A unique insert in the genomes of high-risk human papillomaviruses with a predicted dual role in conferring oncogenic risk [version 1; peer review: 2 approved]

Noam Auslander, Yuri I. Wolf, Svetlana A. Shabalina, Eugene V. Koonin
National Center for Biotechnology Information, National Institutes of Health, USA, Bethesda, Maryland, 20814, USA

Abstract
The differences between high risk and low risk human papillomaviruses (HR-HPV and LR-HPV, respectively) that contribute to the tumorigenic potential of HR-HPV are not well understood but can be expected to involve the HPV oncoproteins, E6 and E7. We combine genome comparison and machine learning techniques to identify a previously unnoticed insert near the 3'-end of the E6 oncoprotein gene that is unique to HR-HPV. Analysis of the insert sequence suggests that it exerts a dual effect, by creating a PDZ domain-binding motif at the C-terminus of E6 as well as eliminating the overlap between the E6 and E7 coding regions in HR-HPV. We show that as a result, the insert might enable coupled termination-reinitation of the E6 and E7 genes, supported by motifs complementary to the human 18S rRNA. We hypothesize that the added functionality of E6 and positive regulation of E7 expression jointly account for the tumorigenic potential of HR-HPV.

Keywords
Papillomaviruses, cervical cancer, oncogenic risk, translation terminatio-reinitiation, machine learning
Introduction

Persistent infections with carcinogenic human papillomaviruses (HPVs) are the main cause of cervical neoplasia and cancer, with over 99% of the cervical lesions containing HPV sequences1-2. More than 160 HPV types have been characterized3, of which approximately a third are predominantly detected in the cervical epithelium and belong to the Alphapapillomavirus genus3-6. The viruses of this genus are further grouped into high-risk (HR) and low-risk (LR) HPV types based on their association with cervical cancer and pre-cancerous lesions5,7,8. Most of the HR-HPV variants belong to the Human papillomavirus 16 (alpha-9) or Human papillomavirus 18 (alpha-7) species groups6.

Phylogenetic trees constructed from alignments of complete HPV genomes cluster all oncogenic types together, suggesting a common ancestor for the HR-HPVs. However, in separate trees built from different regions of the genome, the carcinogenic potential co-segregates with the early but not with the late genes10,11. The early HPV proteins E6 and E7 have transforming properties12-14 and are required for the malignant conversion. The involvement of these proteins in tumorigenesis is thought to stem from their interactions with the tumor suppressors p53 and pRB, respectively, as well as other proteins involved in tumorigenesis15-17. Variations in E6 and E7 proteins have been suggested to determine the oncogenic potential of HPV18,19, but the potential discriminating features of the oncogenic variants are frequently observed in LR-HPVs as well20-22. Currently, the most notable molecular feature that distinguishes HR from LR-HPV is the presence of a PDZ-domain recognition motif at the extreme C terminus of the HR-E6 oncoprotein, as opposed to LR-E623-27, enabling interactions with numerous proteins that contain the PDZ domain25-28.

Identification of signatures of the HR-HPV genotypes that differentiate them from the majority of alphapapillomaviruses that lack oncogenic potential could help elucidate the genetic basis of the carcinogenic properties of HPVs, thus contributing to a better understanding of the biological mechanisms exploited by the virus to trigger neoplasia. However, at present, genomic determinants of the HPV oncogenic risk are not well understood, and the exact nature of the genetic changes that led to the emergence of the HR-HPV oncogenicity remains unknown.

To better understand HPV carcinogenesis, we revisited the search for specific genomic determinants of HR-HPV types and identified a previously unreported insert of 30 to 60 basepairs (bp) at the 3’-end of the E6 oncoprotein coding region that is present in all HR-HPV types but not in LR-HPV. This insert introduces a new stop codon, separating the nucleotide sequence coding E6 from that coding for E7, eliminating the overlap between E6 and E7 that is characteristic of the LR-HPV types. The insert confers a PDZ binding motif at the end of E6 oncoprotein which is likely important for the oncogenic potential. Additionally, it locates the E6 termination codon upstream of and in close proximity to the E7 initiation codon. Furthermore, the insert contains sequences complementary to human 18S rRNA in the regions of hairpins 26 and 27 that are known interactors of 40S ribosomal subunits and viral RNAs, specifically involved in IRES binding. The folding of these regions of rRNA complementarity in E6-E7 mRNAs is typically relaxed in the predicted optimal and sub-optimal secondary structures of HR-HPV strains. We hypothesize that the insert into the E6 coding sequence identified here was the primary cause of the emergence of high oncogenic potential alpha-HPV.

Results

The complete nucleotide sequences and the amino acid sequences of HPV E1, E2, E4, E5, E6, E7, L1 and L2 proteins were collected for all sequenced alpha-HPV strains (Extended data: Table S110). We then constructed a global multiple sequence alignment of the whole genome nucleotide sequences and the amino acid sequences alignments for each protein. Maximum likelihood phylogenetic analysis of these alpha-HPVs, based on the complete nucleotide sequence, as well as the amino acid sequences of most early proteins, identified HR-HPV as a clade, whereas phylogenies of E4, E5, L1 and L2 did not support the monophyly of the HR-HPV (Figure 1; Extended data: Figure S111), in agreement with previous findings10,12. These observations are compatible with a major role of recombination in the HPV evolution.

We next sought to identify genomic features that might partition alpha-HPV species, in accord with their oncogenic risk, focusing on the E6 and E7 oncogenes.

First, we searched for regions of insertions and deletions within the genome nucleotide sequences of E6 and E7 that might differentiate between the risk groups. Specifically, we identified sequences with high frequency of deletions or insertions that are located within high confidence alignment regions (See Methods for details). We then applied Support Vector Machine (SVM) with a leave-one-out cross-validation, aiming to identify regions that classify HPV strains based on their oncogenic risk. This approach resulted in the identification of genomic regions that separated HR-HPV from LR-HPV with high accuracy (over 0.75, with statistical significance; see Methods). Among these, we found one prominent insert (approximately 30-60 nucleotides) located within the E6 gene (Figure 2A). We also performed a similar search for regions separating HR-HPV from LR-HPV, using the amino acid sequence of E6 and E7 oncoproteins. For the purpose of classification, we coded the amino acids with numbers based on their frequencies and the BLOSUM6221 matrix (see Methods). As expected, the divergent region in E6 was identified from the amino acid sequences as well (Figure 2B). In contrast, we did not find any significant differences in E7 protein sequences between the high risk and low risk HPV strains (Extended data: Figure S211).

The discriminating region identified in the E6 gene contains an insert with a conserved sequence in all HR-HPV strains. The insert contains an in-frame stop codon for the E6 coding sequence, which eliminates the overlap between the coding sequences of E6 and E7 that is characteristic of the LR-HPV genomes, but results in nearly identical lengths of the E6 proteins in HR and LR-HPV strains albeit with unrelated C-terminal sequences of
The unique C-terminal sequence of HR-HPV E6 that originates from the insert contains a PDZ domain-binding motif X-T-X-V/L at the very C-terminus of E6 in almost all HR-HPVs. Indeed, several PDZ domain-containing proteins have been identified as binding partners of HR-E6, including hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3, and MUPP1. These interactions that are unique for HR-HPV are likely to be a key contributing factor to HR-HPV induced oncogenesis.

We observed that the sequence similarity between the insert sequences among HR-HPV strains is more pronounced at the nucleotide level than at the amino acid level (See METHODS for details and Extended data: Figure S3). Combined with the separation between the coding regions of E6 and E7 resulting from the insertion, and the proximity of E6 stop codon to the E7 start codon, this finding led us to hypothesize that the insert has an additional role as a regulatory region. Furthermore, as E7 has been previously identified as the dominant oncogene, the lack of genomic determinants of HR-HPV within the E7 gene is compatible with the possibility that the insert contains regulatory elements enhancing E7 expression in HR-HPV strains.

In HR-HPV strains, E6 and E7 proteins are translated from a polycistronic pre-mRNA, where translation reinitiation has been suggested as mechanism. However, the close proximity of the E6 stop codon to the E7 start codon in HR-HPV (only a few nucleotides separating these codons) could inhibit re-initiation. Therefore, it has been suggested that ribosomal reinitiation is enabled through the E6*I splice variant in which the intercistronic distance between the translation termination codon of E6*I and the E7 initiation codon is increased.

Several cases of coupled termination-reinitiation for polycistronic mRNA with proximate stop and start codons are evident for translation of eukaryotic virus genes. The efficiency of this process depends on the close proximity of the termination and reinitiation sites, and the presence of motifs complementary to the 18S rRNA in the mRNA sequence. Given the proximity of the E6 termination site to the E7 initiation site codon that results from the insertion in the HR-HPV strains conferred by the insert, we investigated the possibility of coupled termination-reinitiation of E6 and E7 in these strains. Notably, within the inserted sequence in the vicinity of the E7 start codon, we identified two conserved regions that are complementary to the sequences in 18S rRNA hairpins 26 and 27 which are commonly involved in the interactions between ribosomes and virus IRES (Figure 3A). The first region of complementarity consistently forms an internal loop and a relaxed, unpaired structure in the predicted optimal and sub-optimal E6-E7 mRNA.
Figure 2. HR-HPV-specific sequence insert. (A) Nucleotide sequence alignment of alpha-HPVs (upper panel are LR-HPV and lower panel are HR-HPV sequences). Boxed sequences: pink box, E7 start codon for most HPV types; blue boxes, E6 stop codons that are distinct between HR-HPV and LR-HPV. (B) Amino acid sequence alignment of alpha-HPVs (upper panel are LR-HPV and lower panel are HR-HPV sequences). The orange box shows the PDZ-binding motifs in E6 of HR-HPV. (C) Schematic representation of the E6/E7 separation through the insertion in E6 and the proximity of E6 stop and E7 starts in HR-HPV.
foldings of HR-HPV strains44 (Extended data: Figure S444, see Methods). The second region of 18S RNA complementarity overlaps with the E7 start site, and hence might function independently in the re-initiation of E7 translation (Figure 3B). These findings suggest that the insertion could enable coupled termination-reinitiation of E6 and E7 proteins, enhancing their combined expression in HR-HPV, and thus promoting the oncogenic transformation induced by these viruses.

Discussion

The genus *Alphapapillomavirus* includes HPV types that are uniquely pathogenic. However, the events in the HPV genome evolution that led to the carcinogenic potential of some alpha-HPV types remain poorly understood. Here, we revisited this problem by performing a search for genomic determinants of the oncogenic risk of alpha-HPV types and identified a unique insert in the 3'-terminal region of the E6 oncoprotein.
gene in all HR HPV strains. To the best of our knowledge, this insert in HR-HPV genomes has not been reported previously. The insertion maintains closely similar lengths of E6 proteins in HR-HPV and LR-HPV types, which could explain why it has been overlooked in previous HPV genome analyses.

We hypothesize that the insertion makes a dual contribution to the oncogenicity of the HR-HPV types. First, the inserted sequence changes the C-terminal amino acid sequence of E6 and creates a PDZ domain-binding motif that is unique to HR-HPV types. The experimentally demonstrated interaction between the E6 proteins of HR-HPV and several PDZ domain-containing proteins is thought to make a substantial contribution to HPV-induced tumorigenesis. Interestingly, PDZ-binding motifs have been identified also in several other oncogenic viruses, such as HTLV-1, adenovirus RhPV1 and beta-HPV8. Second, the insert eliminates the overlap between the E6 and E7 coding regions, implying a possible role as a regulatory region. We find that almost all HR-HPV genomes contain the sequence T-A/G-T-A-A-T/A in the insert near the end of the E6 coding sequence, a closely similar sequence to that functioning as the early promoter at the 5’ end of E6 and is employed for producing the mRNAs for both E6 and E7. However, in HR-HPV strains, unlike the case of the LR-HPV, there are no reports of an independent E7 promoter, and E6 and E7 are both translated from a polycistronic mRNA.

Further investigating the potential regulatory role of the inserted sequence, we identified two conserved motifs that are complementary to the human 18S rRNA; interaction of such motifs with the rRNA has been shown to play a role in coupled termination-reinitiation for several viral genes. The first motif forms an internal loop in the predicted mRNA secondary structure of E6E7, whereas the second one overlaps with the E7 initiation codon. Given the evolutionary conservation of these motifs and the close proximity of E6 termination site to the E7 initiation site, it appears plausible that coupled termination-reinitiation promoted by the insert sequence is a central mechanism for E7 translation in HR-HPV strains. Given the lack of additional major genomic determinants that would consistently differentiate between HR-HPV and LR-HPV, it seems likely that the insert in E6 is the primary cause behind the emergence of oncogenic HPV.

Methods

Multiple sequence alignment and phylogenetic analysis

Multiple alignments of nucleotide and amino acid sequences were generated using MAFFT v7.407 with default parameters. Maximum likelihood phylogenetic analysis was performed using the resulting alignments and PhyML 3.1 software, with the Bayesian information criterion, NNI tree improvement and an LRT SH-like likelihood method for support estimation.

SVM applied to nucleotide sequences

To apply Support Vector Machines (SVM) using Matlab 2018b fitsvm function) to the nucleotide sequences, we first encoded the data with numbers, where each nucleotide is coded as ‘1’ and each gap as ‘0’. We searched for alignment regions with deletions or insertions in multiple HPV strains that surround by high confidence alignment regions (alignment regions of length > 15 bp containing less than 5% of gaps in each position) because these are most likely to contain relevant differences within conserved genomic regions. Within these regions, we then trained the SVM to classify alpha-HPV strains based on their oncogenic potential. The performance of the SVM was evaluated by leave-one-out cross validation, and regions with the overall balanced accuracy >0.75 (the average of the accuracy for positive and negative classes) were selected for further analysis.

SVM applied to amino acid sequences

To apply SVM (using Matlab 2018b fitsvm function) to the amino acid sequences of E6 and E7 proteins, we first encoded the amino acids with numbers using the frequencies of each amino acid in each protein and the BLOSUM62 matrix. For each position, the most frequent amino acid was identified, and the amino acids in each protein were encoded by their BLOSUM62 distances from the most frequent amino acid in the respective position. We then trained the SVM to classify alpha-HPV strains based on their oncogenic potential using the coded protein sequences. Positions surrounded by high-confidence alignment regions (length > 5 amino acids and containing less than 5% of gaps in each position) were selected for further analysis. For these positions, we evaluated the performance by leave-one-out cross validation, and regions with the overall balanced accuracy >0.75 were selected for further estimation of significance using a permutation test.

Estimation of the significance of the identified regions using permutations

To estimate the significance of the identified regions, i.e. to determine whether similar differences could be observed by chance, we performed a permutation test, controlling for the topology of the reconstructed phylogenetic trees. To this end, the labels were randomly permuted while maintaining unified labels for clades with high similarity. For each identified region, the likelihood of obtaining an equivalent or higher performance for the length of the region within the respective protein was evaluated by calculating an empirical P-value. We consider regions with permutation P-value <0.05.

Analysis of RNA folding and RNA-RNA duplexes

The most stable secondary structures were predicted for all HR-HPV strains and their free energy values were calculated using the Vienna package. Afold and Mfold were applied for prediction of optimal and sub-optimal mRNA structures. Target opening free energy was estimated for motifs 1 and 2 using optimal and sub-optimal RNA structures, as described previously. The sequence fold variants with the lowest secondary-structure free energy are presented in the Extended data: Figure S4. The formation of intermolecular mRNA-RNA duplexes and hybridization affinity of the E6-E7 inserts to ribosomal RNA were evaluated using the Hybrid software with default parameters, with a ΔG threshold of ≤-10 kcal/mol. The human 18S rRNA 2D structure was extracted from the
structures of X-ray structure of eukaryotic ribosome (http://apollo.chemistry.gatech.edu/RibosomeGallery/H%20sapiens/SSU/index.html; 68,69).

Data availability
Underlying data
Nucleotide sequences of HPV and amino acid sequences of HPV E6 and E7 proteins are available as extended data.

Extended data

This project contains the following extended data:

• Table 1: Complete nucleotide sequences and the amino acid sequences of HPV E1, E2, E4, E5, E6, E7, L1 and L2 proteins. This is the only source data that was required and employed for the analysis reported in this work.

• Figure S1: Maximum likelihood trees obtained with alignments of E6, E7, E1, E2, E4, E5, L1 and L2 amino acid sequences of alpha-HPV strains.

• Figure S2: The balanced accuracy (y-axis) obtained from a leave-one-out cross validation for predicting risk category (HR vs LR) of alpha-HPV strains using BLOSUM62 coding of amino acid sequences, of different positions (x-axis) E6 (A) and E7 (B). Zero-accuracy was assigned to regions surrounded with low confidence alignment.

• Figure S3: Boxplots showing the distributions of the identity fraction of each nucleotide (NN) and amino acid (AA) in the genome and protein sequences of the insertion (not considering gaps for both NN and AA). The individual identity fractions of each position are overlaid.

• Figure S4: RNA fold secondary structure prediction of HR HPV strains 16 (A), 18 (B), 45 (C) and 31 (D). The nucleotides of the first motif are marked in red, and of the second motif in purple. E7 AUG is noted in red font.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Grant information
This work was supported by U.S. Department of Health and Human Services (Intramural funds).

The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript.

References

Open Peer Review

Current Peer Review Status:

Review Report 06 August 2019

https://doi.org/10.5256/f1000research.21480.r51570

© 2019 White E. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Elizabeth A. White
Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA

In this study, Auslander and colleagues compare nucleotide and amino acid sequences for a subset of genus alpha HPV genotypes. They observe that high-risk HPV genomes share a short sequence insert at the 3’ end of the E6 ORF. The insertion adds a PDZ binding motif to the C-terminus of high-risk HPV E6 proteins and alters the location of the E6 termination codon relative to the E7 initiation codon.

This observation is consistent with previous findings. It has been appreciated for some time that high-risk HPV E6 and E7 are transcribed from a polycistronic mRNA whereas low-risk E6 and E7 are transcribed from separate promoters. In addition, a frequent splicing event occurs within the E6 gene in the bicistronic high-risk HPV early mRNA. This report adds to those observations. It proposes that the 3’ high-risk specific insert is another feature that differs between high- and low-risk HPV and that it might drive differences in expression of high-risk versus low-risk HPV oncoproteins. Understanding the differences between oncogenic and non-oncogenic HPV is an area of intensive research and new contributions in this area are potentially significant. This report makes a useful contribution to the literature.

Weaknesses of the manuscript are that the current literature is not cited and that other features of high-risk HPV E6 that might also account for their oncogenic activities are not discussed. Although comparing nucleotide sequence differences is informative, for HPV E6 this comparison does not completely reflect the biology of the proteins. There are high-risk HPV E6-specific protein binding partners other than PDZ domain proteins. Several of these are listed in a useful 2012 review; others were identified by proteomic analyses from several groups. For example, the authors do not mention that TP53 binding and degradation is a feature of high-risk HPV E6 not shared by low-risk HPV E6. It also appears that not all of the high-risk HPV E6 interact with the same subset of cellular PDZ proteins. It is unclear how these diverse HPV E6-PDZ protein interactions might account for the shared oncogenic features of high-risk HPV E6, and this point is not discussed in the manuscript.

It is established in the HPV literature that small differences in HPV oncoprotein amino acid sequence result in significant differences in interactions with host cellular proteins. This is beautifully illustrated by the structural studies of Gilles Trave and colleagues, who have determined that subtle differences in E6
enable a range of specific interactions with cellular LxxLL-containing proteins. Other recent studies highlight high-risk HPV-specific activities of the E7 oncoprotein. In light of findings like these, this manuscript seems to overstate the claim that the PDZ binding motif is the 'most notable molecular feature' distinguishing high- from low-risk HPV. The potential importance of the insert sequence to E6/E7 translation regulation is high and should be tested; the discussion of the importance of the PDZ binding motif should be tempered and put in context with other recent findings.

Additional points:

1. Mirabello and colleagues recently reported an analysis of sequence variants from >5000 HPV16-positive cervical samples\(^4\). HPV16 E6 sequences exhibited variation across the length of the ORF that was similar in high-grade versus control lesions. A possible interpretation of this finding is that the protein sequence in the C-terminus of E6 is not important for oncogenic transformation. How does this fit into the authors' model? It would be useful to include a discussion of these data.

2. The phylogenetic trees in Figure 1B might be easier to interpret if they were presented in a linear format. It is difficult to determine where the boundaries between the high-risk/low-risk groupings overlap with the major branch points of the tree.

3. HPV diversity is much greater that that reflected solely in genus alpha. It would be interesting to know whether HPV from other genera have also acquired sequences in this region that might provide some or all of the activities suggested by the authors.

References

Is the work clearly and accurately presented and does it cite the current literature?

Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: HPV E6 and E7, protein-protein interactions, transformation

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response (Member of the F1000 Faculty and F1000Research Advisory Board Member) 13 Sep 2019

Eugene Koonin, National Institutes of Health, USA, Bethesda, USA

We appreciate this highly constructive and helpful review in response to which the following modifications have been made to the article:

1. Many references to the current literature were added, and several other features of HR-HPV E6 are now discussed.

2. The suggested references to HR-HPV E6 specific binding partners have been included.

3. The discussion on the importance of the PDZ binding motif in distinguishing HR from LR HPV has been tempered, and the context for its potential relevance has been clarified.

4. We now discuss the recent analysis of 5570 cervical HPV16 genomes (Mirabello and colleagues) and have substantially expanded the discussion of the effect of the insert on E7 production.

5. Figure 1B has been updated, phylogenetic trees are now presented in a linear format.

In addition, although the referee have suggested a statistical review of the permutation test that was used in this work to assess the significance of the results, we are confident that this is unnecessary because the statistical technique we used is simple and standard.

Competing Interests: I declare no competing interests
Auslander and colleagues present a comparative sequence analysis of alpha-papillomavirus genomes. They identify and analyze a short 30-60 nucleotide sequence insert between the E6 and E7 open-reading frames that encodes the PDZ domain in the high-oncogenic risk types and propose that this region also contains sequences that enable coupled termination and reinitiation to facilitate translation of the E6 and E7 proteins. This is an intriguing observation as HPVs are associated with ~5% human cancers and understanding how the viral oncoproteins are expressed is crucial. The proposed hypothesis should be testable and indicates that experiments in which the E6 PDZ domain is mutated in the background of the viral genome should be interpreted carefully.

A weakness of the manuscript is that current literature and data sources are not used/and or cited and the data-set used seems incomplete. For example, there are currently 198 officially numbered HPV types, and 442 HPV types in total. A curated data-set of genome sequences for all papillomavirus types sequenced to date is available at PaVE. There are also many recent publications that describe analyses of PV evolution, oncogenicity and E6 PDZ domains that should be cited.

There are sequences available for 64 alpha HPV types that have been officially named by the HPV Reference Centre, yet only the genomic sequences of 44 types are listed in Figure S1. The data-set contains many isolates for some HPV types (e.g. 299 isolates of HPV16) yet almost no representatives of the species alpha 2, 4 and 8. The E6 protein of HPV40 (alpha-8) has been proposed to contain an ancestral alpha PDZ domain and so the genomes of the alpha-8 species should be closely examined/discussed. Nevertheless, a nucleotide alignment of all 64 alpha-PV nucleotide sequences from PaVE does support the authors’ conclusions that only HR species-5, 6 7, 9 and 11 contain an insert separating the E6 and E7 ORFs.

Minor issues:
1. In Figure 1A, alpha-11 is listed in the key for both LR and HR.

2. In Figure 2, the resolution of the sequence images should be improved. The legend for 2B should make it clear that these are just the C-terminal sequences of the E6 polypeptides. In 2C, the symbols and colored blocks should be described.

3. In Figure 3A, the color/bold identification of the motifs and TAA/AUG are not easily visualized in the pdf. Perhaps highlight TAA/AUG by underlines or boxes. Labelling the groups of different HPV species along the left would also be helpful. In 3B, the labelling of the 18S rRNA hairpin (orange text) is confusing. What is 26es7?
4. In Figure S4: clarify in the legend that this is the E6-E7 RNA sequence for each HPV type shown.

5. The reference for IRES (54), I think should be 53.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: I founded and oversee the NIAID papillomavirus bioinformatics site https://pave.niaid.nih.gov/ described in the review

Reviewer Expertise: HPV replication, genomics, epigenetics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response (Member of the F1000 Faculty and F1000Research Advisory Board Member) 13 Sep 2019

Eugene Koonin, National Institutes of Health, USA, Bethesda, USA

We appreciate the constructive and very helpful review in response to which the following changes have been made to the manuscript:

1. We now mention the most recent number of HPV types that have been formally recognized (198), and the reference supporting this has been updated.

2. We added numerous references to recent publications that describe analyses of HPV evolution, oncogenicity, oncoprotein interactions and E6 interactions with PDZ domains.

3. We now include all 64 alpha HPV types from PaVE, and all analyses and figures 1-3 include those HPV strains.

4. Resolution of the new figures has been improved.

5. The legend to Figure 2B has been modified as suggested.
6. The legend to Figure 2C describes all symbols and colored blocks.

7. Figure 3A has been updated to show the motifs clearly and arrange the strains by the order in the phylogenetic tree.

8. Figure 3B has been updated, confusing labelling of 18S rRNA removed.

Competing Interests: I declare no competing interests.

Author Response (Member of the F1000 Faculty and F1000Research Advisory Board Member) 13 Sep 2019

Eugene Koonin, National Institutes of Health, USA, Bethesda, USA

Although the referee has suggested a statistical review of the permutation test that was used in this work to assess the significance of the results, we are confident that this is unnecessary because the statistical technique we used is simple and standard.

Competing Interests: I declare no competing interests.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com