants successfully built collaborative projects to visualize
data, build databases, improve rare disease diagnosis, and study
rare-disease inheritance.

: The purpose of this manuscript is to demonstrate the utilityConclusions
of a hackathon model to generate prototypes of generalizable tools for a
given disease and train clinicians and data scientists to interact more
effectively.

Keywords
Hackathon, Data Science, Ataxia, Porphyria, Rare Diseases, Friedreich’s
Ataxia, Clinical Informatics, Bioinformatics
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Introduction
Iron Hack: Genesis of a new hackathon model
Hackathons are an effective avenue for the generation of soft-
ware prototypes in the biomedical informatics space, sev-
eral of which have been sponsored by the National Institutes 
of Health (NIH NCBI). A long-standing interest and active 
research programs on rare diseases, including Friedreich’s 
ataxia and porphyrias at the University of South Florida (USF),  
prompted us to modify the traditional NCBI Hackathon model 
and initiate a specific disease-focused hackathon1–3. Our event 
“Iron Hack” was named after the rare diseases upon which we  
focused.

Because of the diverse scientific and bioinformatic backgrounds 
of hackathon participants, the organizers felt it necessary to 
have a symposium on rare iron-related diseases, and specifically 
ataxia and porphyrias, in the early part of each of the three days.  
During the symposium, renowned scientists, clinicians and inves-
tigators in rare iron-related disease research covered the major 
aspects of Friedreich’s ataxia, porphyrias and sideroblastic  
anemia and emphasized pressing questions that need to be 
addressed for advancement of the field. As a result of the hacka-
thon, we developed resources that are relevant not only to rare 
iron-related diseases, but also to other rare diseases and some 
general bioinformatics problems. The objective of this report 
is to demonstrate the utility of a hackathon model to develop  
generalizable tools for evaluation, diagnosis, and management  
of a given disease.

Rare iron-related diseases: Hurdles to overcome
Rare diseases have a large impact on the population, with 7,000 
orphan diseases collectively affecting about 1 in 10 to 20 people4. 
These diseases place a heavy burden on patients and families, 
with a diagnosis taking up to ten years to identify, if ever.  
Limited patient-numbers and resources for each disease 
severely hamper research, prognoses, diagnoses, and treatments. 
Although quite disparate in symptoms, these conditions all  
stem from problems with iron metabolism or heme synthesis. 
A brief description of these rare diseases is provided below to  
provide context for the “Iron Hack” team projects.

Porphyrias
Biochemical basis and clinical manifestation. Porphyrias 
are a group of rare metabolic disorders caused by malfunc-
tion of the enzymes involved in heme biosynthesis2,3,5. There 
are eight different types of porphyria, each of which arises from 
mutation(s) in the genes for each of the eight enzymes of the 
heme biosynthetic pathway2,3,6,7. With the exception of porphyria  
cutanea tarda (PCT), all other seven porphyrias are inherited as  
autosomal-dominant, autosomal-recessive, or X-linked traits2,6,8,9.

All porphyrias are characterized by the accumulation and excre-
tion of porphyrins or porphyrin precursors, though each type 
has disparate clinical manifestations (including neurovisceral 
and/or cutaneous symptoms) depending upon which enzyme of 
the pathway is defective10. In general, neurological disturbances  
are manifested in the form of acute attacks (e.g., extreme abdomi-
nal and chest pain, vomiting, confusion, constipation, fever, 

high blood pressure, low blood sodium levels, and seizures), 
while photosensitivity is at the root of cutaneous manifestations  
(e.g., skin blistering, redness, scarring, and pain when exposed to  
the sun)3,9,11,12. Suggested treatments and disease-outcomes also 
vary with the particular pathway-defect10,13–19.

Diagnosis. Acute porphyrias can prevail undiagnosed for 10–15 
years following the onset of symptoms19. Perhaps not surpris-
ingly, diagnosis of porphyrias remains challenging: they are 
rare, and their symptoms are nonspecific, often mimicking other, 
more common disorders11. Thus once porphyria clinical symp-
toms are recognized, biochemical laboratory testing should be 
performed to identify the specific type of porphyria10. Genetic 
testing, normally targeted gene sequencing, becomes critical to  
define the mutation(s) in a family and make genetic counseling 
possible. However, diagnosis of porphyrias are often overlooked 
due to, a large extent, the difficulty in performing the specific 
biochemical assays and absence of specialized porphyria  
centers, particularly in developing countries20–22.

Prevalence. In the United States, porphyrias collectively afflict 
fewer than 200,000 people, with similar prevalence in the  
European Union4,10,23. Estimates of porphyria prevalence vary 
by type, with values of 1 in 10,000 for the most common type 
of porphyria, PCT (OMIM 176090) and 1 in 1,000,000 for 
congenital erythropoietic porphyria (CEP; OMIM 263700)10.  
Many people with a genetic mutation associated with the disease 
never experience signs or symptoms, a phenomenon known as 
incomplete or reduced penetrance24.

Friedreich’s ataxia
Biochemical basis and clinical manifestation. Friedreich’s 
ataxia (FRDA, FA; OMIM 229300) is a rare autosomal-recessive 
disease associated with progressive spinocerebellar ataxia, 
cardiomyopathy, scoliosis, diabetes, and vision and hearing  
impairment1,25. Most FRDA patients are largely asympto-
matic during the first 5 – 10 years of life. But, with advancing 
gait and limb ataxia, they require use of a wheelchair and are 
unable to perform daily activities independently, often during  
adolescence25,26.

Symptoms result from reduced synthesis of the mitochon-
drial protein frataxin, an iron chaperone that, by shielding this 
metal, prevents the production of reactive oxygen species (ROS) 
and renders it bioavailable as ferrous iron26–29. When frataxin  
levels are low, iron accumulates in the mitochondria, largely in 
an oxidized and insoluble form30,31. The accumulated iron can  
participate in Fenton chemistry leading to formation of extensive  
reactive oxygen species (ROS) that cause damage and cell death. 
While there is a general agreement that frataxin is critical for 
mitochondrial iron metabolism and cellular iron homeostasis, 
its precise biological role remains a controversial matter26,32,33.  
Involvement of frataxin in 1) iron delivery to the iron–sulfur 
cluster assembly and repair machinery, 2) repair of oxidatively 
inactivated [3Fe–4S] aconitase to yield an active enzyme,  
3) delivery of ferrous iron to ferrochelatase for heme biosynthesis,  
4) detoxification of iron by catalyzing the oxidation of Fe(II)  
to Fe(III) and storing the metal as a ferrihydrite mineral within  
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structurally organized frataxin oligomers are among the 
reported functions ascribed to frataxin26,31,34–41. Despite the 
lack of consensus, frataxin and heme biosynthesis are linked. 
Frataxin may participate in the assembly of the [2Fe-2S] clus-
ter, an essential cofactor for an active human ferrochelatase, 
the terminal enzyme of the heme biosynthetic pathway42–44.  
Alternatively, by maintaining and chaperoning iron in a reduced 
form, frataxin may donate Fe(II) to ferrochelatase, which has 
strict physiological specificity for Fe(II) as substrate37,39,44–46.  
Clearly, a combination of these two functional possibilities  
cannot be ruled out.

Prognoses and treatment. Presently, there is neither a cure nor a 
U.S. Food and Drug Administration (FDA)-approved treatment 
for FRDA47. Advances in understanding the underlying mech-
anism of FRDA, in particular the recognition that frataxin  
deficiency is the root cause of FRDA, have prompted the devel-
opment of therapeutic strategies. Since increased oxidative stress 
and mitochondrial respiratory chain dysfunction have been asso-
ciated with the pathogenesis of FRDA, antioxidants and inhibi-
tors of free radical formation (e.g., idebenone, L-acetylcarnitine, 
resveratrol, and RT001 and other deuterated polyunsaturated 
fatty acids) have been assessed as a promising treatment  
option47–50. Iron chelators, such as deferiprone, have been 
considered as a therapeutic approach of FRDA by control-
ling iron accumulation and decreased frataxin synthesis29,51.  
Regulation of frataxin gene expression by increasing either 
histone acetylation or transcription of the frataxin gene, rep-
resents yet another treatment possibility being explored52,53.  
Histone deacetylase inhibitors reverse or, at least, dimin-
ish silencing and the reduced transcription of the frataxin 
gene observed in FRDA patients54. While protein interferon- 
increases transcription of the frataxin gene and consequent  
production of the frataxin, its therapeutic benefit remains to be  
established52,55. Frataxin gene replacement is also being devel-
oped for as a potential treatment for FRDA. Because of the scope 
of this report, an evaluation of the therapies for FRDA can be  
neither extensive nor complete47.

Prevalence. FRDA affects about 1 in 150,000 individuals of Cau-
casian descent and accounts for 50% of overall cases of hereditary 
ataxia and for 75% of those with onset before age 251,25,56,57.

Genetics of porphyrias and FRDA: a tractable problem?
The robust evidence suggesting these devastating, rare diseases 
named porphyrias can largely be pinpointed to dysfunction in a 
single pathway of eight enzymes, caused by mutation(s) inher-
ited in well-understood, classical Mendelian patterns made them 
an attractive case for potentially-impactful tool-development.  
However, even in these seemingly straightforward cases of  
diseases exhibiting classical Mendelian inheritance, disease 
phenotypes are not entirely explained by the presence of known  
pathogenic variants. The discrepancy between the low pen-
etrance of symptomatic patients for autosomal-dominant acute 
intermittent porphyria (AIP; OMIM 176000) and the high fre-
quency of pathogenic mutations led Chen et al. to propose that 
predisposing- or protective-modifier genes alter expression of 
the AIP phenotype58. Indeed, a small number of modifier-genes,  

regulatory and pathophysiological mechanisms have since been 
identified to contribute to onset of porphyrias, though these 
findings remain insufficient to explain the disease-penetrance  
puzzle8,20.

In rare diseases resulting from trinucleotide copy-number repeat-
variation, such as FRDA, there is some degree of relationship 
between severity of disease phenotype and copy-number57,59. 
In FRDA, expanded trinucleotide (GAA) tracts in intron 1 of 
the FXN gene, commonly between 600 and 900 repeats, result 
in pathologically decreased levels of frataxin60–62. However,  
number of trinucleotide repeats are not reliably predictive of 
disease severity, further suggesting the importance of as-yet 
unknown modifying genes or environmental factors that may  
contribute to disease outcomes47.

The number of disease-phenotypes entirely decided by single- 
gene variants are in the minority63. Most inherited diseases 
are likely to have a more complicated etiology determined by 
some combination of genomic variants, impacted by myriad  
environmental factors as well.

Critical gaps Iron-Hack projects sought to address
We organized Iron Hack to address these challenges, includ-
ing the great need for genomics tools to handle rare-disease 
data, such that new data-mining concepts and computational 
tools could be developed and further adapted to serve the rare-
disease communities. We established five Iron Hack teams to 
develop five computational-tool prototypes broadly focused on  
(1) exploration of consumer-genomics data, (2) large-
scale RNAseq data mining, (3) genomic data visualization,  
(4) rare-disease variants discovery, and (5) genotype-to-pheno-
type mapping. These team-efforts have led to the convergence of 
iron-research communities and genomics data-science research-
ers to produce promising computational tools, strengthened 
through an iterative process of soliciting ideas and feedback from  
domain experts.

The remainder of this report is organized into subsections by 
project, beginning with a detailed description for the five projects, 
the motivations behind them and the gaps they seek to fill. We 
next describe the methodologies and implementations of the 
projects into usable software applications, how to operate the 
software applications, and results produced using the software  
applications. Finally, we discuss the pros and cons of this new 
highly-interdisciplinary and community-driven twist on more  
traditional hackathons.

Project descriptions and goals
Project 1: UPWARD
Uniting People Working Against Rare Diseases (UPWARD) 
will be a Health Insurance Portability and Accountability Act 
(HIPAA)-compliant database which will allow people with rare 
diseases to declare interest in participating in research studies, 
and subsequently share their personal disease stories, clinical 
symptoms, and consumer genetic testing data with researchers  
and clinicians. Figure 1 shows that, as consumer-genetic 
testing data are submitted, they are analyzed alongside 43  
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porphyria-related pathogenic SNPs currently held in UPWARD. A 
set of statistical computation and machine learning methods can 
be used downstream to parse out the novel modifiers of diseases 
as well as the interactions of genetic loci underlying patholo-
gies. This information with be compiled and analyzed within 
UPWARD using, in part, a program which identifies all rare  
disease-related pathogenic or likely-pathogenic Single Nucleotide  
Polymorphisms (SNPs) that are currently included on SNP  
microarray chips used by common consumer genetic test-
ing companies. Table 1 shows that variants sourced from Clin-
Var, a crowdsourced genotype-phenotype database hosted by 
NCBI, against consumer-genetics data sourced from Illumina  
OmniExpress and GSA microarray chips used by Ancestry and 
23andMe. These resulting 43 variants will be used in analysis 
of patient-submitted consumer-genomics results. The goal of 
this platform is to facilitate data-driven discovery of rare-disease  
determinants, such as modifiers that affect penetrance, by lev-
eraging the growing data of consumer genomics. To facilitate 
use of this database, UPWARD has focused its tools to benefit  
people living with porphyria, and porphyria research as a whole.

When people with porphyria access UPWARD, they are met 
with a  survey built to collect consent, contact information and 
disease-associated information, such as clinical symptoms,  
genetic and environmental data, including targeted questions 
concerning environmental factors suspected to trigger acute  
porphyria attacks. Participants are given the option to share this  

survey with family members and friends, both those with 
and without porphyria symptoms. Although family members 
and friends without symptoms at the time of the survey will 
likely never develop symptoms (due to the low penetrance of  
porphyria-associated mutations), we seek to identify modifying 
genes and environmental factors that contribute to the pheno-
type through comparing genotypes of these individuals with 
those of people reporting latent and active porphyria64. We plan  
to explore the possibility of recruiting participants by  
adding UPWARD links to the SNPedia research database, as well  
as through collaborating with porphyria advocacy and patient- 
education groups, and clinical partners.

Project 2: Variants Discovery and Rapid Clinical Diagnosis
Many different mutations can contribute to the onset and pro-
gression of porphyria65. We designed a method to search for 
underlying genetic variants associated with symptoms of con-
genital erythropoietic porphyria (CEP). The first diagnostic 
steps to confirm CEP often happen after referral to a genetic 
counsellor, who recommends targeted screening for a panel of  
known-pathogenic porphyria-associated SNPs. In cases where 
no known-pathogenic variants are found, whole-exome sequenc-
ing may be recommended of both the patient and their par-
ents to catalog variation in the symptomatic person versus their 
asymptomatic parents. These variants filtered from the parent- 
child “trio” data can then be annotated with available disease-
associated information, if any, using existing tools (such as  

Figure 1. UPWARD - Uniting People Working Against Rare Disease. UPWARD opens with a web interface designed to clearly  
communicate research and advocacy goals to the public, request consent and gather data in a HIPPA-compliant manner.
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Table 1. List of porphyria-related pathogenic SNPs. UPWARD includes a tool built to map highly-
pathogenic and likely-pathogenic porphyria-associated variants.

Name Gene RSID Chip

NM_000374.4(UROD):c.603A>G (p.Pro201=) UROD rs2228084 GSA

NM_000374.4(UROD):c.842G>A (p.Gly281Glu) UROD rs121918057 GSA

NM_000374.4(UROD):c.842G>T (p.Gly281Val) UROD rs121918057 GSA

NM_000374.4(UROD):c.874C>G (p.Arg292Gly) UROD rs121918059 GSA

NM_000374.4(UROD):c.912C>A (p.Asn304Lys) UROD rs121918065 GSA

NM_000374.4(UROD):c.932A>G (p.Tyr311Cys) UROD rs121918061 GSA

NM_000374.4(UROD):c.995G>A (p.Arg332His) UROD rs121918066 GSA

NM_000309.4(PPOX):c.-90G>T PPOX rs115158839 GSA

NM_001122764.1(PPOX):c.199delC (p.Leu67Terfs) PPOX rs786204784 GSA

NM_001122764.3(PPOX):c.502C>T (p.Arg168Cys) PPOX rs121918325 GSA

NM_000097.5(CPOX):c.814A>C (p.Asn272His) CPOX rs1131857 GSA

NM_000410.3(HFE):c.187C>G (p.His63Asp) HFE|LOC108783645 rs1799945 GSA

NM_000410.3(HFE):c.193A>T (p.Ser65Cys) HFE|LOC108783645 rs1800730 GSA

NM_000410.3(HFE):c.845G>A (p.Cys282Tyr) HFE rs1800562 GSA

NM_000031.5(ALAD):c.823G>A (p.Val275Met) ALAD rs121912981 GSA

NM_000031.5(ALAD):c.718C>T (p.Arg240Trp) ALAD rs121912982 GSA

NM_000031.5(ALAD):c.397G>A (p.Gly133Arg) ALAD rs121912980 GSA

NM_000031.5(ALAD):c.36C>G (p.Phe12Leu) ALAD rs121912984 GSA

NM_000375.2(UROS):c.683C>T (p.Thr228Met) UROS rs121908014 GSA

NM_000375.2(UROS):c.673G>A (p.Gly225Ser) UROS rs121908020 GSA

NM_000375.2(UROS):c.244G>T (p.Val82Phe) UROS rs121908016 GSA

NM_000375.2(UROS):c.217T>C (p.Cys73Arg) UROS rs121908012 GSA

NM_000375.2(UROS):c.184A>G (p.Thr62Ala) UROS rs28941775 GSA

NM_000375.2(UROS):c.10C>T (p.Leu4Phe) UROS rs121908015 GSA

NM_000190.4(HMBS):c.445C>T (p.Arg149Ter) HMBS rs118204120 GSA

NM_000190.4(HMBS):c.499C>T (p.Arg167Trp) HMBS rs118204101 GSA

NM_000190.4(HMBS):c.500G>T (p.Arg167Leu) HMBS rs118204095 GSA

NM_000190.4(HMBS):c.500G>A (p.Arg167Gln) HMBS rs118204095 GSA

NM_000190.4(HMBS):c.601C>T (p.Arg201Trp) HMBS rs118204109 GSA

NM_000190.4(HMBS):c.606G>T (p.Val202=) DPAGT1|HMBS rs1131488 GSA

NM_000190.4(HMBS):c.1075G>A (p.Asp359Asn) HMBS rs144949995 GSA

NM_001382.3(DPAGT1):c.1177A>G (p.Ile393Val) DPAGT1|HMBS rs643788 GSA

NM_001382.3(DPAGT1):c.994T>G (p.Phe332Val) DPAGT1|HMBS rs138544311 GSA

NM_000374.4(UROD):c.603A>G (p.Pro201=) UROD rs2228084 OmniExpress 

NM_000309.4(PPOX):c.-186C>A PPOX rs2301286 OmniExpress 

NM_000410.3(HFE):c.187C>G (p.His63Asp) HFE|LOC108783645 rs1799945 OmniExpress 

NM_000190.3(HMBS):c.-65C>T HMBS rs589925 OmniExpress 

NM_000190.4(HMBS):c.88-14G>A HMBS rs17075 OmniExpress 

NM_000190.4(HMBS):c.613-19C>A HMBS rs1784304 OmniExpress 

NM_001382.3(DPAGT1):c.*427T>G DPAGT1|HMBS rs28990975 OmniExpress 

NM_001382.3(DPAGT1):c.*417T>C DPAGT1|HMBS rs7759 OmniExpress 

NM_001382.3(DPAGT1):c.*265A>G DPAGT1|HMBS rs28990974 OmniExpress 

NM_001382.3(DPAGT1):c.1177A>G (p.Ile393Val) DPAGT1|HMBS rs643788 OmniExpress 
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dbNSFP and WGSA)66,67. With our Variants Discovery tool, 
we aimed to generate a workflow which operates on trio-data to 
identify, categorize and then rigorously assess candidate disease- 
causing mutations in cases where the underlying mutation is 
unknown, modeled after existing workflows for whole-exome 
sequence analysis (Figure 2)68.

Tier 1 variants are known disease-causing mutations in known 
disease-causing genes. Tier 2 variants are uncharacterized  
de novo mutations predicted to be damaging (see Methods) in 
known disease-causing genes. Tier 3 variants are uncharacter-
ized, damaging, inherited mutations in known disease-causing 
genes (parents are not affected). Tier 4 variants are functional 
mutations with unknown significance in known disease-causing  
genes. Tier 5 variants are damaging mutations in the extended 
gene list (e.g. those genes associated with symptoms of dis-
ease). Candidate disease-causing variants are categorized into 
five evidence-based tiers, where Tier 1 variants are known-
pathogenic and have the highest support. We intend to expand 
this workflow so that it might be used to assist in the diagnosis  
of patients with other difficult-to-identify conditions.

Project 3: MassiveSeq: Automated meta-analysis of RNA-
Seq Data from GEO data
The fields of biology and medicine have undergone swift changes 
to the manner in which ribonucleic acid (RNA) can be studied 
using deep-sequencing techniques to investigate expression- 
differences in possible RNA species that may be associated with 

deleterious disease outcomes69. RNA-Seq technology has revo-
lutionized detection and analysis of aberrant RNA transcripts  
associated with disease69.

In rare disease research in particular, obtaining sample-sizes 
enabling confident identification of disease-associated tran-
scripts is a considerable challenge. The amount of RNA-seq data  
contributed to NCBI’s Gene Expression Omnibus (GEO), a pub-
lic repository for functional genomics data, is increasing at a rapid 
pace. A simple query for “Expression profiling by high through-
put sequencing” yielded 14,200 unique datasets as of March 
6, /2019. The availability of these massive quantities of data  
creates an open opportunity in many research areas for meta-
analyses using these published datasets to strengthen ana-
lytical power. Our massive parallel-sequencing analysis tool, 
MassiveSeq, provides an opportunity for researchers and bio-
informaticians to easily extract and process meaningful infor-
mation (such as quantitative gene expression, novel transcripts 
and their isoforms, alternative splice-site variants, SNPs or  
copy-number variation) from these large datasets to evaluate 
the associations between biological processes, gene expres-
sion and disease outcomes. MassiveSeq automates downloading 
and processing of large-scale RNA-seq datasets with the aim of  
easing computational time and complexity70–73.

MassiveSeq differs from conventional, comprehensive RNA-
seq pipelines in that it combines multiple RNA-seq data-
sets to increase analytical power (Figure 3)74–76. The search is  

Figure 2. Overview of the Variants Discovery pipeline to report possible pathogenic variants associated with Mendelian diseases. 
Abbreviations: dbNSFP, database for nonsynonymous SNPs’ functional predictions; WGSA, whole genome sequencing annotator; HGMD, 
Human gene mutation database; eQTL, expression quantitative trait loci.
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confined to samples meeting the criteria, e.g., disease, library 
source (genomic, transcriptomic or metagenomic), platform  
(Illumina, PacBio), or instrument (Genome Analyzer, Hiseq, 
Nextseq). MassiveSeq additionally allows exploration of novel  
clustering methods to enable meta-analysis of differential gene 
expression. Initial steps in processing raw sequencing reads on 
even a single, traditional dataset are often computationally inten-
sive, and obtaining additional publicly-available RNAseq data-
sets at a massive scale for such processing is resource-consuming 
as well. MassiveSeq takes raw-sequencing data (fastq format)  
automatically streamed from NCBI’s Short-Read Archive (SRA) 
as input, using a GEO query specifying parameters such as  
disease and experimental type (e.g., high-throughput RNAseq). 
Datasets can be further filtered as needed. The MassiveSeq 
pipeline next utilizes dockerized HISAT2 (version 2.1.0) and  
StringTie (v1.3.5) to enable automated, parallel processing of 
each experiment77,78. Reads are automatically streamed directly 
from SRA, mapped to a reference genome, assembled into  
transcripts--including novel splice-variants--and annotated in paral-
lel within each dataset. The MassiveSeq pipeline allows uniform 
processing of multiple, independent RNAseq datasets, enabling  
powerful identification of differentially expressed genes and 
transcripts associated with diseases of interest. We applied  
MassiveSeq to 99 Friedreich’s Ataxia SRA datasets to identify  
disease-associated transcripts for Iron Hack70–73.

Project 4: Phenogeno Viz: Rapid aberrantly-expressed 
gene identification from RNA-Seq
Abnormal gene-expression patterns can cause a broad range 
of diseases. However identifying abnormally-expressed genes 
and correctly interpreting expression data across experiments 
can be complicated by inconsistencies in gene-expression  

normalization strategies, as well as inadequate filtering of noisy 
data. Here, we developed an algorithm to rapidly identify genes 
with abnormal gene expression patterns in samples of inter-
est (e.g., disease-presenting patient) as compared to controls  
(Figure 4). This method was built utilizing ~2000 RNA-Seq 
datasets publicly available on GTExPortal79. The package imple-
ments three commonly used RNA-Seq normalization meth-
ods: Fragments per kilobase of transcript per million mapped 
reads (FPKM), transcripts per million mapped reads (TPM) 
and differential gene expression analysis based on the negative  
binomial distribution (DEseq). A Gaussian-mixture model is  
utilized here to remove RNA-Seq noise and the DE-Seq method  
is finally implemented to capture abnormally expressed genes  
corresponding to query tissue. Simulation data were generated to 
test algorithm performance, and we intend to expand this system 
so that it might be used to assist in the diagnosis of patients with  
difficult to identify conditions80.

Project 5: Phenotype-to-Genotype Mapping: Assessing 
combinatorial variant-contribution to disease phenotypes
Disease-phenotypes are unlikely to be entirely explained by 
the presence of single pathogenic variants. Pleiotropy, modu-
lating genes and combinatorial effects are the rule, rather than 
the exception; however assessing combinatorial effects under-
lying disease quickly becomes computationally expensive,  
with a practically-infinite number of variant-combinations that 
could be assessed. We developed a tool-set to enable thought-
ful reduction of variants to feasibly assess the role of modifying  
genes in rare diseases such as Friedreich’s ataxia.

Most of the alleles a person inherits are unlikely to be involved 
in modulating the disease phenotype, and models incorporating  

Figure 3. Flowchart for Massiveseq Methodology. The pipeline takes metadata from the Sequence Read Archive (SRA) and parses it 
for quality control (QC). The primary work takes place in a custom snakemake script that aligns sequences with Hisat2 and then quantifies 
transcripts with Stringtie in a parallelized fashion across available machines and cores.
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many extraneous variables are unnecessarily cumbersome 
and perform more poorly than models incorporating domain- 
specific feature-selection. Therefore the first step of our  
pipeline was to reduce the disease-associated variant search-space 
to genes fitting a profile of interest.

We focused on broadly-applicable features of likely disease-
causing variants (as opposed to disease-specific features) for 
our first layer of feature-selection in this first iteration of our 
pipeline. Input variant-call data are filtered based on the like-
lihood that any particular variant is deleterious (as predicted 
by Polyphen-2 scores) and by residual variation inheritance  
scores81,82. As features-of-interest for disease-associated variants 
should change depending upon the particular disease, phenotype, 
and available domain-specific knowledge, the feature-selection 
component of our tool is intended to be easily extendable 
for investigating the combinatorial contributions of multi-
ple variants to disease phenotypes by any number of charac-
teristics. We incorporated two existing annotation packages  
(Open-CRAVAT (version 1.4.0) and ANNOVAR version (On 
2018Apr16)) to thoroughly annotate available information 
for each variant, any of which can be filtered on in the feature-
selection module83. Highly ranked variants are then assessed for 
their contribution to disease-phenotype via the equally modu-
lar “analysis” part of our pipeline. Our current analysis module  
utilizes the APRIORI algorithm to detect variant co-occurrence  
relationships with disease, though the output from the feature- 
selection module is in a common format to facilitate  

application of other machine-learning approaches to identifying  
combinatorial interactions, all implemented via a simple web-user  
interface84.

We developed this pipeline with modularity being a primary 
goal. The APRIORI algorithm is currently implemented to 
identify genes that frequently co-occur in the feature-selected 
set of genes. Future work will implement tools that check for 
over-representation of gene ontology terms among the genes  
determined to have deleterious alleles.

Methods and implementation
Key concepts informing methods and implementations of  
each project are described below.

UPWARD
To build a database of pathogenic or likely pathogenic SNPs, we 
sourced Rapid Stain Identification Series (RSID) information 
from the Illumina OmniExpress & Illumina Global Screening 
Array (GSA) microarray chips (used by Ancestry and 23andMe 
respectively), then filtered out non disease-associated genes 
using the NCBI ClinVar database. For specific application to 
porphyrias, we selected all genetic polymorphisms annotated  
to be associated with any of the porphyrias, as well as their 
associated RSID, SNP location in the genome, and degree of 
pathogenicity85,86. Participants’ raw genomics data and environ-
mental data are stored in a non-relational database, which has  
been proven to be more efficient than relational databases for  

Figure 4. The work flow chart for identifying abnormal genes based on RNA-Seq. After RNA-Seq is performed on a patient sample, the 
program searches the Genotype-Tissue Expression Project (GTEx) database for RNA-Seq data from the specific tissue potentially associated 
with the disease. Three methods are used for RNA-Seq normalization (Fragments per kilobase of transcript per million mapped reads 
(FPKM), transcripts per million mapped reads (TPM) and Differential gene expression analysis based on the negative binomial distribution 
(as implemented in DESeq)), and the data were fit to a Gaussian mixture model to remove noise within samples. The differentially expressed 
genes in the patient sample are finally captured by using the R program DESeq.
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storing and accessing genomic data87,88. A secure, HIPAA- 
compliant human subject meta-information database will be  
built as part of the next iteration of development89,90. A secure, 
HIPAA-compliant human subject meta-information database 
will be built as part of the next iteration of development89,90.  
At that time, the database will be expanded to capture the  
following information: 1) patient-reported phenotype and symp-
tom information of people identified as potentially carrying 
a pathogenic or likely pathogenic variant in a porphyria gene 
and 2) people with a clinical diagnosis of porphyria, as well as  
de-identified information on their family members to try to  
capture data on asymptomatic people.

Our system currently consists of a cloud-database built on 
MongoDB Community Edition, and a web server run through 
NGINX to accept input data from participants. The entire system 
is containerized and orchestrated by Docker Compose for ease  
of replication and to enable application to other diseases.

Variants Discovery and Rapid Clinical Diagnosis
Our pipeline categorizes patient variant-data into five tiers of 
pathogenic certainty based on quality of evidence, the logic 
of which is broadly outlined in Figure 2. The pipeline accepts 
dbNSFP or WGSA-annotated patient variant-files (in tab- 
delimited format, one variant per line). Annotated variants are 
first checked against known disease-associated variant databases,  
namely HGMD and ClinVar, to identify any previously reported 
pathogenic mutations matching the patient phenotype; these 
known, disease-causing variants in known disease-causing 
genes are categorized into the most confident classification, 
Tier 1. All variants not represented in the HGMD and ClinVar 
databases are next checked to see if they are located in genes 
that are involved in known disease-associated pathways.  
Variants in disease-associated pathways are then evaluated for 
probability of being deleterious (with start-loss, stop-gain, essen-
tial splicing variant, frameshift, indel or missense-mutations  
being highly likely to be deleterious). Damaging variants in 
known disease-causing genes are then contrasted against vari-
ant files from the non-affected parents to distinguish de novo 
(Tier 2, uncharacterized, damaging de novo mutation in known  
disease-causing gene) from inherited (Tier 3, uncharacterized, 
damaging inherited mutation in known disease-causing gene)  
variants. Non-deleterious variants are not considered further.

Damaging variants not occurring in known disease-causing 
genes themselves, but mapping to known expression-Quantitative 
Trait Loci (eQTLs, loci associated with expression-changes in 
transcripts from known disease-causing genes), are stratified 
into Tier 4. We report all other damaging variants in or associ-
ated with genes that are related to symptoms of the disease as  
Tier 5 (damaging mutation in the extended gene list). Any 
other known disease-causing mutations associated with unre-
lated diseases are additionally reported in an extended report to  
allow for possible incidental or secondary findings.

MassiveSeq
We planned the main snakemake (version 5.4.2) to automate 
dispatching of jobs depending on the available cores and  

memory of a machine91. Here, the core steps involved Hisat2 for  
alignment, followed by Stringtie (v1.3.5) for transcript annota-
tion and de novo annotation. Finally, reads were quantified by 
using featureCounts to measure at the exon level from the subRead 
(version 1.6.3) package92. This quantification pipeline follows 
a common, recently published protocol on Stringtie and 
Hisat293. It allows for both known as well as novel isoform  
transcripts to be identified and measured.

Once the gene counts were fully quantified for each sample, we 
analyzed the overall dataset comprised of all 4 studies using 
the R package metaSeq (version 1.22.1)94. This package adapts 
the non-parametric NOISeq method for differential RNA-
seq analysis to allow for multiple studies in a meta-analysis  
framework95.

We used the gene counts with GSVA (Gene Set Variation 
Analysis, version 1.30) to estimate per-same GSEA (Gene Set 
Enrichment Analysis) pathway enrichments for the 50 hall-
mark datasets from MSigDB96,97. We used these pathway enrich-
ments as features (a binary up- or down-regulated pathway) for  
a deep learning model, along with the remaining gene estimates. 
We used the fast.ai library to construct a Convolutional  
Neural Network (CNN)98. One of the novel features of fast.ai, 
especially for our data, is that it facilitates rapid construction of 
neural networks with tabular data via embeddings similar to 
Word2Vec99. The training split was 70/30; afterwards the CNN 
was trained for 5 epochs (cycles of the data), with a learning  
rate of 0.1.

We are also in the early stages of adapting the GATK RNA-
seq best practices to this pipeline so that we can rapidly call 
variants on these samples100. Our workflow for the procedures,  
and methods used can be found in Figure 3.

Phenogeno Viz
This package is designed to detect abnormal genes exhibited  
differential expression compared with normal tissue cell. For 
each patient RNA-Seq result, we first download the gene expres-
sion level from normal tissue same as patient tissue. Then for  
multiple gene expression RNA-Seq samples available in web-
site GTExportal (https://gtexportal.org/home/), three normalized 
methods including TPM, FPKM and DEseq are available. The  
Gaussian-mixture model is utilized to remove RNA-Seq noise. 
The basic idea is to use the EM algorithm to find two best  
fitted Gaussian distribution and only maintain the distribu-
tion with relative higher mean value as a true signal. After 
noise reduction, DEseq algorithm is used to identify significant  
up or down regulated genes in patients.

Phenotype to Genotype-Mapping
This tool is envisioned to be most useful for analyzing variant- 
call data from networks of families affected by rare disease  
(Figure 5). Currently the input data are variant-call files (.vcf) 
obtained from patients with a rare disease; future versions will 
incorporate additional genomic information from family members. 
The user uploads patient .vcf files through a web-app interface,  
then selects features on which to filter (currently a maximum  
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Figure 5. Phenotype-to-Genotype Mapping: Assessing combinatorial variant-contribution to disease phenotypes general workflow. 
Input data are variant-call files in .vcf format collected from patient samples. The feature-selection module collects all available annotation 
information for each identified variant, then narrows down to variants most likely to be associated with the phenotype based on user-specified 
parameters. These feature-selected variants are then analyzed for combinatorial contribution to the disease using the tools in the analysis 
module. The output of the analysis modules are tables and graphs that summarize the results.

and minimum score for residual variance-intolerance, a meas-
ure of gene-tolerance to variation based on population allele- 
frequencies). The web interface can be run locally to keep patient 
data secure. The back-end next runs the files through CRAVAT 
and ANNOVAR to assemble annotation information on all vari-
ants compiled from multiple databases that the user selects upon 
install (including ClinVar, Pubmed, etc). These annotation data 
are then filtered according to user-specification using the feature  
selection module.

Operation
Operation can be performed on a computational cluster with 
multiple cores. The system can use a Lustre parallel file system 
for fast Input and Output. Remote mounting onto the cluster  
should be available for flexible data access and movement.

UPWARD
The only requirement to build this system is having Docker 
and Docker Compose installed on your machine. For instruc-
tions on running the system refer to the associated GitHub  
readme at bit.ly/UPWARD19101,102.

Variants Discovery and Rapid Clinical Diagnosis
GitHub readme and description available at https://bit.
ly/2FGqkv7103,104.

“Massive” RNA-seq Combined Analysis of Multiple 
Datasets
For full instructions on how to clone and implement the  
code, please refer to:

The MassiveSeq github repository: https://bit.ly/2HKA61y105,106.

PhenogenoViz: Rapid abnormal gene identification based 
on RNA-Seq
Running the web app requires the installation of Ruby, R, and 
Python on the server. The instructions for installing Ruby on 
Rails on Windows 10, Ubuntu, and OS X can be seen here, and 
should be similar for different OS versions107. Install Python 3  
from here and install R from here108,109. The web application is 
available on GitHub at https://bit.ly/2V3Hpo2 and instructions  
for installation are detailed on the ReadMe110,111.

Phenotype to Genotype-Mapping
GitHub readme and description available at https://github.com/
NCBI-Hackathons/pheno_geno_ataxia112,113.

Lessons learned
Throughout this process we identified several areas where improve-
ments could be made for future disease-focused hackathons.  
A few of these are described below.
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1)   �We were successful in prototyping for a specific disease.

2)   �It was helpful to learn more about the diseases and  
current problems that need to be solved before starting  
the projects.

3)   �If trying to solve a clinical problem, such as how to 
improve and speed up the rate at which patients receive 
a diagnosis for rare diseases, include clinicians as part  
of the group.

4)   �It may also be advantageous to have the didactic  
presentations about the diseases in advance of the hacka-
thon such that everyone has a basic understanding of the  
issues and disease symptoms and time for brainstorming.

5)   �Having a team meeting prior to the hackathon to 
assign roles and discuss overall flow for each day was  
helpful.

6)   �Providing literature to read about the disease/genetic 
condition was also useful background for preparing  
for the hackathon.

7)   �Having two leads on each team increased efficiency, 
as each could take turns fielding questions from less-
experienced team-members while the other could keep  
the hacking on-task for the day.

8)   A few things some specific teams learned

a)   �UPWARD: Forming a team composed of people 
with a variety of training backgrounds (e.g. clini-
cians, researchers, organizers, computer scientists, 
biologists, geneticists, etc.) brings strength and  
utility to team ideas and project results. Additionally  
devoting a portion of the first day or meeting 
period to brainstorming, idea proposal, and argu-
ments facilitates the formation of a plan which team 
members are able to agree upon and work towards 
while reducing the chance of a schism further  
down the road.

b)   �MassiveSeq: We initially overscoped/planned on 
a completely different toolset. Scaling back to a 
core set of tools that we were comfortable with 
made completing the project feasible. People 
were coming in from really different backgrounds  
(choice of programming language, familiarity with 
genomics data formats, etc.) and in retrospect we 
would have liked to have planned a bit more for  
some specific tasks.

Results
UPWARD
After identifying porphyria-related pathogenic SNPs cur-
rently included on Illumina OmniExpress and Illumina GSA 
microarray chips, 43 porphyria-related pathogenic SNPs were 
found. This list (presented in Table 1) will be maintained 

and updated at the UPWARD GitHub repository (labeled as  
pathogenic SNPs.csv)101. This list will be compared against partici-
pant-submitted consumer genomics test results within UPWARD 
once the project is reviewed and approved by the Institutional 
Review Board (IRB).

Variants discovery and rapid diagnosis
We examined the genetic basis with the following examples of 
porphyria genetics. Using our developed pipeline, we success-
fully identified several candidate SNPs (in Tier 1, Tier 2 and 
Tier 4) that were previously unnoticed in a porphyria patient 
in a clinical setting. These SNPs are located in genes known 
to cause different kinds of porphyria, e.g. UROS and CPOX 
genes. The discovered SNPs can, based on the prediction using  
our pipeline, affect the transcription of the candidate genes, 
their translation or both. All of these possibilities would result 
in functional abnormalities of the final gene product. For 
example, two of the identified SNPs were eQTL (expression 
quantitative trait loci), which led to significantly decreased  
expression level of the UROS gene (Figure 6 and Figure 7).

These variants examples demonstrated that our pipeline can 
help physicians and/or clinical geneticists quickly filter out 
the vast majority of neutral variants and report the remaining 
variants in clinically meaningful tiers to facilitate further  
experimental validation and explanation.

MassiveSeq
Using Metaseq we identified over 2000 genes upregulated in 
Friedreich’s Ataxia patients compared to controls (Figure 8).  
However, we emphasize that this analysis was merely a proof 
of concept, and further work needs to be done to explore  
methods and techniques for standardizing phenotypes (data  
harmonization) alongside the meta-analysis itself in Friedreich’s  
Ataxia. (Figure 8).

We used fast.ai to train a CNN on an embedded feature-space 
of these counts as well as 50 gene-set enrichment features from 
Msigdb (see Methods). The trained model had an overall accu-
racy of 0.75, which seems promising given the number of  
features and low number of samples for training.

MassiveSeq’s implementation of HISAT2 and StringTie identi-
fied novel-isoform transcripts in various samples. We focused 
our analyses on the FXN gene, as trinucleotide GAA-repeats 
at this locus are causative of FRDA. We identified multiple 
novel-isoform transcripts within 1kb up and downstream of 
FXN in affected, unaffected and carrier-patients (Table 2). We  
were able to visualize the truncation of the FXN transcripts from 
the above samples using IGV. Shallow read-coverage of the 
whole transcriptome from this particular study made it difficult  
to confirm the reliability of the identified transcript truncation.

Phenogeno Viz: Rapid abnormal gene identification based 
on RNA-Seq
For each input patient RNA-Seq data, the RNA-Seq data related 
to query tissue are extracted from the database. The available  
tissues and number of RNA-seq data are listed in Table 3.
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Figure 6. Expression change of the UROS gene caused by eQTL SNP No. 1 across all tissue types in the Genotype-Tissue Expression 
Project (GTEx). There is significant down-regulation of UROS gene associated with this variant in all tissues (except ovary). NES: normalized 
effect size.
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Figure 7. Expression change of the UROS gene caused by eQTL SNP No. 2 across all tissue types in the Genotype-Tissue Expression 
Project (GTEx). There is significant down-regulation of UROS gene associated with this variant in all tissues (except ovary). NES: normalized 
effect size.
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Figure 8. Significance of up-regulated genes from metaseq analysis; red bar denotes .05 significance cutoff. Distribution of significance 
in downregulated genes from metaseq analysis; no genes were significant at 0.05 threshold.

Table 2. List of novel-isoform transcripts within 1kb of the FXN gene.

Novel Transcript Chr. Strand Start End FPKM TPM Disease

SRR8038380_chr.30572 9 + 69035259 69100178 1.787076 3.825795 Friedrich Ataxia

SRR8038380_chr.30573 9 - 69107926 69108217 0.136139 0.291447 Friedrich Ataxia

SRR8038387_chr.17699 9 + 69035259 69079076 0.274068 0.490055 Carrier

SRR8038389_chr.19844 9 + 69035751 69074850 1.070571 1.139182 Unaffected

SRR8038390_chr.21253 9 + 69035259 69100178 1.033484 1.298192 Unaffected

SRR8038399_chr.26427 9 + 69035259 69079076 3.126959 7.802162 Unaffected

Table 3. Available RNA-Seq 
data samples in Genotype-
Tissue Expression Project 
(GTEx) for different tissues.

Tissues Number of 
RNA-Seq data

Adipose 797

Adrenal 190

Bladder 11

Blood 536

Blood 913

Brain 1671

Breast 290

Cervix 11

Colon 507

Esophagus 1021

Fallopian 7

Heart 600

Kidney 45

Tissues Number of 
RNA-Seq data

Liver 175

Lung 427

Muscle 564

Nerve 414

Ovary 133

Pancreas 248

Pituitary 183

Prostate 152

Salivary 97

Skin 1203

Small 137

Spleen 162

Stomach 262

Testis 259

Thyroid 446

Uterus 111

Vagina 115
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For convenience, brain tissue is selected here for the follow-
ing discussion. Considering different sequencing depth for each  
sample, we provide three methods for data normalization: DEseq, 
FPKM, and TPM. As there are a large number of samples, 
we used uniform sampling to select n genes for visualization. 
As shown in Figure 9, n = 20 genes are shown here to compare  
different normalization methods. DEseq normalization results 
show relative lower fluctuation compared with the other two  
methods (F-test p < 2.2e16), indicating better performance of 
DEseq. Except for Bladder, Cervix, and Fallopian, most tissues in  
our database exhibit large RNA-Seq sample number. Therefore,  
a method is required to select the data with relatively high  

signal/noise ratio. A Gaussian-mixture model is fit for each gene 
and returns the posterior probability to be ‘true’ signal for each 
RNA-Seq sample (Figure 10). The top ten samples with the 
highest average posterior probability are picked as background 
and compared with patient samples. Then, DEseq is used for  
differential expression gene identification. As shown in  
Figure 11A, the green dots represent significant differential 
expression gene (p-adj < 0.01) between patient and samples 
from database. Figure 11B shows top 10 abnormal genes and  
their geneID in patients.

(‘Neuroblastoma’ related genes is used here).

Figure 9. n = 20 genes are sampled here to compare different normalization method: Fragments per kilobase of transcript per million 
mapped reads (FPKM), transcripts per million mapped reads (TPM) and Differential gene expression analysis based on the negative 
binomial distribution (DESeq).

Figure 10. The Gaussian mixture model is implemented here to filter out noise. Hist plot shows the distribution of gene expression level 
for gene ‘CELSR2’ in 1671 different brain RNA-Seq samples. The Gaussian mixture model is fitted by the EM algorithm and the noise is filtered 
out by posterior probability bigger than 0.5.
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Figure 11. Differential gene expression analysis based on the negative binomial distribution (DESeq) is used here to find differential 
expression genes between patient and database. A) Scatter plot shows significant differential genes (green dot, p-adj < 0.01). B) Boxplot 
shows top 10 abnormal genes in simulation compared with data from database.

Phenotype-to-Genotype Mapping
The code was tested using the related individuals from the 
1000 genomes project. Flagging the genes most likely to have  
deleterious alleles decreased the search space enough to allow the  
APRIORI algorithm to run on the dataset.

Conclusion and next steps
Common questions in the community about hackathons include 
whether they can focus on specific diseases and how clini-
cal personnel can interact more effectively with data scien-
tists. We found that it was indeed possible to focus on a given 
disease while developing generalized tools in a hackathon.  
In fact, we found it helpful to have cases to use in our analyses 
from a specific disease. Finally, we found it was to the benefit of 
everyone to have clinical personnel involved, especially in the later 
stages of the event.

Software availability
UPWARD
Source code: https://github.com/NCBI-Hackathons/UPWARD

Archived source code: http://doi.org/10.5281/zenodo.3236567102

License: MIT

Rapid Clinical Diagnostics
Source code: https://github.com/NCBI-Hackathons/Rapid_Clini-
cal_Diagnostics

Archived source code: http://doi.org/10.5281/zenodo.3236563104

License: MIT

MassiveSeq
Source code: https://github.com/NCBI-Hackathons/MassiveSeq/

Archived source code: http://doi.org/10.5281/zenodo.3236565106

License: MIT

PhenoGeno Viz
Source code: https://github.com/NCBI-Hackathons/Phenogeno_
Viz

Archived source code: http://doi.org/10.5281/zenodo.3236561111

License: MIT

Phenotype-to-Genotype Mapping
Source code: https://github.com/NCBI-Hackathons/pheno_geno_
ataxia

Archived source code: http://doi.org/10.5281/zenodo.3236569112

License: MIT

Data availability
Underlying data
All data underlying the results are available as part of the article  
and no additional source data are required.

Grant information
RHYJ and GCF are partly supported by iron- and heme-related 
research funding from American Cancer Society Institutional 

Page 18 of 22

F1000Research 2019, 8:1135 Last updated: 19 JUL 2019

https://github.com/NCBI-Hackathons/UPWARD
http://dx.doi.org/10.5281/zenodo.3236567
https://github.com/NCBI-Hackathons/UPWARD/blob/master/LICENSE
https://github.com/NCBI-Hackathons/Rapid_Clinical_Diagnostics
https://github.com/NCBI-Hackathons/Rapid_Clinical_Diagnostics
http://dx.doi.org/10.5281/zenodo.3236563
https://github.com/NCBI-Hackathons/pheno_geno_ataxia/blob/master/LICENSE
https://github.com/NCBI-Hackathons/MassiveSeq/
http://dx.doi.org/10.5281/zenodo.3236565
https://github.com/NCBI-Hackathons/MassiveSeq/blob/master/LICENSE
https://github.com/NCBI-Hackathons/Phenogeno_Viz
https://github.com/NCBI-Hackathons/Phenogeno_Viz
http://dx.doi.org/10.5281/zenodo.3236561
https://github.com/NCBI-Hackathons/pheno_geno_ataxia/blob/master/LICENSE
https://github.com/NCBI-Hackathons/pheno_geno_ataxia
https://github.com/NCBI-Hackathons/pheno_geno_ataxia
http://dx.doi.org/10.5281/zenodo.3236569
https://github.com/NCBI-Hackathons/pheno_geno_ataxia/blob/master/LICENSE


Research Grant (ACS IRG) [ACS-IRG-14-189-19] and 
WHC fund [310033]. This IronHack and IronBond project is  
supported by a National Science Foundation cloud computing  
platform JetStream award [MCB180202] to RHYJ. The 
“Iron Hack” event is sponsored by USF genomics. This 
work was funded by the Intramural Research Program of the  
National Library of Medicine. 

The funders had no role in study design, data collection and  
analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We would like to thank John Adams (University of South  
Florida, USA), Christian Bréchot (University of South Florida, 
USA), Robert Desnick (Mount Sinai School of Medicine, 
USA), Jennifer Farmer (Friedreich’s Ataxia Research Alliance, 
USA), John Phillips (University of Utah, USA), Hervé Puy 

(National Institute of Health and Medical Research, Paris VII  
University, University Paris Diderot, France), Kristen Wheeden 
(American Porphyria Foundation, USA), Derek Wildman  
(University of South Florida, USA), and Theresa Zesiewicz (Uni-
versity of South Florida, USA) for the stimulating presentations 
and questions that were fundamental to our work. We additionally 
thank Paige Hunt, the USF Genomics Program and USF Omics  
Hub for extensive logistical support in organizing Iron Hack.

NCBI/NIH/USF biohackathon Iron Hack team
Gloria C. Ferreira, Jenna Oberstaller, Renée Fonseca, Justin  
Gibbons, Thomas E. Keller, Chengqi Wang, Xiaoming Liu, Chang 
Li, Minh Pham, Guy W. Dayhoff II, Linh M. Duong, Swamy 
Rakesh Adapa, Luis Tañón Reyes, Luciano Enrique Laratelli, 
Douglas Franz, Segun Fatumo, ATM Golam Bari, Audrey  
Freischel, Lindsey Fiedler, Omkar Dokur, Krishna Sharma and 
Deborah Cragun.

References

1.	 Cook A, Giunti P: Friedreich’s ataxia: clinical features, pathogenesis and 
management. Br Med Bull. 2017; 124(1): 19–30.  
PubMed Abstract | Publisher Full Text | Free Full Text 

2.	 Balwani M, Desnick RJ: The porphyrias: advances in diagnosis and treatment. 
Blood. 2012; 120(23): 4496–4504.  
PubMed Abstract | Publisher Full Text | Free Full Text 

3.	 Karim Z, Lyoumi S, Nicolas G, et al.: Porphyrias: A 2015 update. Clin Res Hepatol 
Gastroenterol. 2015; 39(4): 412–425.  
PubMed Abstract | Publisher Full Text 

4.	 Richter T, Nestler-Parr S, Babela R, et al.: Rare Disease Terminology and 
Definitions-A Systematic Global Review: Report of the ISPOR Rare Disease 
Special Interest Group. Value Health. 2015; 18(6): 906–914.  
PubMed Abstract | Publisher Full Text 

5.	 Bissell DM, Anderson KE, Bonkovsky HL: Porphyria. N Engl J Med. 2017; 377(9): 
862–872.  
PubMed Abstract | Publisher Full Text 

6.	 Yasuda M, Chen B, Desnick RJ: Recent advances on porphyria genetics: 
Inheritance, penetrance & molecular heterogeneity, including new modifying/
causative genes. Mol Genet Metab. 2018; pii: S1096-7192(18)30645-0.  
PubMed Abstract | Publisher Full Text 

7.	 Lecha M, Puy H, Deybach JC: Erythropoietic protoporphyria. Orphanet J Rare 
Dis. 2009; 4: 19.  
PubMed Abstract | Publisher Full Text | Free Full Text 

8.	 Manceau H, Gouya L, Puy H: Acute hepatic and erythropoietic porphyrias: from 
ALA synthases 1 and 2 to new molecular bases and treatments. Curr Opin 
Hematol. 2017; 24(3): 198–207.  
PubMed Abstract | Publisher Full Text 

9.	 Puy H, Gouya L, Deybach JC: Porphyrias. Lancet. 2010; 375(9718): 924–937. 
PubMed Abstract | Publisher Full Text 

10.	 Ramanujam VM, Anderson KE: Porphyria Diagnostics-Part 1: A Brief Overview 
of the Porphyrias. Curr Protoc Hum Genet. 2015; 86: 17.20.1–26.  
PubMed Abstract | Publisher Full Text | Free Full Text 

11.	 Anderson KE: Clinical and Laboratory Diagnosis of the Porphyrias. In Handbook 
of Porphyrin Science (Volume 29) With Applications to Chemistry, Physics, 
Materials Science, Engineering, Biology and Medicine—Volume 29: Porphyrias and 
Sideroblastic Anemias. (World Scientific). 2014; 369–414.  
Publisher Full Text 

12.	 Barman-Aksözen J, C Wiek P, Bansode VB, et al.: Modeling the ferrochelatase 
c.315-48C modifier mutation for erythropoietic protoporphyria (EPP) in mice. 
Dis Model Mech. 2017; 10(3): 225–233.  
PubMed Abstract | Publisher Full Text | Free Full Text 

13.	 Minder EI, Schneider-Yin X, Minder CE: Patient-recorded outcome to assess 
therapeutic efficacy in protoporphyria-induced dermal phototoxicity: a 
proposal. Health Qual Life Outcomes. 2010; 8: 60.  
PubMed Abstract | Publisher Full Text | Free Full Text 

14.	 Langendonk JG, Balwani M, Anderson KE, et al.: Afamelanotide for 
Erythropoietic Protoporphyria. N Engl J Med. 2015; 373(1): 48–59.  
PubMed Abstract | Publisher Full Text | Free Full Text 

15.	 Lane AM, McKay JT, Bonkovsky HL: Advances in the management of 
erythropoietic protoporphyria - role of afamelanotide. Appl Clin Genet. 2016; 9: 
179–189.  
PubMed Abstract | Publisher Full Text | Free Full Text 

16.	 Sardh E, Harper P, Balwani M, et al.: Phase 1 Trial of an RNA Interference 
Therapy for Acute Intermittent Porphyria. N Engl J Med. 2019; 380(6): 549–558. 
PubMed Abstract | Publisher Full Text 

17.	 Berraondo P, Martini PGV, Avila MA, et al.: Messenger RNA therapy for rare 
genetic metabolic diseases. Gut. 2019; 68(7): 1323–1330.  
PubMed Abstract | Publisher Full Text 

18.	 Balwani M, Naik H, Anderson KE, et al.: Clinical, Biochemical, and Genetic 
Characterization of North American Patients With Erythropoietic 
Protoporphyria and X-linked Protoporphyria. JAMA Dermatol. 2017; 153(8): 
789–796.  
PubMed Abstract | Publisher Full Text | Free Full Text 

19.	 Bonkovsky HL, Maddukuri VC, Yazici C, et al.: Acute porphyrias in the USA: 
features of 108 subjects from porphyrias consortium. Am J Med. 2014; 127(12): 
1233–1241.  
PubMed Abstract | Publisher Full Text | Free Full Text 

20.	 To-Figueras J, Ducamp S, Clayton J, et al.: ALAS2 acts as a modifier gene in 
patients with congenital erythropoietic porphyria. Blood. 2011; 118(6): 1443–1451. 
PubMed Abstract | Publisher Full Text 

21.	 O’Malley R, Rao G, Stein P, et al.: Porphyria: often discussed but too often 
missed. Pract Neurol. 2018; 18(5): 352–358.  
PubMed Abstract | Publisher Full Text 

22.	 Jaramillo-Calle DA: Porphyria. N Engl J Med. 2017; 377(21): 2100–2101.  
PubMed Abstract | Publisher Full Text 

23.	 Badminton MN, Elder GH, Whatley SD: Clinical and molecular epidemiology of 
the porphyrias. In Handbook of Porphyrin Science (Volume 29) With Applications to 
Chemistry, Physics, Materials Science, Engineering, Biology and Medicine—Volume 
29: Porphyrias and Sideroblastic Anemias. (World Scientific). 2014; 119–150. 
Publisher Full Text 

24.	 Genetics Home Reference: Porphyria. Genetics Home Reference. (Accessed: 5th 
April 2019).  
Reference Source

25.	 Pandolfo M: Friedreich ataxia: the clinical picture. J Neurol. 2009; 256 Suppl 1: 
3–8.  
PubMed Abstract | Publisher Full Text 

26.	 Vaubel RA, Isaya G: Iron-sulfur cluster synthesis, iron homeostasis and 
oxidative stress in Friedreich ataxia. Mol Cell Neurosci. 2013; 55: 50–61. 
PubMed Abstract | Publisher Full Text | Free Full Text 

27.	 Télot L, Rousseau E, Lesuisse E, et al.: Quantitative proteomics in Friedreich’s 

Page 19 of 22

F1000Research 2019, 8:1135 Last updated: 19 JUL 2019

http://www.ncbi.nlm.nih.gov/pubmed/29053830
http://dx.doi.org/10.1093/bmb/ldx034
http://www.ncbi.nlm.nih.gov/pmc/articles/5862303
http://www.ncbi.nlm.nih.gov/pubmed/22791288
http://dx.doi.org/10.1182/blood-2012-05-423186
http://www.ncbi.nlm.nih.gov/pmc/articles/3512229
http://www.ncbi.nlm.nih.gov/pubmed/26142871
http://dx.doi.org/10.1016/j.clinre.2015.05.009
http://www.ncbi.nlm.nih.gov/pubmed/26409619
http://dx.doi.org/10.1016/j.jval.2015.05.008
http://www.ncbi.nlm.nih.gov/pubmed/28854095
http://dx.doi.org/10.1056/NEJMra1608634
http://www.ncbi.nlm.nih.gov/pubmed/30594473
http://dx.doi.org/10.1016/j.ymgme.2018.11.012
http://www.ncbi.nlm.nih.gov/pubmed/19744342
http://dx.doi.org/10.1186/1750-1172-4-19
http://www.ncbi.nlm.nih.gov/pmc/articles/2747912
http://www.ncbi.nlm.nih.gov/pubmed/28118224
http://dx.doi.org/10.1097/MOH.0000000000000330
http://www.ncbi.nlm.nih.gov/pubmed/20226990
http://dx.doi.org/10.1016/S0140-6736(09)61925-5
http://www.ncbi.nlm.nih.gov/pubmed/26132003
http://dx.doi.org/10.1002/0471142905.hg1720s86
http://www.ncbi.nlm.nih.gov/pmc/articles/4640448
http://dx.doi.org/10.1142/9789814407755_0034
http://www.ncbi.nlm.nih.gov/pubmed/28093505
http://dx.doi.org/10.1242/dmm.027755
http://www.ncbi.nlm.nih.gov/pmc/articles/5374324
http://www.ncbi.nlm.nih.gov/pubmed/20565969
http://dx.doi.org/10.1186/1477-7525-8-60
http://www.ncbi.nlm.nih.gov/pmc/articles/2905349
http://www.ncbi.nlm.nih.gov/pubmed/26132941
http://dx.doi.org/10.1056/NEJMoa1411481
http://www.ncbi.nlm.nih.gov/pmc/articles/4780255
http://www.ncbi.nlm.nih.gov/pubmed/28003770
http://dx.doi.org/10.2147/TACG.S122030
http://www.ncbi.nlm.nih.gov/pmc/articles/5161401
http://www.ncbi.nlm.nih.gov/pubmed/30726693
http://dx.doi.org/10.1056/NEJMoa1807838
http://www.ncbi.nlm.nih.gov/pubmed/30796097
http://dx.doi.org/10.1136/gutjnl-2019-318269
http://www.ncbi.nlm.nih.gov/pubmed/28614581
http://dx.doi.org/10.1001/jamadermatol.2017.1557
http://www.ncbi.nlm.nih.gov/pmc/articles/5710403
http://www.ncbi.nlm.nih.gov/pubmed/25016127
http://dx.doi.org/10.1016/j.amjmed.2014.06.036
http://www.ncbi.nlm.nih.gov/pmc/articles/4563803
http://www.ncbi.nlm.nih.gov/pubmed/21653323
http://dx.doi.org/10.1182/blood-2011-03-342873
http://www.ncbi.nlm.nih.gov/pubmed/29540448
http://dx.doi.org/10.1136/practneurol-2017-001878
http://www.ncbi.nlm.nih.gov/pubmed/29182253
http://dx.doi.org/10.1056/NEJMc1712682
http://dx.doi.org/10.1142/9789814407755_0028
https://ghr.nlm.nih.gov/condition/porphyria
http://www.ncbi.nlm.nih.gov/pubmed/19283344
http://dx.doi.org/10.1007/s00415-009-1002-3
http://www.ncbi.nlm.nih.gov/pubmed/22917739
http://dx.doi.org/10.1016/j.mcn.2012.08.003
http://www.ncbi.nlm.nih.gov/pmc/articles/3530001


ataxia B-lymphocytes: A valuable approach to decipher the biochemical 
events responsible for pathogenesis. Biochim Biophys Acta Mol Basis Dis. 2018; 
1864(4 Pt A): 997–1009.  
PubMed Abstract | Publisher Full Text 

28.	 Selak MA, Lyver E, Micklow E, et al.: Blood cells from Friedreich ataxia 
patients harbor frataxin deficiency without a loss of mitochondrial function. 
Mitochondrion. 2011; 11(2): 342–350.  
PubMed Abstract | Publisher Full Text | Free Full Text 

29.	 Bürk K: Friedreich Ataxia: current status and future prospects. Cerebellum 
Ataxias. 2017; 4: 4.  
PubMed Abstract | Publisher Full Text | Free Full Text 

30.	 Bulteau AL, Dancis A, Gareil M, et al.: Oxidative stress and protease dysfunction 
in the yeast model of Friedreich ataxia. Free Radic Biol Med. 2007; 42(10): 
1561–1570.  
PubMed Abstract | Publisher Full Text 

31.	 Nichol H, Gakh O, O'Neill HA, et al.: Structure of frataxin iron cores: an X-
ray absorption spectroscopic study. Biochemistry. 2003; 42(20): 5971–5976. 
PubMed Abstract | Publisher Full Text 

32.	 Pastore A, Puccio H: Frataxin: a protein in search for a function. J Neurochem. 
2013; 126 Suppl 1: 43–52.  
PubMed Abstract | Publisher Full Text 

33.	 Chiang S, Kovacevic Z, Sahni S, et al.: Frataxin and the molecular mechanism of 
mitochondrial iron-loading in Friedreich’s ataxia. Clin Sci (Lond). 2016; 130(11): 
853–870.  
PubMed Abstract | Publisher Full Text 

34.	 Bencze KZ, Kondapalli KC, Cook JD, et al.: The structure and function of 
frataxin. Crit Rev Biochem Mol Biol. 2006; 41(5): 269–291.  
PubMed Abstract | Publisher Full Text | Free Full Text 

35.	 Stehling O, Elsässer HP, Brückel B, et al.: Iron-sulfur protein maturation in 
human cells: evidence for a function of frataxin. Hum Mol Genet. 2004; 13(23): 
3007–3015.  
PubMed Abstract | Publisher Full Text 

36.	 Gakh O, Ranatunga W, Smith DY 4th, et al.: Architecture of the Human 
Mitochondrial Iron-Sulfur Cluster Assembly Machinery. J Biol Chem. 2016; 
291(40): 21296–21321.  
PubMed Abstract | Publisher Full Text | Free Full Text 

37.	 Yoon T, Cowan JA: Frataxin-mediated iron delivery to ferrochelatase in the final 
step of heme biosynthesis. J Biol Chem. 2004; 279(25): 25943–25946.  
PubMed Abstract | Publisher Full Text 

38.	 Mielcarek A, Blauenburg B, Miethke M, et al.: Molecular insights into frataxin-
mediated iron supply for heme biosynthesis in Bacillus subtilis. PLoS One. 
2015; 10(3): e0122538.  
PubMed Abstract | Publisher Full Text | Free Full Text 

39.	 Lesuisse E, Santos R, Matzanke BF, et al.: Iron use for haeme synthesis is under 
control of the yeast frataxin homologue (Yfh1). Hum Mol Genet. 2003; 12(8): 
879–889.  
PubMed Abstract | Publisher Full Text 

40.	 Bulteau AL, O'Neill HA, Kennedy MC, et al.: Frataxin acts as an iron chaperone 
protein to modulate mitochondrial aconitase activity. Science. 2004; 305(5681): 
242–245.  
PubMed Abstract | Publisher Full Text 

41.	 Tamarit J, Obis È, Ros J: Oxidative stress and altered lipid metabolism in 
Friedreich ataxia. Free Radic Biol Med. 2016; 100: 138–146.  
PubMed Abstract | Publisher Full Text 

42.	 Ye H, Rouault TA: Human iron-sulfur cluster assembly, cellular iron 
homeostasis, and disease. Biochemistry. 2010; 49(24): 4945–4956.  
PubMed Abstract | Publisher Full Text | Free Full Text 

43.	 Rouault TA, Tong WH: Iron-sulfur cluster biogenesis and human disease. 
Trends Genet. 2008; 24(8): 398–407.  
PubMed Abstract | Publisher Full Text | Free Full Text 

44.	 Ferreira GC: Handbook of Porphyrin Science: with Applications to Chemistry, 
Physics, Materials Science, Engineering, Biology and Medicine - Volume 29: 
Porphyrias and Sideroblastic Anemias. (World Scientific Publishing Company Pte 
Limited). 2013.  
Publisher Full Text 

45.	 He Y, Alam SL, Proteasa SV, et al.: Yeast frataxin solution structure, iron binding, 
and ferrochelatase interaction. Biochemistry. 2004; 43(51): 16254–16262.  
PubMed Abstract | Publisher Full Text | Free Full Text 

46.	 Söderberg C, Gillam ME, Ahlgren EC, et al.: The Structure of the Complex 
between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND 
PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME 
SYNTHESIS. J Biol Chem. 2016; 291(22): 11887–11898.  
PubMed Abstract | Publisher Full Text | Free Full Text 

47.	 Aranca TV, Jones TM, Shaw JD, et al.: Emerging therapies in Friedreich’s ataxia. 
Neurodegener Dis Manag. 2016; 6(1): 49–65.  
PubMed Abstract | Publisher Full Text | Free Full Text 

48.	 Pineda M, Arpa J, Montero R, et al.: Idebenone treatment in paediatric and adult 
patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol. 2008; 
12(6): 470–475.  
PubMed Abstract | Publisher Full Text 

49.	 Li L, Voullaire L, Sandi C, et al.: Pharmacological screening using an FXN-EGFP 
cellular genomic reporter assay for the therapy of Friedreich ataxia. PLoS One. 
2013; 8(2): e55940.  
PubMed Abstract | Publisher Full Text | Free Full Text 

50.	 Schöls L, Zange J, Abele M, et al.: L-carnitine and creatine in Friedreich’s ataxia. 
A randomized, placebo-controlled crossover trial. J Neural Transm (Vienna). 
2005; 112(6): 789–796.  
PubMed Abstract | Publisher Full Text 

51.	 Pandolfo M, Arpa J, Delatycki MB, et al.: Deferiprone in Friedreich ataxia: a 6-
month randomized controlled trial. Ann Neurol. 2014; 76(4): 509–521.  
PubMed Abstract | Publisher Full Text 

52.	 Tomassini B, Arcuri G, Fortuni S, et al.: Interferon gamma upregulates frataxin 
and corrects the functional deficits in a Friedreich ataxia model. Hum Mol 
Genet. 2012; 21(13): 2855–2861.  
PubMed Abstract | Publisher Full Text | Free Full Text 

53.	 Gottesfeld JM, Rusche JR, Pandolfo M: Increasing frataxin gene expression 
with histone deacetylase inhibitors as a therapeutic approach for Friedreich’s 
ataxia. J Neurochem. 2013; 126 Suppl 1: 147–154.  
PubMed Abstract | Publisher Full Text | Free Full Text 

54.	 Herman D, Jenssen K, Burnett R, et al.: Histone deacetylase inhibitors reverse 
gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006; 2(10): 551–558. 
PubMed Abstract | Publisher Full Text 

55.	 Lynch DR, Hauser L, McCormick A, et al.: Randomized, double-blind, placebo-
controlled study of interferon-γ 1b in Friedreich Ataxia. Ann Clin Transl Neurol. 
2019; 6(3): 546–553.  
PubMed Abstract | Publisher Full Text | Free Full Text 

56.	 Lynch DR, McCormick A, Schadt K, et al.: Pediatric Ataxia: Focus on Chronic 
Disorders. Semin Pediatr Neurol. 2018; 25: 54–64.  
PubMed Abstract | Publisher Full Text 

57.	 Li Y, Polak U, Clark AD, et al.: Establishment and Maintenance of Primary 
Fibroblast Repositories for Rare Diseases-Friedreich’s Ataxia Example. 
Biopreserv Biobank. 2016; 14(4): 324–329.  
PubMed Abstract | Publisher Full Text | Free Full Text 

58.	 Chen B, Solis-Villa C, Hakenberg J, et al.: Acute Intermittent Porphyria: Predicted 
Pathogenicity of HMBS Variants Indicates Extremely Low Penetrance of the 
Autosomal Dominant Disease. Hum Mutat. 2016; 37(11): 1215–1222.  
PubMed Abstract | Publisher Full Text | Free Full Text 

59.	 Kaplan S, Itzkovitz S, Shapiro E: A universal mechanism ties genotype to 
phenotype in trinucleotide diseases. PLoS Comput Biol. 2007; 3(11): e235. 
PubMed Abstract | Publisher Full Text | Free Full Text 

60.	 Lynch DR, Pandolfo M, Schulz JB, et al.: Common data elements for clinical 
research in Friedreich’s ataxia. Mov Disord. 2013; 28(2): 190–195.  
PubMed Abstract | Publisher Full Text | Free Full Text 

61.	 Babady NE, Carelle N, Wells RD, et al.: Advancements in the pathophysiology of 
Friedreich’s Ataxia and new prospects for treatments. Mol Genet Metab. 2007; 
92(1–2): 23–35.  
PubMed Abstract | Publisher Full Text | Free Full Text 

62.	 Patel PI, Isaya G: Friedreich ataxia: from GAA triplet-repeat expansion to 
frataxin deficiency. Am J Hum Genet. 2001; 69(1): 15–24.  
PubMed Abstract | Publisher Full Text | Free Full Text 

63.	 Marian AJ, van Rooij E, Roberts R: Genetics and Genomics of Single-Gene 
Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes 
of Single-Gene Disorders. J Am Coll Cardiol. 2016; 68(25): 2831–2849.  
PubMed Abstract | Publisher Full Text | Free Full Text 

64.	 Sassa S: Gene-environmental interactions: Lessons from porphyria. Environ 
Health Prev Med. 2003; 7(6): 254–263.  
PubMed Abstract | Publisher Full Text | Free Full Text 

65.	 Anderson KE, Bloomer JR, Bonkovsky HL, et al.: Recommendations for the 
diagnosis and treatment of the acute porphyrias. Ann Intern Med. 2005; 142(6): 
439–450.  
PubMed Abstract | Publisher Full Text 

66.	 Liu X, Wu C, Li C, et al.: dbNSFP v3.0: A One-Stop Database of Functional 
Predictions and Annotations for Human Nonsynonymous and Splice-Site 
SNVs. Hum Mutat. 2016; 37(3): 235–241.  
PubMed Abstract | Publisher Full Text | Free Full Text 

67.	 Liu X, White S, Peng B, et al.: WGSA: an annotation pipeline for human genome 
sequencing studies. J Med Genet. 2016; 53(2): 111–112.  
PubMed Abstract | Publisher Full Text | Free Full Text 

68.	 Yang Y, Muzny DM, Reid JG, et al.: Clinical whole-exome sequencing for the 
diagnosis of mendelian disorders. N Engl J Med. 2013; 369(16): 1502–1511. 
PubMed Abstract | Publisher Full Text | Free Full Text 

69.	 Hrdlickova R, Toloue M, Tian B: RNA-Seq methods for transcriptome analysis. 
Wiley Interdiscip Rev RNA. 2017; 8(1): e1364.  
PubMed Abstract | Publisher Full Text | Free Full Text 

70.	 Sanchez N, Chapdelaine P, Rousseau J, et al.: Characterization of frataxin 
gene network in Friedreich’s ataxia fibroblasts using the RNA-Seq technique. 
Mitochondrion. 2016; 30: 59–66.  
PubMed Abstract | Publisher Full Text 

71.	 Seco-Cervera M, González-Rodríguez D, Ibáñez-Cabellos JS, et al.: Small 
RNA-seq analysis of circulating miRNAs to identify phenotypic variability in 
Friedreich’s ataxia patients. Sci Data. 2018; 5: 180021.  
PubMed Abstract | Publisher Full Text | Free Full Text 

72.	 Butler JS, Napierala M: Friedreich’s ataxia--a case of aberrant transcription 
termination? Transcription. 2015; 6(2): 33–36.  
PubMed Abstract | Publisher Full Text | Free Full Text 

73.	 Napierala JS, Li Y, Lu Y, et al.: Comprehensive analysis of gene expression 
patterns in Friedreich’s ataxia fibroblasts by RNA sequencing reveals altered 
levels of protein synthesis factors and solute carriers. Dis Model Mech. 2017; 

Page 20 of 22

F1000Research 2019, 8:1135 Last updated: 19 JUL 2019

http://www.ncbi.nlm.nih.gov/pubmed/29329987
http://dx.doi.org/10.1016/j.bbadis.2018.01.010
http://www.ncbi.nlm.nih.gov/pubmed/21147271
http://dx.doi.org/10.1016/j.mito.2010.12.003
http://www.ncbi.nlm.nih.gov/pmc/articles/4419809
http://www.ncbi.nlm.nih.gov/pubmed/28405347
http://dx.doi.org/10.1186/s40673-017-0062-x
http://www.ncbi.nlm.nih.gov/pmc/articles/5383992
http://www.ncbi.nlm.nih.gov/pubmed/17448903
http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.014
http://www.ncbi.nlm.nih.gov/pubmed/12755598
http://dx.doi.org/10.1021/bi027021l
http://www.ncbi.nlm.nih.gov/pubmed/23859340
http://dx.doi.org/10.1111/jnc.12220
http://www.ncbi.nlm.nih.gov/pubmed/27129098
http://dx.doi.org/10.1042/CS20160072
http://www.ncbi.nlm.nih.gov/pubmed/16911956
http://dx.doi.org/10.1080/10409230600846058
http://www.ncbi.nlm.nih.gov/pmc/articles/2859089
http://www.ncbi.nlm.nih.gov/pubmed/15509595
http://dx.doi.org/10.1093/hmg/ddh324
http://www.ncbi.nlm.nih.gov/pubmed/27519411
http://dx.doi.org/10.1074/jbc.M116.738542
http://www.ncbi.nlm.nih.gov/pmc/articles/5076535
http://www.ncbi.nlm.nih.gov/pubmed/15123683
http://dx.doi.org/10.1074/jbc.C400107200
http://www.ncbi.nlm.nih.gov/pubmed/25826316
http://dx.doi.org/10.1371/journal.pone.0122538
http://www.ncbi.nlm.nih.gov/pmc/articles/4380498
http://www.ncbi.nlm.nih.gov/pubmed/12668611
http://dx.doi.org/10.1093/hmg/ddg096
http://www.ncbi.nlm.nih.gov/pubmed/15247478
http://dx.doi.org/10.1126/science.1098991
http://www.ncbi.nlm.nih.gov/pubmed/27296838
http://dx.doi.org/10.1016/j.freeradbiomed.2016.06.007
http://www.ncbi.nlm.nih.gov/pubmed/20481466
http://dx.doi.org/10.1021/bi1004798
http://www.ncbi.nlm.nih.gov/pmc/articles/2885827
http://www.ncbi.nlm.nih.gov/pubmed/18606475
http://dx.doi.org/10.1016/j.tig.2008.05.008
http://www.ncbi.nlm.nih.gov/pmc/articles/2574672
http://dx.doi.org/10.1142/8504-vol29
http://www.ncbi.nlm.nih.gov/pubmed/15610019
http://dx.doi.org/10.1021/bi0488193
http://www.ncbi.nlm.nih.gov/pmc/articles/2859087
http://www.ncbi.nlm.nih.gov/pubmed/27026703
http://dx.doi.org/10.1074/jbc.M115.701128
http://www.ncbi.nlm.nih.gov/pmc/articles/4882455
http://www.ncbi.nlm.nih.gov/pubmed/26782317
http://dx.doi.org/10.2217/nmt.15.73
http://www.ncbi.nlm.nih.gov/pmc/articles/4768799
http://www.ncbi.nlm.nih.gov/pubmed/18234531
http://dx.doi.org/10.1016/j.ejpn.2007.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23418481
http://dx.doi.org/10.1371/journal.pone.0055940
http://www.ncbi.nlm.nih.gov/pmc/articles/3572186
http://www.ncbi.nlm.nih.gov/pubmed/15480852
http://dx.doi.org/10.1007/s00702-004-0216-x
http://www.ncbi.nlm.nih.gov/pubmed/25112865
http://dx.doi.org/10.1002/ana.24248
http://www.ncbi.nlm.nih.gov/pubmed/22447512
http://dx.doi.org/10.1093/hmg/dds110
http://www.ncbi.nlm.nih.gov/pmc/articles/3373236
http://www.ncbi.nlm.nih.gov/pubmed/23859350
http://dx.doi.org/10.1111/jnc.12302
http://www.ncbi.nlm.nih.gov/pmc/articles/3766837
http://www.ncbi.nlm.nih.gov/pubmed/16921367
http://dx.doi.org/10.1038/nchembio815
http://www.ncbi.nlm.nih.gov/pubmed/30911578
http://dx.doi.org/10.1002/acn3.731
http://www.ncbi.nlm.nih.gov/pmc/articles/6414489
http://www.ncbi.nlm.nih.gov/pubmed/29735117
http://dx.doi.org/10.1016/j.spen.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/27002638
http://dx.doi.org/10.1089/bio.2015.0117
http://www.ncbi.nlm.nih.gov/pmc/articles/4991587
http://www.ncbi.nlm.nih.gov/pubmed/27539938
http://dx.doi.org/10.1002/humu.23067
http://www.ncbi.nlm.nih.gov/pmc/articles/5063710
http://www.ncbi.nlm.nih.gov/pubmed/18039028
http://dx.doi.org/10.1371/journal.pcbi.0030235
http://www.ncbi.nlm.nih.gov/pmc/articles/2082501
http://www.ncbi.nlm.nih.gov/pubmed/23239403
http://dx.doi.org/10.1002/mds.25201
http://www.ncbi.nlm.nih.gov/pmc/articles/3581713
http://www.ncbi.nlm.nih.gov/pubmed/17596984
http://dx.doi.org/10.1016/j.ymgme.2007.05.009
http://www.ncbi.nlm.nih.gov/pmc/articles/3965197
http://www.ncbi.nlm.nih.gov/pubmed/11391483
http://dx.doi.org/10.1086/321283
http://www.ncbi.nlm.nih.gov/pmc/articles/1226030
http://www.ncbi.nlm.nih.gov/pubmed/28007145
http://dx.doi.org/10.1016/j.jacc.2016.09.968
http://www.ncbi.nlm.nih.gov/pmc/articles/5189923
http://www.ncbi.nlm.nih.gov/pubmed/21432394
http://dx.doi.org/10.1007/BF02908884
http://www.ncbi.nlm.nih.gov/pmc/articles/2723464
http://www.ncbi.nlm.nih.gov/pubmed/15767622
http://dx.doi.org/10.7326/0003-4819-142-6-200503150-00010
http://www.ncbi.nlm.nih.gov/pubmed/26555599
http://dx.doi.org/10.1002/humu.22932
http://www.ncbi.nlm.nih.gov/pmc/articles/4752381
http://www.ncbi.nlm.nih.gov/pubmed/26395054
http://dx.doi.org/10.1136/jmedgenet-2015-103423
http://www.ncbi.nlm.nih.gov/pmc/articles/5124490
http://www.ncbi.nlm.nih.gov/pubmed/24088041
http://dx.doi.org/10.1056/NEJMoa1306555
http://www.ncbi.nlm.nih.gov/pmc/articles/4211433
http://www.ncbi.nlm.nih.gov/pubmed/27198714
http://dx.doi.org/10.1002/wrna.1364
http://www.ncbi.nlm.nih.gov/pmc/articles/5717752
http://www.ncbi.nlm.nih.gov/pubmed/27350085
http://dx.doi.org/10.1016/j.mito.2016.06.003
http://www.ncbi.nlm.nih.gov/pubmed/29509186
http://dx.doi.org/10.1038/sdata.2018.21
http://www.ncbi.nlm.nih.gov/pmc/articles/5839159
http://www.ncbi.nlm.nih.gov/pubmed/25831023
http://dx.doi.org/10.1080/21541264.2015.1026538
http://www.ncbi.nlm.nih.gov/pmc/articles/4581357


10(11): 1353–1369.  
PubMed Abstract | Publisher Full Text | Free Full Text 

74.	 Ziemann M, Kaspi A, El-Osta A: Digital Expression Explorer 2: a repository of 
4.5 trillion uniformly processed RNA-seq reads and counting. zenodo. 2018. 
Publisher Full Text 

75.	 elvers. (Github). 

76.	 Soneson C: ARMOR. (Github). 

77.	 Kim D, Langmead B, Salzberg SL: HISAT: a fast spliced aligner with low memory 
requirements. Nat Methods. 2015; 12(4): 357–360.  
PubMed Abstract | Publisher Full Text | Free Full Text 

78.	 Pertea M, Pertea GM, Antonescu CM, et al.: StringTie enables improved 
reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015; 
33(3): 290–295.  
PubMed Abstract | Publisher Full Text | Free Full Text 

79.	 GTEx Portal. (Accessed: 5th April 2019).  
Reference Source

80.	 Anders S, Huber W: Differential expression analysis for sequence count data. 
Genome Biol. 2010; 11(10): R106.  
PubMed Abstract | Publisher Full Text | Free Full Text 

81.	 Petrovski S, Wang Q, Heinzen EL, et al.: Genic intolerance to functional 
variation and the interpretation of personal genomes. PLoS Genet. 2013; 9(8): 
e1003709.  
PubMed Abstract | Publisher Full Text | Free Full Text 

82.	 Adzhubei I, Jordan DM, Sunyaev SR: Predicting functional effect of human 
missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;  
Chapter 7: Unit7.20.  
PubMed Abstract | Publisher Full Text | Free Full Text 

83.	 Yang H, Wang K: Genomic variant annotation and prioritization with ANNOVAR 
and wANNOVAR. Nat Protoc. 2015; 10(10): 1556–1566.  
PubMed Abstract | Publisher Full Text | Free Full Text 

84.	 Agrawal R, Mannila H, Srikant R, et al.: Fast discovery of association rules. 
Advances in Knowledge Discovery and Data Mining. 1996.  
Reference Source

85.	 23andMe Genotyping Services for Research. 23andMe for Scientists. (Accessed: 
8th April 2019).  
Reference Source

86.	 Autosomal DNA testing comparison chart - ISOGG Wiki. (Accessed: 8th April 2019).  
Reference Source

87.	 Schulz WL, Nelson BG, Felker DK, et al.: Evaluation of relational and NoSQL 
database architectures to manage genomic annotations. J Biomed Inform. 
2016; 64: 288–295.  
PubMed Abstract | Publisher Full Text 

88.	 Messaoudi C, Fissoune R, Badir H: A performance evaluation of NoSQL databases 
to manage proteomics data. Int J Data Min Bioinform. 2018; 21(1): 70–89.  
Publisher Full Text 

89.	 Office for Civil Rights (OCR): Summary of the HIPAA Security Rule. HHS.gov. 
2013; (Accessed: 8th April 2019).  
Reference Source

90.	 HIPAA Compliance Checklist. HIPAA Journal. (Accessed: 8th April 2019). 
Reference Source

91.	 Köster J, Rahmann S: Snakemake--a scalable bioinformatics workflow engine. 
Bioinformatics. 2012; 28(19): 2520–2522.  
PubMed Abstract | Publisher Full Text 

92.	 Liao Y, Smyth GK, Shi W: The Subread aligner: fast, accurate and scalable read 
mapping by seed-and-vote. Nucleic Acids Res. 2013; 41(10): e108.  
PubMed Abstract | Publisher Full Text | Free Full Text 

93.	 Pertea M, Kim D, Pertea GM, et al.: Transcript-level expression analysis of RNA-
seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016; 11(9): 
1650–1667.  
PubMed Abstract | Publisher Full Text | Free Full Text 

94.	 Tsuyuzaki K, Nikaido I: metaSeq: Meta-analysis of RNA-Seq count data in 
multiple studies. R Package. version 1, 2013.  
Reference Source

95.	 Tarazona S, Furió-Tarí P, Turrà D, et al.: Data quality aware analysis of 
differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids 
Res. 2015; 43(21): e140.  
PubMed Abstract | Publisher Full Text | Free Full Text 

96.	 Hänzelmann S, Castelo R, Guinney J: GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013; 14: 7.  
PubMed Abstract | Publisher Full Text | Free Full Text 

97.	 Liberzon A, Birger C, Thorvaldsdóttir H, et al.: The Molecular Signatures Database 
(MSigDB) hallmark gene set collection. Cell Syst. 2015; 1(6): 417–425.  
PubMed Abstract | Publisher Full Text | Free Full Text 

98.	 fast.ai · Making neural nets uncool again. (Accessed: 9th April 2019).  
Reference Source

99.	 Mikolov T, Chen K, Corrado G, et al.: Efficient Estimation of Word 
Representations in Vector Space. arXiv [cs.CL]. 2013.  
Reference Source

100.	 Geraldine_VdAuwera: The GATK Best Practices for variant calling on RNAseq, 
in full detail. GATK-Forum. 2014; (Accessed: 9th April 2019).  
Reference Source

101.	 UPWARD. (Github).  
Reference Source

102.	 Fonseca R, Pham M, luistanonreyes, et al.: NCBI-Hackathons/UPWARD v1.0.0. 
Zenodo. 2019.  
http://www.doi.org/10.5281/zenodo.3236567 

103.	 Rapid_Clinical_Diagnostics. (Github).  
Reference Source

104.	 Chang-Li, Busby B: NCBI-Hackathons/Rapid_Clinical_Diagnostics v1.0.0. 
Zenodo. 2019.  
http://www.doi.org/10.5281/zenodo.3236563 

105.	 MassiveSeq. (Github).  
Reference Source

106.	 CancerGenetics, Keller T, Franz DM, et al.: NCBI-Hackathons/MassiveSeq v1.0.0. 
2019.  
http://www.doi.org/10.5281/zenodo.3236565Publisher Full Text 

107.	 Vetter T: install-ruby-and-rails. (Github).  
Reference Source

108.	 Download Python: Python.org. (Accessed: 5th April 2019).  
Reference Source

109.	 Ripley BD: The R project in statistical computing. MSOR Connections. The 
newsletter of the LTSN Maths, Stats & OR Network. 2001; 1: 23–25. 

110.	 Phenogeno_Viz. (Github).  
Reference Source

111.	 lfiedlerc, DokurOmkar, Busby B: NCBI-Hackathons/Phenogeno_Viz v1.0.0. 
Zenodo. 2019.  
http://www.doi.org/10.5281/zenodo.3236561

112.	 L, Gibbons J, oberstal, et al.: NCBI-Hackathons/pheno_geno_ataxia v1.0.0. 
Zenodo. 2019.  
http://www.doi.org/10.5281/zenodo.3236569

113.	 pheno_geno_ataxia. (Github).  
Reference Source

Page 21 of 22

F1000Research 2019, 8:1135 Last updated: 19 JUL 2019

http://www.ncbi.nlm.nih.gov/pubmed/29125828
http://dx.doi.org/10.1242/dmm.030536
http://www.ncbi.nlm.nih.gov/pmc/articles/5719256
http://dx.doi.org/10.5281/zenodo.1561840
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://dx.doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pmc/articles/4655817
http://www.ncbi.nlm.nih.gov/pubmed/25690850
http://dx.doi.org/10.1038/nbt.3122
http://www.ncbi.nlm.nih.gov/pmc/articles/4643835
https://gtexportal.org/home/
http://www.ncbi.nlm.nih.gov/pubmed/20979621
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pmc/articles/3218662
http://www.ncbi.nlm.nih.gov/pubmed/23990802
http://dx.doi.org/10.1371/journal.pgen.1003709
http://www.ncbi.nlm.nih.gov/pmc/articles/3749936
http://www.ncbi.nlm.nih.gov/pubmed/23315928
http://dx.doi.org/10.1002/0471142905.hg0720s76
http://www.ncbi.nlm.nih.gov/pmc/articles/4480630
http://www.ncbi.nlm.nih.gov/pubmed/26379229
http://dx.doi.org/10.1038/nprot.2015.105
http://www.ncbi.nlm.nih.gov/pmc/articles/4718734
https://www.cs.helsinki.fi/u/htoivone/pubs/advances.pdf
https://research.23andme.com/genotyping-services-research/
https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart
http://www.ncbi.nlm.nih.gov/pubmed/27810480
http://dx.doi.org/10.1016/j.jbi.2016.10.015
http://dx.doi.org/10.1504/IJDMB.2018.10016724
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hipaajournal.com/hipaa-compliance-checklist/
http://www.ncbi.nlm.nih.gov/pubmed/22908215
http://dx.doi.org/10.1093/bioinformatics/bts480
http://www.ncbi.nlm.nih.gov/pubmed/23558742
http://dx.doi.org/10.1093/nar/gkt214
http://www.ncbi.nlm.nih.gov/pmc/articles/3664803
http://www.ncbi.nlm.nih.gov/pubmed/27560171
http://dx.doi.org/10.1038/nprot.2016.095
http://www.ncbi.nlm.nih.gov/pmc/articles/5032908
https://bioconductor.riken.jp/packages/3.0/bioc/html/metaSeq.html
http://www.ncbi.nlm.nih.gov/pubmed/26184878
http://dx.doi.org/10.1093/nar/gkv711
http://www.ncbi.nlm.nih.gov/pmc/articles/4666377
http://www.ncbi.nlm.nih.gov/pubmed/23323831
http://dx.doi.org/10.1186/1471-2105-14-7
http://www.ncbi.nlm.nih.gov/pmc/articles/3618321
http://www.ncbi.nlm.nih.gov/pubmed/26771021
http://dx.doi.org/10.1016/j.cels.2015.12.004
http://www.ncbi.nlm.nih.gov/pmc/articles/4707969
https://www.fast.ai/
https://arxiv.org/pdf/1301.3781.pdf
https://gatkforums.broadinstitute.org/gatk/discussion/3892/the-gatk-best-practices-for-variant-calling-on-rnaseq-in-full-detail
https://github.com/rtm/upward/blob/master/package.json
http://www.doi.org/10.5281/zenodo.3236567
https://github.com/NCBI-Hackathons/Rapid_Clinical_Diagnostics
http://www.doi.org/10.5281/zenodo.3236563
https://github.com/NCBI-Hackathons/MassiveSeq
http://www.doi.org/10.5281/zenodo.3236565
http://dx.doi.org/
https://github.com/tbsvttr/install-ruby-and-rails
https://www.python.org/downloads/
https://github.com/NCBI-Hackathons/Phenogeno_Viz
http://www.doi.org/10.5281/zenodo.3236561
http://www.doi.org/10.5281/zenodo.3236569
https://github.com/NCBI-Hackathons/pheno_geno_ataxia


The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact  research@f1000.com

Page 22 of 22

F1000Research 2019, 8:1135 Last updated: 19 JUL 2019


