Assessment of cardiovascular risk in post-menopausal women in Ghana [version 1; peer review: 1 approved with reservations]

Justice Afrifa¹,², Felix A. Botchway³, Yeboah Kwaku Opoku⁴,⁵, Joyce Badohu¹, Henrietta Ekua Ocran¹, Kwame Kumi Asare⁴,⁶, Samuel Essien-Baidoo¹

¹Department of Medical Laboratory Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
²Scientific Research Centre, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
³Department of Chemical Pathology, University of Ghana, Accra, Ghana
⁴Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
⁵Biopharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin, China
⁶Department of Protozoology Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan

Abstract
Background: Cardiovascular diseases (CVD) continue to be a major cause of death among post-menopausal women. We sought to assess cardiovascular risk among pre- and post-menopausal women living within the Cape Coast Municipality by comparing the lipid profiles and other emerging biomarkers of CVD, i.e. the atherogenic index of plasma (AIP), visceral adiposity index (VAI), body adiposity index (BAI) and Castelli index I (CRI-I).

Methods: A comparative cross-section of 150 women (75 pre-menopausal women and 75 post-menopausal women) visiting the University of Cape Coast hospital for regular checkups were randomly recruited into the study. Socio-demographic and clinical characteristics of participants were obtained with the aid of a structured questionnaire. Blood pressure (BP) was measured and lipid profile was estimated using fasting blood samples. Other markers of cardiovascular risk such as BMI, AIP, VAI, BAI and CRI-I were estimated.

Results: We report elevated levels of total cholesterol (TC) (p<0.0001), low density lipoprotein (LDL) (p<0.0001), very low-density lipoprotein (VLDL) (p=0.0021), triglycerides (TG) (p<0.0001) and non-high-density lipoprotein (non-HDL-C) cholesterol (p<0.0001) in post-menopausal women compared with pre-menopausal women. High-density lipoprotein (HDL) (p<0.0001) was, however, decreased in post-menopausal women. Mean AIP (p<0.0001), VAI (p<0.0001), BAI (p<0.0038) and CRI-I (p<0.0001) were significantly increased in post-menopausal women compared to pre-menopausal women. We also report a positive correlation of TC, TG, VLDL and non-HDL with atherogenic markers AIP, VAI and CRI-I in post-menopausal women. A negative correlation of HDL with AIP, VAI, and CR in post-menopausal women was also observed.

Conclusions: Menopause could lead to changes in lipid profile to atherogenicity with associated increase in the risk of CVD. Atherogenic
markers such as AIP, VAI, BAI, and CR can serve as potential biomarkers for predicting CVD.

Keywords
Atherogenicity, menopause, Lipid profile, cardiovascular diseases
Introduction

Menopause is a permanent physiological state with cessation of menstruation attributable to the loss of ovarian function and reduction in the production of estrogen. The average age of menopause is reported to be 51 years but the age of natural menopause may vary from 40 to 58 years. This phase is characterized by variety of changes in socio-cultural, physiological and psychological states. These changes culminate into myriad of symptoms including insomnia, sweating, hot flashes, depressive mood, vaginal dryness and general discomfort.

Cardiovascular diseases (CVD) are the major cause of death among post-menopausal women. Studies have shown that pre-menopausal women have a low risk of CVD as compared to men but after menopause the level of risk increases. Epidemiological data have revealed elevated risk of CVD in post-menopausal females compared to men of the same age. Estrogen is the major female hormone that regulates many aspects of a female’s development. Reduced circulating estrogen levels impeded ovulation as results of under stimulation of the hypothalamus to release follicle stimulating hormones. Estrogen is known to possess both anti-atherogenic and cardioprotective effect by maintaining high levels of high-density lipoprotein (HDL-C) coupled with decreasing low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). Several factors, including diabetes, hypertension, and atherosclerosis among others can lead to CVD in women. The World Health Organization (WHO) has ranked CVDs as the number one cause of death, with global estimation of about 17.7 million deaths in 2015.

Current data have shown that Castelli risk index I and II which are estimated as TC/HDL-C and LDL/HDL-C ratios respectively predict cardiovascular risk accurately than conventional lipid profile indices such as serum TC and serum triglycerides. Similarly, comparison of individual lipid ratios in subjects of the Framingham Heart Study unarguably indicates that lipid ratios are significantly more useful predictors of CVD than the individual levels of LDL or HDL. Many clinical studies have also made efforts to introduce better markers of atherogenic dyslipidemia that can predict the risk of CVD to be useful for evaluating response to treatment instead of the classical ratios. Notable among these markers is the atherogenic index of plasma visceral adiposity index and basal adiposity index.

Methods

Study area and population

We conducted this comparative cross-sectional study among a convenience sample of 150 women between June 2017 and August 2018 at Cape Coast, the capital of the Central Region of Ghana. No attempts were made to control for bias in recruitment. This Region covers an area of approximately 9826 square kilometres or 4.1% of Ghana’s land area. The study participants were apparently healthy pre- and post-menopausal women.

Inclusion criteria

The inclusion criterion used for the study was healthy post-menopausal women aged 40–55 years serving as cases while premenopausal women within the age of 30–40 years were used as comparative controls.

Exclusion criteria

Those with known cardiovascular and metabolic diseases such as hypertension, diabetes, renal or hepatic disorders, menstrual disorders and those on hormonal replacement therapies were excluded from the study. Also, pregnant and lactating women, women with known thyroid diseases, heavy smokers and alcoholics were not included in the research.

Ethical approval and consent to participate

Ethical approval for the research was sought from the Institutional Review Board of University of Cape Coast (UCCIRB/CHAS/2017/83). All information regarding the study including the purpose, risks, procedures, and benefits were made known to the participants before seeking for written informed consent.

Blood sample collection, lipid profile and fasting blood glucose measurement

From each participant, 4 mL of venous blood samples were collected from each participant with a sterilized syringe and needle after an overnight fast (12–14 hours) and dispensed into a gel separator tube. Blood samples were analyzed using a fully automated chemistry analyzer (Mindray BS240, Mindray Bio-Medical Electronics Co., Ltd) to estimate the total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), VLDL, TG and non-HDL. Fasting blood glucose was measured with the URIT glucometer (URIT G26®, URIT Medical Electronic, UK).

Anthropometric measurements

For body mass index (BMI) estimation, height was measured to the nearest centimetre without shoes with a stadiometer (Seca 217, 40 Barn Street B5 5QB Birmingham, United Kingdom) and weight was measured to the nearest 0.1 kg, with a bathroom scale (Zhongshan Camry Electronic Co. Ltd, Guangdong, China). BMI was calculated as a ratio of weight (kg) to height squared (m²). This was used to categorize participants as underweight (<18 kg/m²), normal (18–24 kg/m²), overweight (25–29.9 kg/m²) and obese (>30 kg/m²) according to WHO criteria.
Measurement of blood pressure

Blood pressure measurements were performed according to the American Heart Association recommendations\(^1\)\(^6\). Measurements of blood pressure were performed using an automatic validated device (Omron HEM711DLX, UK) on the superior left limb. The subjects were made to sit with the legs uncrossed and arm supported at the height of the heart with cuff adapted to the size of the arm. Blood pressure was measured as the mean values of duplicate measurements. Grading of hypertension recorded as follows; “normal” when the systolic blood pressure (SBP) was < 120 mmHg and diastolic blood pressure (DBP) was <80 mmHg “pre-hypertension” when SBP = 120–139 or DBP = 80–89 and “hypertension” when SBP = 140–159 or DBP = 90–99\(^1\)\(^7\).

Atherogenic indices

Atherogenic indices estimated included AIP (log (TG/HDL), visceral adiposity index (VAI) \(\text{VAI} = \frac{\log \left(\text{WC} / \text{BMI} \right)}{0.8} \left(\frac{\text{TG}}{0.81} \right) \left(\frac{1.52}{\text{HDL}} \right)\), body adiposity index (BAI) \(\text{BAI} = \frac{\text{WC}}{\text{HC}}\), body mass index (BMI), non-HDL(TC – HDL) and CRI-I(TC/HDL)\(^1\)\(^8\).

Data analysis

Data for the study were analyzed using GraphPad prism (6.01) and R statistical software package version 3.0.1. Exploratory analysis was done for descriptive statistical indices such as frequencies, percentages and mean ± standard deviations. Tables were obtained from exploratory analysis. Student’s t-test was performed to compare pre and post-menopausal groups for anthropometrics, lipid profiles and atherogenic indices. Fisher’s exact test or Chi-square test were employed where deemed fit to assess the association between proportions of variables in pre and post-menopausal groups. Crude and adjusted odds ratios (aOR) at 95% confidence interval (CI) were evaluated for Fisher’s exact test outcome. Correlation analysis was done using Spearman’s rho moment correlation analysis for lipid profile and atherogenic indices among the study participants. Significance level was determined at \(P<0.05\).

Results

Participant background

A total of 150 pre and post-menopausal women were enrolled into the study with a significantly older post-menopausal group (59.63±7.419, \(P<0.0001\)) compared to the pre-menopausal group (32.28±8.820). Also, the post-menopausal group had an elevated SBP (\(P=0.0003\)), DBP (\(P=0.0822\)), FBS (\(P=0.0004\)) as well as a higher BMI compared to the pre-menopausal women (Table 1). Complete demographic information, alongside all other variables measured, are available as Underlying data\(^1\)\(^9\).

Cardiovascular and atherogenic markers

Serum TC, TG and NON-HDL-C were significantly increased in post-menopausal women compared to pre-menopausal women (\(p<0.0001\)). In addition, there was an observed significant increase in LDL-C (\(p<0.0001\)) and VLDL (\(p=0.0021\)) levels in the post-menopausal women. In comparison with pre-menopausal women, atherogenic markers (AIP, VAI, BAI and CRI-I) were significantly elevated in post-menopausal women (\(p<0.0001\)) (Table 2).

Table 1. Comparison of anthropometric, blood pressure and fasting blood sugar measurements among pre and post-menopausal women. Data presented as mean ± SD.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre-menopausal</th>
<th>Post-menopausal</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>32.28±8.820</td>
<td>59.63±7.419</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>61.16±10.08</td>
<td>6.21±8.82</td>
<td>0.4969</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.59±0.06</td>
<td>1.56±0.062</td>
<td>0.0001</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>75.36±9.67</td>
<td>82.53±8.68</td>
<td><0.0001</td>
</tr>
<tr>
<td>HC (m)</td>
<td>0.93±0.13</td>
<td>0.87±0.08</td>
<td>0.2513</td>
</tr>
<tr>
<td>WC/HC</td>
<td>0.87±0.61</td>
<td>0.95±0.09</td>
<td>0.9733</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>24±3.644</td>
<td>25.57±2.883</td>
<td>0.0039</td>
</tr>
<tr>
<td>Under weight</td>
<td>5(6.7)</td>
<td>1(1.3)</td>
<td>0.0804</td>
</tr>
<tr>
<td>Normal</td>
<td>40(53.3)</td>
<td>33(44.0)</td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>30(40.0)</td>
<td>41(54.7)</td>
<td></td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>112.3±7.591</td>
<td>116.7±6.960</td>
<td>0.0003</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>75.33±5.285</td>
<td>76.8±4.976</td>
<td>0.0822</td>
</tr>
<tr>
<td>FBS (mmol/L)</td>
<td>5.515±0.6247</td>
<td>5.865±0.5547</td>
<td>0.0004</td>
</tr>
<tr>
<td>Low</td>
<td>3(4.0)</td>
<td>0(0)</td>
<td>0.1037</td>
</tr>
<tr>
<td>Normal</td>
<td>31(41.3)</td>
<td>25(33.3)</td>
<td></td>
</tr>
<tr>
<td>Pre-diabetes</td>
<td>41(54.7)</td>
<td>50(66.7)</td>
<td></td>
</tr>
</tbody>
</table>

WC, waist circumference; HC, hip circumference; WC/HC, waist to hip ratio; FBS, fasting blood sugar; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.
Higher levels of TC, LDL-C, AIP, BAI and CRI-I, as well as low levels of HDL-C, were all crudely associated with post-menopausal women (p<0.0001). However when the data was adjusted for age and BMI, only elevated levels of TC [aOR=76.58 (95%CI=5.880-2439.396), P=0.0032], LDL-C [aOR=11.76 (95%CI=1.934-90.816), P=0.011], BAI [aOR=41.19 (95%CI=6.751-321.0692), P=0.0001], CRI-I [aOR=818.824 (95%CI=1.934-90.816), P=0.0001] as well as low levels of HDL-C [aOR=11.76 (95%CI=1.934-90.816), P=0.011] were significantly associated with post-menopausal women (Table 3). In post-menopausal women, we report a positive correlation of TC with all the cardiovascular and atherogenic markers except HDL-C whilst HDL-C on the other hand showed a significant negative correlation with all the atherogenic and cardiovascular markers with the exception of BAI, which wasn’t significant (Figure 1).

Discussion

Although CVD is the major cause of death and disability in women, it usually starts about 10 years late in men of the same age. It is also true that CVD are the major cause of mortality in post-menopausal women. The patterns of dyslipidemia that leads to CVD and its associated complications have been linked with hormonal changes associated with menopause. Estrogen is known to possess both anti-atherogenic and cardioprotective effect by maintaining an acceptable balance between pro/anti-atherogenic and cardiovascular risk markers. We therefore sought to assess cardiovascular and atherogenic risk among pre and post-menopausal women in the Cape-Coast municipality.

In comparison to pre-menopausal women, we report elevated levels of TC (p<0.0001), VLDL, TG (p<0.0001), LDL-C (p<0.0001) and NON-HDL cholesterol (p<0.0001) in post-menopausal women. This is in line with earlier findings by Pardhe et al., who also reported significantly increased levels of TG, TC, LDL-C and reduced levels of HDL-C among Nepalese women. Adverse changes in lipids and lipoprotein independent of age has been linked to menopause. Among all the risk factors for CVD, the major indication suggests an association of estrogen with the observed discrepancies in lipids and lipoproteins. Earlier studies have reported an increase in the release of free fatty acids into circulation due to high-fat accumulation leading to elevated hepatic triglycerides synthesis. In addition, a reduction in estrogen after menopause increases plasma lipoprotein lipase (LPL) and hepatic TG lipase activity thereby causing accumulation of plasma LDL-C. However, HDL-C was significantly decreased in post-menopausal women which is in tandem with the findings of previous studies. Available evidence shows that as HDL-C increases by 0.026 mmol/ml, there is a reduction in risk of cardiovascular diseases, with a 4.7% decrease in mortality rate of CVD. Changes in plasma lipid is known to partly increase the incidence of cardiovascular disease following menopausal transition.

Newly emerging atherogenic markers such as AIP, VAI, BAI and CRI-I have been used to assess cardiovascular risk and atherogenicity among various disease states including hypertension, diabetics and among HIV patients. Our results revealed that, markers of atherogenicity including AIP (p<0.0001), VAI (p<0.0001), BAI (p=0.0038) and CRI-I (p<0.0001) were significantly increased in post-menopausal women. This is in line with a study by Nwagha et al., which reported a significantly reduced AIP levels among pre-menopausal women confirming the alteration of lipid profile in menopause. The use of lipid ratios as prognosticators of cardiovascular risk cannot be overemphasised. In fact, variations in lipid ratios such as CRI-I and CRI-II have been reported to be better predictors of risk reduction in coronary heart disease compared to the absolute lipoproteins or lipids.

Table 2. Comparison of Lipid profile and other atherogenic biomarkers among pre and post-menopausal women.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre-Menopause</th>
<th>Post-Menopause</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mmol/L)</td>
<td>4.130±0.4758</td>
<td>5.889±0.6545</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.941±0.5831</td>
<td>1.111±0.2106</td>
<td><0.0001</td>
</tr>
<tr>
<td>LDL-C (mmol/L)</td>
<td>3.036±0.6797</td>
<td>4.449±0.7094</td>
<td><0.0001</td>
</tr>
<tr>
<td>VLDL (mmol/L)</td>
<td>0.3381±0.4217</td>
<td>0.5043±0.1803</td>
<td>0.0021</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>0.576±0.2869</td>
<td>1.087±0.3612</td>
<td><0.0001</td>
</tr>
<tr>
<td>NON-HDL (mmol/L)</td>
<td>2.189±0.8091</td>
<td>4.778±0.7299</td>
<td><0.0001</td>
</tr>
<tr>
<td>AIP</td>
<td>-0.5333±0.2251</td>
<td>-0.02147±0.1839</td>
<td><0.0001</td>
</tr>
<tr>
<td>VAI</td>
<td>0.6431±0.9652</td>
<td>1.907±1.907</td>
<td><0.0001</td>
</tr>
<tr>
<td>BAI</td>
<td>28.31±6.576</td>
<td>31.08±4.847</td>
<td>0.0038</td>
</tr>
<tr>
<td>CRI-I</td>
<td>2.366±1.009</td>
<td>5.523±1.318</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Notes:
- TC, total cholesterol; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; VLDL, very low-density lipoprotein; TG, triglycerides; AIP, atherogenic index of plasma; BAI, body adiposity index; CRI-I, Castelli index I.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Crude OR (95%CI)</th>
<th>aOR (95%CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.4286(0.01635 to 11.23)</td>
<td>0.7115</td>
<td>NA</td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>474.5(59.09 to 3810)</td>
<td><0.0001</td>
<td>76.58(5.880-2439.396)</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>24.65(7.277 to 78.69)</td>
<td><0.0001</td>
<td>11.76(1.934-90.816)</td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>6.83(0.3596 to 129.7)</td>
<td>0.0855</td>
<td>1.164×10^-5(0.162-2.022×10^-4)</td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>29.06(3.793 to 222.6)</td>
<td><0.0001</td>
<td>16.86(1.641-433.443)</td>
</tr>
<tr>
<td>VLDL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>0.7396(0.1597 to 3.425)</td>
<td>0.6987</td>
<td>4.32×10^-7(1.992×10^-6-1.789×10^-4)</td>
</tr>
<tr>
<td>TG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>9.65×10^-9(NA to 2.67×10^-7)</td>
<td>0.933</td>
<td>4.73×10^-8 (2.5×10^-9, 1.379×10^-7)</td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.808(0.1601 to 20.42)</td>
<td>0.6272</td>
<td>15.77(0.122-15974.386)</td>
</tr>
<tr>
<td>AIP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.005(0.001 to 0.02)</td>
<td>0.0001</td>
<td>0.262(0.020-3.046)</td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>4.103(1.372 to 11.76)</td>
<td>0.0218</td>
<td>2.61(0.363-18.652)</td>
</tr>
<tr>
<td>BAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.4(0.07202 to 2.246)</td>
<td>0.2949</td>
<td>0.16(0.0045-39194)</td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>54.17(19.46 to 133)</td>
<td><0.0001</td>
<td>41.19(6.7511-321.0692)</td>
</tr>
<tr>
<td>CRI-I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.5039(0.02176 to 11.67)</td>
<td>0.6654</td>
<td>7.02×10^-8(NA-8.35×10^-10)</td>
</tr>
<tr>
<td>Normal</td>
<td>*reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>467.2(87.58 to 2492)</td>
<td><0.0001</td>
<td>818.824(51.900-29515.961)</td>
</tr>
</tbody>
</table>

NA, odds ratio value not given by R statistical package; aOR, age- and BMI-adjusted odds ratio; CI, confidence interval; TC, total cholesterol; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; VLDL, very low-density lipoprotein; TG, triglycerides; AIP, atherogenic index of plasma; BAI, body adiposity index; CRI-I, Castelli index I.

Higher levels of TC, LDL-C, AIP, BAI and CRI-I as well as low levels of HDL-C were all crudely associated with post-menopausal women; however, after correction for age and BMI, AIP was not significantly associated to postmenopausal status with a marked reduction in the significance levels of the other parameters (Table 3). This confirms the significant intersection between cardiovascular risk and aging. We also report a positive correlation of TC, TG, and VLDL with atherogenic markers AIP, VAI and CRI-I in post-menopausal women. Upsurge in the levels of TG in isolation has been shown to increase AIP in women than in men but its influence can be neutralized by the levels of HDL. Others have reported an association of CVD progression with the size of LDL-C and HDL-C, with the lesser size showing great atherogenic potential. There is indeed a strong relationship between cholesterol etherification rate in HDL plasma (FERHDL) and...
lipoprotein particle sizes, which is considered as a risk marker of coronary artery diseases. Lately, VAI has demonstrated to be a potent marker of adipose distribution and function indirectly conveying cardiometabolic risk32. Among post-menopausal women, VAI was shown to predict cardiometabolic risk in association with visceral fat33 while positively correlating with peripheral glucose usage during euglycemic hyperinsulinemic clamp32. Among our study population, post-menopausal women showed increased body adiposity with a high percentage of body fat than pre-menopausal counterparts. An easy but effective determination of adiposity is needed to assess the magnitude of cardiovascular disease for the development of suitable management and preventive strategies. Confirmatory studies in different ethnicities have consistently revealed the overestimation and underestimation of adiposity at low and higher body fat percentages, respectively, by BAI34. Therefore, it is important to carefully interpret BAI values along with other anthropometric and cardiovascular markers.

Our results also indicated there was a significant increase in BMI, blood pressure and fasting blood sugar in post-menopausal women in contrast with pre-menopausal women. The increase may be attributed to the reduction in the production of estrogen, which may be associated with amplified cardiovascular risk in post-menopausal women. Surgical or naturally induced menopause increases the risk of CVD35 and the changeover may be associated with changes in body composition, with a considerable increase in the waist-to-hip ratio during menopause coupled to a possible increase in BMI36. Research has demonstrated the upsurge in the release of nitric oxide and the production of prostacyclin within the arterial endothelial cells by estrogen, culminating into the induction of a vasodilatory effect leading to a drop in BP37. Furthermore, estrogen again reduces the synthesis of thromboxane A\textsubscript{2} by platelets with vasoconstriction properties38. Hence the absence or a reduction in the estrogen levels during menopause may increase blood pressure due to an increase in peripheral resistance. Also, when estrogen production is low, there is reduced stimulation of the liver to synthesize renin. This is a rate-limiting step in the renin-angiotensin-aldosterone system leading to vasoconstriction with subsequent increase in blood pressure39. On the other hand, urbanization, affluence, changing dietary habits and sedentary lifestyles can also be implicated for the above findings40. Even though a significant association of increased cardiovascular risk with post-menopausal status was found in this study, our findings may be limited by the smaller sample size used and hence a larger sample size would have provided more stability to our conclusions.

Conclusion

Menopause could lead to changes in lipid profile in the direction of atherogenicity and increase the risk of CVDs. Atherogenic markers such as AIP, VAI, BAI, and CR can serve as potential biomarkers for predicting CVD and can be used together with other markers.

Data availability

Underlying data

Grant information

The author(s) declared that no grants were involved in supporting this work.
References

Open Peer Review

Current Peer Review Status: ?

Version 1

Reviewer Report 24 June 2019

https://doi.org/10.5256/f1000research.21320.r49750

© 2019 Pardhe B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bashu Dev Pardhe

Department of Laboratory Medicine, Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal

The fact relies on that cardiovascular diseases (CVDs) are more prevalent in women after menopause; the researchers compare the lipid profile and atherogenic index in pre- and post-menopausal women. They included a total of 150 women and estimated BP, FBG and lipid profile and finally, they determined the atherogenic markers like BMI, AIP, VAI, BAI, and CRI-I for the interpretation. They found a significant rise in lipid profiles except for HDL-C in post-menopausal women compared with pre-menopausal women. Mean AIP, VAI, BAI, and CRI-I (p<0.0001) were significantly increased in post-menopausal women compared to pre-menopausal women. Higher levels of BAI and CRI-I were significantly associated with post-menopausal women after even adjusted for age and BMI factors. At the same time, they reported a positive correlation of TC, TG, VLDL-C and non-HDL-C with atherogenic markers AIP, VAI and CRI-I in post-menopausal women. With these findings, they conclude that postmenopausal women have an adverse change in lipid parameters with an increased atherogenic index and they are more prone to have cardiovascular diseases.

Comments:

1. I found the manuscript interesting from an epidemiological point of view, which has the value to describe the lipid profile and atherogenicity in a group of pre and postmenopausal women from Ghana.

2. The age range for postmenopausal women was 40-55 years and for pre-menopausal was 30-40 years in the method section. In the result section (table 1), the mean age of post-menopausal women was reported to be 59.63±7.42. How is this possible?

3. Socio-demographic factors like lifestyle interventions, education levels, social status, ethnicity, etc. may also influence the findings of this study. It will be useful (and interesting) to have a table with a more complete description of the women included in the study.

4. The author mentioned, “We, therefore, sought to assess cardiovascular and atherogenic risk among pre and post-menopausal women in the Cape-Coast municipality.” The selection criteria
and sample size do not reflect this statement.

5. The selection of the study population is not clearly defined. They approach for the convenient sampling, it is better to define inclusion and exclusion criteria for both pre and post-menopausal women separately. They recruit healthy women attending the hospital. The question remains why healthy women do attend the hospital. Were they completely healthy or apparently healthy?

6. Wide range of age of study population required larger sample size. Even author mention that the sample size limit this cross-sectional study, this relative smaller sample size may sometimes miss-lead the conclusion.

7. I recommend including significance of atherogenic index (AIP, VAI, and BAI) in introduction section because this study focused on the investigation of these parameters.

8. Table 1:
 1. The average weight of post-menopausal women (6.21±8.82 kg)?
 2. I recommend using the same SI unit (cm or m) for height, WC and HC.
 3. I recommend using the maximum 3 digits after decimal and uniform for all variables (all tables and figure).
 4. Mention the criteria to define pre-diabetes in study population at least in the method section.

9. It is better to include the abbreviation section in the manuscript. Please use cardiovascular diseases (CVDs), very low-density lipoprotein cholesterol (VLDL-C).

10. Title of the tables should not be end with a full stop.

11. Even though the findings are more interesting, interpretation and discussion part is poor. The author reported the association of the atherogenic index with menopausal status with respect to adjusted for age and BMI. The discussion part is poor to justify this analysis.

12. There are some typo errors especially in abbreviations (mainly on abstract) and grammatical errors in the manuscript.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Metabolic diseases, Enzymology (Cytochrome P450)

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com