RESEARCH ARTICLE

Acute and sub-acute toxicity study of the root extracts of Fagaropsis hildebrandtii in mice and evaluation of their antimicrobial effects [version 1; peer review: 1 approved with reservations]

Beatrice Mwende Muia¹, James Mucunu Mbaria¹, Laetitia Wakonyu Kanja¹, Nduhiu Gitahi¹, Paul Onyango Okumu², Mitchel Otieno Okumu¹

¹Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi, +254, Kenya
²Department of Veterinary Pathology, Microbiology, and Parasitology, University of Nairobi, Nairobi, +254, Kenya

Abstract

Background: Among the Kamba community of Kenya, roots of Fagaropsis hildebrandtii (FH) are boiled and used in managing cough, fertility problems, and microbial infections. The safety of this plant in oral administration and the validity of the ethnomedical claims is unverified. This study evaluated the toxicity of the aqueous and hexane root extracts of FH in mice and antimicrobial effects against Staphylococcus aureus, Salmonella typhimurium and Candida albicans.

Methods: Doses (300 and 2000mg/kg) of the extracts were administered orally to mice for 14 days. The weight, feed, and water consumption, organ weight of mice and gross macroscopy of the liver were used in evaluating acute toxicity. Mice were additionally treated with 250, 500, and 1000mg/kg body weight doses of the extracts for 28 days and haematological, biochemical, and histological parameters noted. The minimum inhibitory and minimum bactericidal/fungicidal concentrations (MIC; MBC/MFC) of the extracts against the aforementioned pathogens were determined by broth dilution.

Results: Acute oral toxicity of the extracts was >2000mg/kg, there were dose dependent changes in haematological and biochemical parameters, all female mice died when treated with doses of 1000mg/kg and doses ≥500mg/kg caused tubular degeneration and haemorrhage of the kidney, cloudy swelling of hepatocytes, and multifocal necrosis and pyknosis in the liver. The MBC/MIC ratio of each of the extracts against Staph. aureus and S. typhimurium was 2, while C. albicans was not sensitive to any of the extracts.

Conclusions: Long term use of root extracts of FH was associated with dose-dependent changes in the kidney and liver of mice and changes in biochemical and haematological parameters. Root extracts of FH are bactericidal against Staph. aureus and S. typhimurium but have no effect on...
C. albicans. Future work should aim at identifying the metabolites responsible for the observed toxic and bactericidal effects of the roots of FH.

Keywords
Fagaropsis hildebrandtii, toxicity, antimicrobial activity, mice.

Corresponding author: Beatrice Mwende Muia (mwende.betty@yahoo.com)

Author roles: Muia BM: Conceptualization, Formal Analysis, Investigation, Methodology, Resources, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Mbaria JM: Investigation, Methodology, Project Administration, Supervision, Writing – Review & Editing; Kanja LW: Investigation, Project Administration, Supervision, Writing – Review & Editing; Gitahi N: Investigation, Methodology, Resources, Writing – Review & Editing; Okumu PO: Investigation, Methodology, Resources, Software; Okumu MO: Investigation, Methodology, Resources, Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Muia BM et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Muia BM, Mbaria JM, Kanja LW et al. Acute and sub-acute toxicity study of the root extracts of Fagaropsis hildebrandtii in mice and evaluation of their antimicrobial effects [version 1; peer review: 1 approved with reservations] F1000Research 2019, 8:1444 (https://doi.org/10.12688/f1000research.19915.1)

First published: 16 Aug 2019, 8:1444 (https://doi.org/10.12688/f1000research.19915.1)
Introduction

In the last two decades, the demand for and access to complementary and alternative medicine has grown exponentially1. This has been down to a host of reasons including the integration of complementary and alternative forms of medicine into mainstream healthcare, as exemplified in Taiwan1, a general lack of access and means to afford therapies from the developed world by people in impoverished areas in Africa and Asia, and cultural attitudes towards health in different parts of the world2,3. Notwithstanding, complementary and alternative medicine continues to be sidelined in discussions on the global stage in matters pertaining to public health1. This state of affairs means that there is little impetus to unravel the untapped potential that medicinal species used in complementary and alternative medicine hold. The safety profile of some of the medicinal plants used in complementary and alternative therapies are also unknown despite positive ethnomedical reports emanating from various communities around the world. This therefore calls for a thorough scrutiny of not only the ethnomedical claims but also the safety of the medicinal plants used in such therapies.

Candida albicans, Salmonella typhimurium, and Staphylococcus aureus are some of the most common human pathogens in low and middle-income countries4. The development of antimicrobial resistance to these pathogens is an ongoing problem and is of public health relevance5,6. Thus, the need for alternatives to the present drugs indicated for infections by these microorganisms has never been more important.

Fagaropsis hildebrandtii (Figure 1) is a deciduous shrub/tree which grows up to a height of 24 meters9. It has nice smelling fruits when unripe, which turn red when they ripen. It is native to Ethiopia, Somalia and Kenya9. Among the Kamba community of Kenya, it is known as “muvinavindind”10. Some ethnomedical claims associated with the plant include treatment of pneumonia, chest pain, arthritis, stomach pains, ulcers, malaria, internal abscesses, epilepsy and resolving infertility in women, as well as chest and respiratory infections1. This is administered as follows: the root/bark is soaked in water or boiled and administered as an infusion or decoction at a dose of one glass three times daily11. Not only is there a dearth of scientific literature supporting these medicinal claims, but also the safety of this plant for various ethnomedical applications may only be assured after extensive scientific scrutiny. This study therefore aimed to determine the safety of root extracts of F. hildebrandtii on oral administration in mice, as well as to evaluate the antimicrobial effects of the extracts against Staph. aureus, S. typhimurium, and C. albicans which are gram positive, gram negative, and fungal microorganisms, respectively. The null hypothesis for this study was that root extracts of F. hildebrandtii are safe on oral administration in mice. Up to 75% of all experiments on toxicity make use of rodents (rats or mice)10 and it is assumed that the effects detected in rodents are the same as those that would be induced in humans unless there is some specific information of species differences in the test response12. Moreover, the response of the test animal is generally considered representative of the average sensitivity of the human population and that for some members of the human population, the risk to health may be much higher10.

Methods

Chemicals and microorganisms

HPLC grade hexane was purchased from Sigma Aldrich (St. Louis MO, USA). All chemicals used in preparing various reagents for phytochemical screening were analytical grade and high purity. Two bacteria (gram-positive: Staphylococcus aureus ATCC 25923; gram-negative: Salmonella typhimurium ATCC 7222569) and one fungus (Candida albicans ATCC 10231) were provided by the Microbiology section of the Department of Public Health, Pharmacology and Toxicology of the University of Nairobi.

Collection and authentication of plant material

Fresh roots of F. hildebrandtii were collected from Kilome constituency, Kitaingo sub location in Makueni County in Kenya (GPS coordinates: 1.7726° S, 37.4498° E). Identification and authentication of the plants were done at the herbarium, Department of Land Resource Management, University of Nairobi. Identification and authentication involved the determination of the botanical origin of the plant, determination of the scientific binomial name, determination of the vernacular name, site of collection, habitat and season of collection, altitude and the parts collected1,12. The keys available in the book titled ‘Kenya trees, shrubs, and lianas’13 was used to arrive at the said genera and the specific epithet.

Preparation of extracts

The collected roots were gently washed in tap water to remove dirt. They were then shade dried in the laboratory at room temperature for ~2-3 weeks. After completely drying, plant material was pulverized by use of a mechanical mill and subsequently
sieved using a 0.45 µm pore Whatman® membrane filter to obtain a powder of suitable consistency. The powdered material was weighed and divided into two portions. One portion (~500g) was mixed with ~2000 ml of sterile distilled water, allowed to macerate for 72 hours and centrifuged at 3000 rpm for 10 minutes. The supernatant was collected, filtered through a 0.45 µm membrane filter, and the filtrate lyophilized, and appropriately stored in an amber coloured bottle (henceforth known as AQRFH). To the second portion, 1250 ml of hexane was added and the mixture allowed to macerate for 72 hours, centrifuged at 3000 rpm for 10 minutes, and the supernatant filtered using a 0.45 µm membrane filter. The filtrate was then reduced by use of a rotary evaporator at 40°C to obtain a dried product (henceforth known as HEXRFH).

Qualitative phytochemical screening

AQRFH and HEXRFH were analysed for the presence of various phytochemical metabolites, including alkaloids, cardiac glycosides, flavonoids, phenolics, saponins, phytosterols, tannins and triterpenes using standard procedures4. See Table 1 for the exact tests carried out.

Experimental animals and husbandry

Adult healthy male and female albino mice (*Mus musculus*; BALB/c strain; n=66: 42 females, 24 males; age: 8 to 12 weeks; body weight: 20–30 g) were used for this study. The number of animals used were based on the Organization for Economic Corporation and Development (OECD 423) test guidelines4 (Extended data: Table S1). Female mice were nulliparous and not pregnant and all animals were sourced from the Animal House of our institution (University of Nairobi). They were housed in polypropylene cages in the laboratory for at least one week to acclimatize to standard conditions (temperature: 25±3°C; relative humidity: 56–60%; 12 hours of light and 12 hours of darkness). Fluorescent room lights were switched on at 0600h–1800h (light cycle) and off at 1800h–0600h (dark cycle). They were fed on standard mice pellets from a commercial feed supplier (Unga Group Plc, Kenya) and water was provided *ad libitum.*

All efforts were made to ameliorate any suffering of the animals by adopting the OECD 423 test guidelines4 as well as the recommendations of the Biosafety, Animal Use and Ethics Committee (BAU) of the University of Nairobi (BAUEC/2018/163) (Extended data: Figure S1).

Experimental protocols

All treatments on the experimental animals were carried out in rat cages during the daytime/light cycle (0600h to 1800h) at the animal holding unit of the Department of Public Health, Pharmacology, and Toxicology, University of Nairobi.

Acute toxicity study. The acute toxic class (OECD 423) test guidelines on acute oral toxicity were used46. In total 18, 8–12-week-old female albino mice of 18–20 g were labelled from 1–6 in such a way that there were three animals bearing each number47. The number assigned to each animal was then written on a piece of paper (n=18), folded and placed on a receptacle which was then shaken47. A paper was withdrawn at random and the animal that bore the number was assigned into the respective cages labelled 1 (distilled water control group), 2 (extra virgin oil control group), 3 (300mg/kg AQRFH extract group), 4 (2000mg/kg AQRFH group), 5 (300mg/kg HEXRFH group) and 6 (2000mg/kg HEXRFH group)47. Each animal was individually weighed at day 0, 7, and 14 and the observation of the weights noted (Extended data: Table S2). The mice were then fasted for 4 hours before dosing.

Two doses (300 and 2000 mg/kg of body weight) of either AQRFH or HEXRFH were prepared by accurately weighing the extracts into 250 ml volumetric flasks, mixing well in distilled water or extra virgin oil respectively, and making up to the mark with either distilled water or extra virgin oil. Dosing of mice followed the OECD 423 test guidelines (i.e. 1ml per 100g body weight of mice)44. Therefore, using the weights of mice as a guide, suitable amounts (in ml, and corresponding to the appropriate doses) of either AQRFH or HEXRFH suspended in distilled water and extra virgin oil, respectively, were drawn into 2ml syringes attached to a gastric gavage and administered to

Table 1. Preliminary phytochemical screening of root extracts of Fagaropsis hildebrandtii.

<table>
<thead>
<tr>
<th>Plant metabolite</th>
<th>Test</th>
<th>Aqueous extract</th>
<th>Hexane extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Dragendorff’s test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mayer’s test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>Borntrager’s test</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>Keller-killiani test</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Alkaline reagent test</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Phenolics</td>
<td>Ferric chloride test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>Foam test</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Steroids</td>
<td>Liebermann-Burchard’s test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>Salkowski’s test</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Present, − absent
mice. Two groups (Groups 1 and 2) served as controls, and mice in these groups received by gastric gavage a daily dose of distilled water and extra virgin oil. Group 3 mice received a 300 mg/kg dose of AQRFH, Group 4 mice received a 2000 mg/kg dose of AQRFH, Group 5 mice received a 300 mg/kg dose of HEXRFH, and Group 6 mice received a 2000 mg/kg dose of HEXRFH.

Food and water consumption of the mice per treatment was evaluated at 0, 7 and 14 days after treatment (Extended data: Table S315). At the end of the 14 days, the mice were sacrificed and organs such as the liver, kidney, lungs and spleen were weighed and used to calculate the relative mean organ weight as below:

Relative organ weight = \frac{\text{absolute organ weight}}{\text{weight of mice at sacrificing}} \times 100

The data on relative mean organ weight of mice in the acute toxicity protocol is summarized in Extended data: Table S415.

Sub-acute toxicity studies. This study was carried out using 24 male and 24 female albino mice (20–30g). They were grouped by randomized complete block design into 6 treatment groups and 2 control groups (n=6 mice/group). Control group mice received an oral daily dose of 0.6ml distilled water (aqueous extract control) and 0.3ml of extra virgin oil (hexane extract control) for 28 days. Treatment group mice received graded doses (250, 500 and 1000mg/kg body weight) of AQRFH and HEXRFH which were administered once daily for 28 days. The body weights of the mice were noted at day 0, 7, 14, 21, and 28 and the doses adjusted accordingly (Extended data: Table S515).

Clinical observations. Changes in fur and skin colour, mucous and eye membranes, respiratory, circulatory autonomic and central nervous systems were noted16. Other observations to be noted included tremors, convulsions, confusion, salivation, diarrhoea, coma and death. Observations were done at intervals of 30 minutes, 4 hours, 24 hours, 48 hours, 7 days, 14 days, 21 days and 28 days16.

Body weight. Individual body weights of mice in the sub-acute toxicity protocol were recorded on day 0, 7, 14 and 28 (Extended data: Table S515). Body weight was also recorded prior to the first dosing on day 0 and terminally (after fasting) prior to necropsy (Extended data: Table S515). The food and water consumption in the sub-acute toxicity protocol are summarized in Extended data: Table S715.

Necropsy and organ weight. All animals were fasted overnight prior to necropsy. The animals were euthanized using halothane inhalation in a bell jar, blood samples were collected by use of cardiac puncture into vacutainers containing anticoagulant (EDTA for haematological parameters) and without anticoagulant (plain tubes for biochemical parameters). About 0.5 ml of the blood in plain tubes was centrifuged at 3000 rpm for 10 minutes to obtain serum, which was then stored at −20 °C awaiting further use in biochemical assay of aspartate amino transferase (AST), alanine amino transferase (ALT), total protein (TP), urea and creatinine using specific kits (Catalyst AST Aspartate amino transferase-98-11067-01, Catalyst ALT/GPT Alanine amino transferase-98-11069-01, Catalyst TP Total Protein-98-11085-01, Catalyst BUN Urea-98-11070-01, and Catalyst CREA Creatinine-98-11074-01: Magrum Veterinaria, Laagri Arimaja, Vae 16, Estonia). In addition, ~1.3ml of the blood collected in the anticoagulant containing vacutainers was used to evaluate levels of haematocrit (HCT), total white blood cell (WBC) count, total red blood cell (RBC) count, haemoglobin (Hb), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), and mean corpuscular haemoglobin concentration (MCHC) using IDEXX kits (One Idexx drive, Westbrook, Maine, 04092, United States).

Histopathological studies. Histopathological studies were carried out on organ samples of liver and kidney of the mice. These organs were surgically removed from the mice and fixed in 5% buffered formalin. Tissue samples were then dehydrated in graded doses of ethanol (70–99.9%; Fischer Scientific Ltd.; Batch number 0556512, washed in toluene (Fischer Scientific; Lot no: 193377, and enclosed in paraffin (Honeywell Fluka™ 18634H). Thin tissue sections of 5µm were obtained on a rotatory microtome and stained with haematoxylin-eosin dye and analysed microscopically for any pathological alterations. The photomicrographs obtained were labelled for identification.

Antimicrobial activity. Staph. aureus (gram positive bacteria), S. typhimurium (gram negative bacteria) and C. albicans (fungus) were cultured on blood agar (Oxoid Ltd.; Lot number 1623360) and incubated overnight at 37°C in an incubator (Memmert, Germany). The cultures were suspended in 5 ml sterile physiological buffered saline and turbidity adjusted to 0.5 McFarland to give a concentration of approximately 1.5 × 10⁸ colony forming units per ml (CFU/ml). In total, 800 mg of AQRFH and HEXRFH were dissolved in 3ml of sterile distilled water and virgin oil, respectively. Serial dilutions ranging from 3.125–400 mg/ml of the extracts were then prepared using sterile peptone water (Oxoid Ltd; Lot number 1721983). Subsequently, using a sterile 1ml pipette, the adjusted individual micro-organisms (Staph. aureus, S. typhimurium and C. albicans were inoculated into every tube of the diluted plant extracts to give a final concentration of 5×10⁸ CFU/ml. The tubes were then incubated at 37°C for 24 hours. Serial dilutions of the plant extracts devoid of micro-organisms were used as negative control. Positive control tubes had the respective microorganisms without serial dilutions of the plant extracts. Peptone water was used to blank the spectrophotometer.

The relative mean organ weight of mice in the sub-acute toxicity protocol are summarized in Extended data: Table S715.
Flucloxacillin (10mg/ml; Dawa Pharmaceuticals Ltd-Kenya; Batch number MB18085 and fluconazole (10mg/ml); Universal Corporation Ltd-Kenya; Batch number 5805073) were used as positive reference compounds of antimicrobial activity.

Baseline optical density at a wavelength of 450 nm readings for each of the tubes were taken immediately after all tubes had been prepared using a spectrophotometer (Spectronic 21D, Milton Roy, USA). Optical density readings were also taken after 24 hours. A comparison between baseline optical density readings and optical density readings after 24 hours of inoculation of the tubes was made. This was done to determine whether there was growth or not. The minimum inhibitory concentration (MIC) was defined as the lowest concentration of the extracts that inhibited any visible growth of bacteria as determined by the absence of change in the optical density readings between baseline values and those obtained after incubation of the tubes. For the determination of the minimum bactericidal/fungicidal concentration (MBC/MFC), 100µl of broth was taken from all the MIC tubes after 24 hours of incubation at 37°C and sub-cultured aseptically to Plate Count Agar (Oxoid Ltd.; Lot number 1626187). The plates (WOM-CHINA; Lot number RT20171103) were incubated at 37°C for 24 hours and checked for bacterial growth. The lowest concentration of the plant extracts that showed no bacterial growth was considered the MBC/MFC, defined as the lowest concentration of the extract which is responsible for killing greater than 99.9% of the initial bacteria inoculums.

Statistical analysis

Results of haematological and biochemical tests were expressed as mean ± of standard deviation of three independent observations and analysed using ONE-WAY ANOVA on Statistical Package for the Social Sciences (SPSS, version 21.0). Tukey’s test was used as post hoc. *p< 0.05 was considered significant.

Results

Preliminary phytochemical screening

AQRFH and HEXRFH yielded about 9% and 2.74% of extract, respectively. Preliminary phytochemical screening of AQRFH revealed the presence of alkaloids, flavonoids, phenolics, saponins, steroids, tannins and terpenoids while the screening of HEXRFH revealed the presence of alkaloids, cardiac glycosides, phenolics, saponins, steroids, tannins and terpenoids (Table 1).

Acute toxicity study

Acute toxicity studies were carried out for 14 days as per the OECD 423 guidelines. No mortality of mice was observed within the first 4 hours of continuous observation, nor after 24 hours. There was also no lethal effect observed after the administration of the extracts for the experimental period of 14 days. Morphological characteristics such as the fur, and skin colour appeared normal. There was no salivation, diarrhoea, lethargy, unusual behaviour or altered respiration. Mean body weight (Extended data: Table S2), food and water intake (Extended data: Table S3), and relative mean organ weight (Extended data: Table S4) of treatment group animals were not significantly different from the control group animals. Figure 2 illustrates the changes in the mean body weight of mice receiving different treatments over the 14-day study period for acute oral toxicity. Figure 3 illustrates the feed and water consumption of the experimental mice over the 14-day study period.

Gross macroscopy

On gross macroscopic examination, there was no necrosis, inflammation or change in size of the lungs, liver, spleen, kidney or heart in mice (Figure 4).
Sub-acute toxicity studies

Mean body weight of mice that received AQFRH over 28 days. There was no significant difference in the mean weight of control mice relative to the mice treated with 250 or 500mg/kg doses of AQFRH. However, there was a significant difference in the mean weight of control mice relative to the mice (female) treated with a 1000mg/kg dose of AQFRH after 28 days (Extended data: Table S5).

Feed and water consumption in mice treated with graded doses of AQFRH and HEXFRH. Feeding mice on graded doses of the root extracts of F. hildebrandtii over a 28-day period had no significant effect on the feed and water consumption of mice in treatment groups relative to the control (Extended data: Table S6).

Relative mean weight of mice treated with graded doses of AQFRH and HEXFRH. Doses of 250mg/kg and 500mg/kg of AQFRH did not produce any significant effect on the mean weight of mice relative to the controls (Extended data: Table S7).

None of the doses of HEXFRH had any significant effect on the mean weight of the treatment mice relative to the controls (Extended data: Table S8).

Relative-organ weight ratios of mice treated with AQFRH and HEXFRH. There was no significant change in the mean relative weight of the stomach, left and right kidneys, lung, spleen, heart and liver in mice treated with a 28-day oral dose of 250mg/kg and 500mg/kg of AQFRH, respectively (Extended data: Table S9). A 1000mg/kg dose of AQFRH significantly lowered the mean relative weight of the spleen in both male and female mice (Extended data: Table S9). This dose also significantly lowered the mean relative weight of the liver in male mice, and the stomach and lung in female mice relative to the control group (Extended data: Table S9).

There was no significant change in the mean relative organ weight of the stomach, left and right kidneys, lung, spleen, heart and liver in mice treated with a 28-day oral dose of 250mg/kg and 500mg/kg of HEXFRH (Extended data: Table S10). A 1000mg/kg dose of HEXFRH significantly increased the mean relative organ weight of the liver in male mice relative to the control. This dose also produced a significant decrease in the mean relative organ weight of the lungs, spleen and heart in male and female mice, and the stomach of female mice relative to the control group (Extended data: Table S10).

Evaluation of haematological parameters. A 250 mg/kg dose of AQFRH significantly lowered the mean RBC levels in male mice.
mice, while significantly raising the mean platelet levels in both male and female mice relative to the control group (Table 2). This dose also non-significantly increased the mean levels of Hb, HCT, MCV, MCH, and the MCHC in both male and female mice as well as mean levels of WBC in male mice relative to the control (Table 2). This dose also non-significantly lowered the mean RBC levels in female mice relative to the controls. A 500mg/kg dose of AQRFH significantly lowered the mean RBC levels in male mice while significantly raising the mean Hb levels in female mice and the mean platelet levels in male mice relative to the control (Table 2). This dose also non-significantly increased the mean levels of MCHC, MCH and WBC in both male and female mice, and the mean levels of HCT, platelets and MCV in female mice, as well as the mean Hb levels in male mice relative to the controls. A 1000mg/kg dose of AQRFH resulted in the death of all female mice tested (n=6). Thus, no haematological parameter was evaluated for these animals. On the other hand, this dose of extract significantly lowered the mean levels of all haematological parameters evaluated in male mice relative to the controls (Table 2).

A 250mg/kg dose of HEXRF significantly lowered the mean RBC and platelet levels in male and female mice relative to the controls (Table 3). This dose also non-significantly lowered the mean haematocrit, WBC and MCHC levels in both male and female mice, as well as the mean Hb, and MCV levels in female mice relative to the control group. This dose also non-significantly raised the mean Hb and MCV levels in male mice, as well as the MCH levels in both male and female mice relative to the control group. A 500mg/kg dose of HEXRFH significantly lowered the mean RBC levels in both male and female mice, and the mean platelet levels in female mice relative to the control group (Table 3). This dose non-significantly raised the mean Hb, MCHC and WBC levels in male and female mice, as well as the mean levels of Hb, MCH and WBC in male mice relative to the control group. This dose also non-significantly lowered the mean Hb, MCHC and WBC levels in both male and female mice, as well as the MCH levels in male mice relative to the control group. A 1000mg/kg dose of HEXRFH resulted in the death of all female mice tested (n=6). Thus, no haematological parameter was evaluated for these animals. On the other hand, this dose of extract significantly lowered the mean levels of all haematological parameters evaluated in male mice relative to the controls (Table 3).

Evaluation of biochemical parameters. A 250 mg/kg dose of AQRFH did not produce any significant change in the mean levels of any of the biochemical parameters evaluated (Table 4). This dose produced a non-significant decrease in the mean levels of urea, creatinine and ALT in both male and female mice and AST and TP in male mice relative to the control group. This dose also produced a non-significant increase in the mean levels of AST and TP in female mice relative to the control group. A 500 mg/kg dose of AQRFH significantly raised the mean levels of ALT in female mice relative to the controls (Table 4). This dose produced a non-significant decrease in the mean levels of AST in male and female mice, and in mean levels of ALT, urea, creatinine, and TP in male mice only relative to the control group.
Table 2. Effect of the aqueous root extract of *F. hildebrandtii* on haematological parameters in male and female mice.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gender</th>
<th>Control 250mg/kg</th>
<th>p value 500mg/kg</th>
<th>p value 1000mg/kg</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (x 10^12/L)</td>
<td>M</td>
<td>9.91±0.03</td>
<td>9.00±0.14</td>
<td>0.00</td>
<td>9.17±0.22</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>9.19±0.04</td>
<td>9.15±0.13</td>
<td>0.00</td>
<td>9.11±0.09</td>
</tr>
<tr>
<td>Hb (gm/dL)</td>
<td>M</td>
<td>13.57±1.00</td>
<td>14.7±0.98</td>
<td>1.00</td>
<td>14.57±0.91</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>13.00±0.87</td>
<td>15.33±0.21</td>
<td>0.62</td>
<td>17.23±4.09</td>
</tr>
<tr>
<td>Haematocrit (L/L)</td>
<td>M</td>
<td>0.48±0.02</td>
<td>0.51±0.02</td>
<td>0.93</td>
<td>0.47±0.02</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.48±0.03</td>
<td>0.50±0.02</td>
<td>0.97</td>
<td>0.49±0.02</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>M</td>
<td>49.10±1.05</td>
<td>49.63±3.72</td>
<td>1.00</td>
<td>48.7±1.18</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>48.23±3.56</td>
<td>49.33±2.90</td>
<td>1.00</td>
<td>48.33±1.33</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>M</td>
<td>13.23±0.47</td>
<td>14.4±0.78</td>
<td>0.68</td>
<td>14.73±0.84</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>13.93±0.55</td>
<td>14.83±0.55</td>
<td>0.92</td>
<td>14.63±0.5</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>M</td>
<td>29.13±0.90</td>
<td>29.7±0.66</td>
<td>1.00</td>
<td>29.97±1.20</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>28.27±0.90</td>
<td>30.53±0.64</td>
<td>0.37</td>
<td>30.43±0.76</td>
</tr>
<tr>
<td>Platelets (x10^9/L)</td>
<td>M</td>
<td>518.33±2.08</td>
<td>540±3.06</td>
<td>0.00</td>
<td>546.67±1.53</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>534.33±2.52</td>
<td>548.33±3.51</td>
<td>0.04</td>
<td>540.00±1.00</td>
</tr>
<tr>
<td>WBC (x10^9/L)</td>
<td>M</td>
<td>4.38±0.22</td>
<td>4.90±0.15</td>
<td>0.9</td>
<td>5.13±0.04</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>4.64±0.37</td>
<td>4.26±0.25</td>
<td>1.00</td>
<td>4.67±0.34</td>
</tr>
</tbody>
</table>

Values expressed as mean ± SD (n=3). Hb: Haemoglobin, MCV: Mean corpuscular volume, MCH: Mean corpuscular haemoglobin, MCHC: Mean corpuscular haemoglobin concentration, WBC: White blood cells

Table 3. Effect of the hexane root extract of *F. hildebrandtii* on haematological parameters in male and female mice.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gender</th>
<th>Control 250mg/kg</th>
<th>p value 500mg/kg</th>
<th>p value 1000mg/kg</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (x 10^12/L)</td>
<td>M</td>
<td>9.88±0.12</td>
<td>9.00±0.07</td>
<td>0.00</td>
<td>9.02±0.09</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>9.64±0.07</td>
<td>9.13±0.11</td>
<td>0.00</td>
<td>8.96±0.13</td>
</tr>
<tr>
<td>Hb (gm/dL)</td>
<td>M</td>
<td>15.23±0.64</td>
<td>15.24±0.07</td>
<td>1.00</td>
<td>14.48±0.05</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>14.50±0.62</td>
<td>14.1±0.53</td>
<td>1.00</td>
<td>14.16±0.12</td>
</tr>
<tr>
<td>Haematocrit (L/L)</td>
<td>M</td>
<td>0.5±0.04</td>
<td>0.5±0.02</td>
<td>1.00</td>
<td>0.51±0.03</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.49±0.01</td>
<td>0.45±0.02</td>
<td>0.67</td>
<td>0.49±0.03</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>M</td>
<td>45.33±1.00</td>
<td>49.30±3.64</td>
<td>0.95</td>
<td>48.3±3.21</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>49.80±6.36</td>
<td>49.47±0.45</td>
<td>1.00</td>
<td>52.9±4.70</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>M</td>
<td>13.6±0.75</td>
<td>13.7±0.78</td>
<td>1.00</td>
<td>13.43±0.85</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>13.9±0.56</td>
<td>14.87±0.85</td>
<td>0.87</td>
<td>15.1±0.56</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>M</td>
<td>28.91±1.60</td>
<td>26.97±0.29</td>
<td>0.60</td>
<td>27.07±1.76</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>29.87±1.11</td>
<td>29.47±1.33</td>
<td>1.00</td>
<td>29.57±0.68</td>
</tr>
<tr>
<td>Platelets (x10^9/L)</td>
<td>M</td>
<td>500.67±1.53</td>
<td>492.33±4.16</td>
<td>0.00</td>
<td>510.67±1.53</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>515.00±2.00</td>
<td>540.33±5.03</td>
<td>0.00</td>
<td>500.33±13.01</td>
</tr>
<tr>
<td>WBC (x10^9/L)</td>
<td>M</td>
<td>5.87±0.85</td>
<td>4.94±0.22</td>
<td>0.85</td>
<td>5.20±0.36</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>4.75±0.55</td>
<td>4.71±0.72</td>
<td>1.00</td>
<td>3.77±0.60</td>
</tr>
</tbody>
</table>

Values expressed as mean ± SD (n=3). Hb: Haemoglobin, MCV: Mean corpuscular volume, MCH: Mean corpuscular haemoglobin, MCHC: Mean corpuscular haemoglobin concentration, WBC: White blood cells
to the controls. This dose also produced a non-significant increase in the mean levels of urea, creatinine and TP in female mice only relative to the controls. A 1000mg/kg dose of the aqueous extract of *F. hildebrandtii* resulted in the death of all female mice tested (n=6) (Table 4). Thus, no biochemical parameter was evaluated for these animals. On the other hand, this dose of extract significantly raised the mean levels of all biochemical parameters evaluated in male mice relative to the controls.

A 250 mg/kg dose of *HEXRFH* produced a significant increase in the mean levels of ALT in female mice (Table 5). This dose produced a non-significant decrease in the mean levels of urea in male and female mice, creatinine in female mice and AST in male mice relative to the controls. This dose also produced a non-significant increase in the mean levels of TP in male and female mice, creatinine and ALT in males, and AST in female mice relative to the controls. A 500 mg/kg dose of *HEXRFH* significantly raised the mean levels of ALT in both male and female mice relative to the controls (Table 5). This dose produced a non-significant decrease in the mean levels of urea and AST in male mice relative to the controls, and in mean levels of ALT, urea, creatinine, and TP in male mice only relative to the controls. This dose also produced a non-significant increase in the mean levels of urea, creatinine and TP in male and female mice only relative to the controls. A 1000mg/kg dose of *HEXRFH* resulted in the death of all female mice tested (n=6) (Table 5). Thus, no biochemical parameters were evaluated for these animals. On the other hand, this dose of extract significantly raised the mean levels of all biochemical parameters evaluated in male mice relative to the controls.

Table 4. Effect of a 28-day oral administration of graded doses of the aqueous root extract of *F. hildebrandtii* on biochemical parameters in mice.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gender</th>
<th>Control</th>
<th>250mg/kg</th>
<th>p value</th>
<th>500mg/kg</th>
<th>p value</th>
<th>1000mg/kg</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (mg/dl)</td>
<td>M</td>
<td>7.33±0.67</td>
<td>5.9±0.26</td>
<td>0.66</td>
<td>6.57±0.15</td>
<td>1.00</td>
<td>11.5±2.12</td>
<td>0.00</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>F</td>
<td>7.67±0.81</td>
<td>5.45±0.01</td>
<td>0.21</td>
<td>7.80±1.47</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALT (mg/l)</td>
<td>M</td>
<td>95.67±5.03</td>
<td>92.33±8.37</td>
<td>1.00</td>
<td>90.00±3.00</td>
<td>0.95</td>
<td>150.5±2.12</td>
<td>0.00</td>
</tr>
<tr>
<td>AST (mI/l)</td>
<td>F</td>
<td>79.00±4.36</td>
<td>89.00±4.24</td>
<td>0.24</td>
<td>91.33±5.51</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T.P (g/l)</td>
<td>M</td>
<td>81.00±7.55</td>
<td>80.00±5.66</td>
<td>1.00</td>
<td>97.67±2.08</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP</td>
<td>F</td>
<td>102.67±1.15</td>
<td>104.19±2.70</td>
<td>0.99</td>
<td>101.67±3.06</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD of three animals. ALT: Alanine aminotransferase, AST: Aspartate amino transferase, TP: Total protein

Histopathological studies on kidney and liver sections of mice receiving *AQRFH* and *HEXRFH* over 28 days.

In Figure 5, kidney sections A, B, C were characterized by regular glomeruli and normal renal tubules with complete smooth epithelia and clear lumen (X400). Kidney section D (*×400*) was characterized by degeneration of renal tubules and loss of epithelium. Kidney section E (*×400*) was characterized by mild tubular degeneration. Kidney section F (*×400*) was characterized by multifocal tubular degeneration with loss of epithelium. Kidney section G (*×400*) was characterized by degeneration of tubules and haemorrhage.

In Figure 6, liver sections A, B, C (*×400*) were characterized by normal parenchymal architecture with normal hepatic cells that were evenly distributed and separated by sinusoids. Liver sections D and E (*×400*) were characterized by diffuse cloudy swelling of the hepatocytes indicative of early necrosis with pyknotic nucleus. Liver section F (*×400*) was characterized by multifocal hepatocyte necrosis with hepatocytes undergoing cloudy swelling with nuclear pyknosis. Liver section G (*×400*) was characterized by hepatocyte necrosis and pyknosis, cloudy swelling, necrotic hepatocyte and regenerating hepatocyte around the necrotic hepatocyte.

Minimum inhibitory concentration of root extracts of *F. hildebrandtii* against *Staph. aureus*, *Salmonella typhimurium* and *C. albicans*.

C. albicans was not sensitive to any of the concentrations of *AQRFH* and *HEXRFH*. *Staph. aureus* was sensitive to a concentration of 100 mg/ml, 200mg/ml and 400 mg/ml of both *AQRFH* and *HEXRFH*. *Salmonella typhimurium* was sensitive to concentrations of 200 mg/ml and 400mg/ml of *AQRFH* and a concentration of 100mg/ml, 200mg/ml and 400mg/ml of *HEXRFH* (Table 6).

Minimum bactericidal/fungicidal concentration (MBC/MFC)

The root extracts of *F. hildebrandtii* against *S. aureus*, *S. typhimurium* and *C. albicans*. *C. albicans* was not sensitive to any of the concentrations of either *AQRFH* or *HEXRFH*. *Staph. aureus* was sensitive to a concentration of 200mg/ml and 400 mg/ml of both *AQRFH* or *HEXRFH*. *Salmonella typhimurium* was sensitive to concentrations of 100mg/ml, 200mg/ml and 400mg/ml of *HEXRFH*.
Table 5. Effect of a 28-day oral administration of graded doses of the hexane root extract of *F. hildebrandtii* on biochemical parameters in male and female mice.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gender</th>
<th>Control</th>
<th>250mg/kg</th>
<th>p value</th>
<th>500mg/kg</th>
<th>p value</th>
<th>1000mg/kg</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea (mg/dl)</td>
<td>M</td>
<td>7.13±1.38</td>
<td>6.33±0.21</td>
<td>0.99</td>
<td>6.63±0.15</td>
<td>1.00</td>
<td>13.5±0.07</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>6.83±0.75</td>
<td>6.37±1.46</td>
<td>1.00</td>
<td>7.10±0.26</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>M</td>
<td>81.67±5.51</td>
<td>85.67±5.69</td>
<td>1.00</td>
<td>90.67±4.16</td>
<td>0.47</td>
<td>119.00±0.71</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>89.67±1.15</td>
<td>89.33±2.08</td>
<td>90.92</td>
<td>92.00±3.00</td>
<td>0.53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALT (mg/l)</td>
<td>M</td>
<td>80.67±6.43</td>
<td>81.33±4.93</td>
<td>1.00</td>
<td>96.00±7.00</td>
<td>0.024</td>
<td>137.5±0.71</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>79.33±4.16</td>
<td>94.33±5.86</td>
<td>0.00</td>
<td>93.33±3.51</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AST (mg/l)</td>
<td>M</td>
<td>104.00±3.00</td>
<td>103.26±5.80</td>
<td>1.00</td>
<td>102.33±2.08</td>
<td>1.00</td>
<td>118.00±1.41</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>100.67±1.15</td>
<td>102.33±1.52</td>
<td>1.00</td>
<td>102.67±2.08</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T.P (g/l)</td>
<td>M</td>
<td>66.67±1.53</td>
<td>72.33±1.53</td>
<td>0.36</td>
<td>68.00±2.00</td>
<td>1.00</td>
<td>93.5±2.12</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>65.67±1.00</td>
<td>69.32±3.21</td>
<td>0.45</td>
<td>66.66±1.52</td>
<td>0.99</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD of three animals. ALT: Alanine aminotransferase, AST: Aspartate amino transferase, TP: Total protein.

Figure 5. A. Kidney section of a mouse treated with a 250mg/kg dose of AQFRH (×400); regular glomeruli (G) and normal renal tubules (T) with complete smooth epithelia and clear lumen (×400). B. Kidney section of a mouse treated with a 500mg/kg dose of AQFRH (×400); degeneration of renal tubule (DT)/loss of epithelium. C: Kidney section of a mouse treated with a 1000mg/kg dose of AQFRH (×400); multifocal tubular degeneration (DT), most of the epithelium is lost . D: Kidney section of a mouse treated with a 500mg/kg dose of HEXFRH (×400); mild tubular degeneration (DT).
was sensitive to a concentration of 400mg/ml only of the AQRFH and a concentration of 200mg/ml and 400mg/ml of HEXRFH (Table 7). Based on the findings of MBC and MIC of the extracts against the tested pathogens, the MBC/MIC ratio of the extracts was found to be 400/200=2; for AQFRH against Salmonella typhi, 200/100=2; for HEXRFH against Salmonella typhi, 200/100=2; for AQFRH against Staph. aureus, 200/100=2; for HEXRFH against Staph. aureus)

Discussion
Herbal medicine is a popular form of medicine but is limited by safety concerns. We believe that the present study provides the first account of the safety of any part of F. hildebrandtii on oral administration in any animal model. Moreover, there has been no report of the secondary metabolites that may be present in the plant. However, it is worth noting that Yaiale and colleagues have previously reported on the preliminary composition of Fagaraopsis angolensis, a plant of the same genus as our plant of interest. Previous studies have reported that flavonoids, phenolics, tannins, and terpenoids have antimicrobial properties with wide-ranging mechanisms of action. In our case, however, the absence of flavonoids in the hexane root extract of F. hildebrandtii does not appear to have resulted in abolishment of the antimicrobial properties of the extract. This observation may

Figure 6. a. Liver section of a mouse treated with distilled water (×400), C: congestion, CV: portal vein, P: portal area, b. liver section of a mouse treated with extra virgin oil only (×400); normal parenchymal architecture with normal hepatic cells (H) that are evenly distributed and separated by hepatic sinusoids (S), c. liver section of a mouse treated with a 500mg/kg dose of AQFRH (×400); diffuse cloudy swelling (CS) of the hepatocytes (early necrosis), d. liver section of a mouse treated with a 1000mg/kg dose of AQFRH (×400); multifocal hepatocyte necrosis, CS: cloudy swelling with nuclear pyknosis, N: hepatocyte necrosis, e. liver section of a mouse treated with a 250mg/kg dose of HEXFRH (×400); focal area of hepatocyte degeneration characterized by cloudy swelling, f. liver section of a mouse treated with a 1000mg/kg dose of HEXFRH (×400); hepatocyte necrosis and pyknosis, CS: cloudy swelling/pyknosis, R: regenerating hepatocyte.
We posit that the differences in MIC values suggest that other phytochemicals distinct from flavonoids may be responsible for the observed antimicrobial properties in the particular extract.

Substances that possess antimicrobial properties are considered as bacteriostatic agents when the ratio MBC/MIC \(\leq 4 \) and bactericidal agents when the ratio MBC/MIC >4 and \(\leq 16 \). Using this criterion, we suggest that both of our extracts were bactericidal in nature. However, it is our opinion that caution should be exercised in interpreting these results. This is because according to Martins and colleagues\(^ 2\), the higher the MIC values, the more likely that test results evaluated lose clinical relevance. Moreover, other studies have reported much lower MIC values for Tarenaya spinosa\(^ 16\), Buchenavia tetraphylla\(^ 17\), Thymus vulgaris\(^ 26\) and Origanum vulgare\(^ 26\) against Staph. aureus and S. typhi. We posit that the differences in MIC values observed between our findings and those of the aforementioned studies may have something to do with the relative abundance of the phytochemicals in our plant of interest.

Changes in the mean body weight, relative organ weight, and feed and water consumption may be indicative of acute toxicity\(^ 27\)–\(^ 29\). In our study, administration of a single dose of aqueous and hexane extracts of *F. hildebrandtii* did not produce any significant changes in these parameters. Moreover, no animals died during the 14-day study period. It may therefore be inferred that these extracts may not have had any untoward effects in mice when administered orally for 14 days. However, sub-acute treatment resulted in an increase in the weight of female mice. Changes (positive or negative) in the body weight of experimental animals may be indicative of alterations in the physiology of the animals and may stem from the variations in the levels of hormones, disorders of major organs, such as the liver or kidney, or decreased absorption of nutrients as a result of treatment with test substances\(^ 30\). Moreover, sub-acute treatment of mice with a 1000mg/kg dose of the root extracts of *F. hildebrandtii* was associated with a significant decrease in the mean relative organ weight of the stomach and heart in female mice, liver in male mice, and spleen in both male and female mice. According to Teo and colleagues\(^ 31\), the reduction in body weight of experimental animals may negatively impact the weight of internal organs. Given that the acute and sub-acute treatment of mice with root extracts of *F. hildebrandtii* did not significantly change the consumption of food and water, we believe that the observed effects on animal weight and internal organs were the result of physiological changes in the model adopted and not a consequence of lower food consumption.

<table>
<thead>
<tr>
<th>Type of pathogen</th>
<th>Identity of the extract</th>
<th>Extract concentrations tested (mg/ml)</th>
<th>Negative control</th>
<th>Standard drug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3.125</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td>C. albicans</td>
<td>AQ</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>HEX</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. aureus</td>
<td>AQ</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>HEX</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>AQ</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>HEX</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of pathogen</th>
<th>Identity of the extract</th>
<th>Extract concentrations tested (mg/ml)</th>
<th>Negative control</th>
<th>Standard drug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3.125</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td>C. albicans</td>
<td>AQ</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>HEX</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. aureus</td>
<td>AQ</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>HEX</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>AQ</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>HEX</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
and female mice. The observations of these effects following the oral administration of root extracts of *F. hildebrandtii* may be related to the toxicity caused by the extracts. Detoxification is a key function of the liver. Thus, the accumulation of toxic compounds in the liver is bound to be associated with liver damage. This damage is usually assessed by the determination of serum transaminases (ALT and AST) as well as measurement of total proteins. Significant increases in the serum levels of these enzymes particularly at a dose of 1000mg/kg for both aqueous and hexane extracts of *F. hildebrandtii* and the observations of cloudy swelling, necrosis, and pyknosis on histological analysis of the liver further confirms that the oral administration of these extracts in mice may indeed cause liver damage at high doses. The kidney is another organ that is considered a frequent target of toxicity. In our study, renal function was evaluated by serum levels of urea and creatinine and by histological analysis. The kidney of mice treated with root extracts of *F. hildebrandtii* at doses of 500mg/kg and above were characterized by degeneration of renal tubules, loss of epithelium and haemorrhage. Moreover, there were significant increases in the mean levels of urea and creatinine in male mice treated with a 1000mg/kg dose of the aqueous and hexane root extracts of *F. hildebrandtii*. According to Burtis and Bruns, there is usually an increase in the levels of creatinine when the cortex and/or glomeruli is damaged; therefore such an increase may be a good indicator of chronic kidney disease. The histological evaluation of this organ further confirms the damage particularly for mice treated with doses of root extracts of *F. hildebrandtii* above 500mg/kg.

Finally, mortality is usually an important index of the safety or toxicity of a xenobiotic. Although 14-day acute oral exposure of mice to root extracts of *F. hildebrandtii* did not result in the death of any of the mice, it is damning that female mice treated with a 1000mg/kg dose of the root extracts of *F. hildebrandtii* in the sub-acute protocol all died before the end of the experiment, and their male counterparts exhibited significant alterations in biochemical, haematological and pathological indices. According to guidelines by the Organization for Economic Development (OECD), in the event that a xenobiotic causes toxicity in rodent models, females are more susceptible to toxicity than males.

Conclusion

In conclusion, the short-term use of the root extracts of *F. hildebrandtii* at doses of 300 and 2000 mg/kg may not result in toxic manifestations in mice. However, long term administration of the extracts (beyond 14 days) was associated with dose-dependent histopathological changes in the liver and kidney of mice, as well as alterations in haematological and biochemical parameters. Considering that the roots of this plant have various ethnomedicinal indications, including the treatment of pneumonia, arthritis, chest and stomach pain, ulcers, malaria, internal abscess, epilepsy, infertility in women and chest and respiratory infections, our results may be useful as a valuable piece of information on the safety profile of roots of this plant and may be important as a reference material for any future work on *F. hildebrandtii*. Further evaluation on the potential of this plant to induce carcinogenicity, mutagenicity and genotoxicity is warranted in order to paint a better picture on the complete safety profile of this plant. Studies on the identity of the metabolites responsible for the observed toxicity is also warranted.

Data availability

Underlying data

Figshare: Underlying data on the study titled ‘Acute and sub-acute toxicity study of the root extracts of Fagaropsis hildebrandtii in mice and evaluation of their antimicrobial effects’, https://doi.org/10.6084/m9.figshare.9104894.v3

This project contains the following underlying data:

- Data on the mean body weight of mice used in the acute toxicity protocol
- Data on the mean body weight of mice treated with sub-acute toxicity protocol
- Data on the feed and water consumption in mice in the acute toxicity protocol
- Data on the relative mean organ weight of mice in the acute toxicity protocol
- Data on the mean body weight of mice treated with sub-acute toxicity protocol
- Data on the feed and water consumption in mice in the sub-acute toxicity protocol
- Data on the relative mean organ weight of mice in the sub-acute toxicity protocol
- Data on the biochemical parameters in mice in the sub-acute toxicity protocol

Figshare: Underlying data on the study titled ‘Acute and sub-acute toxicity study of the root extracts of Fagaropsis hildebrandtii in mice and evaluation of their antimicrobial effects’, https://doi.org/10.6084/m9.figshare.9104894.v3

Extended data

Figshare: Extended data on the study titled ‘Acute and sub-acute toxicity study of the root extracts of Fagaropsis hildebrandtii in mice and evaluation of their antimicrobial effects’, https://doi.org/10.6084/m9.figshare.9083348.v1

This project contains the following extended data:

- Figure S1: The biosafety, animal use and ethics committee approval document for the study
- Table S1: A summary of the animals used in the study
- Table S2: Effect of distilled water, extra virgin oil, and the aqueous and hexane root extracts of *F. hildebrandtii* on the mean body weight in mice over a 14-day period
- Table S3: Effect of distilled water, extra virgin oil and the aqueous and hexane root extracts of *F. hildebrandtii* on feed and water consumption in mice over a 14-day period
- Table S4: Effect of distilled water, extra virgin oil and the aqueous and hexane root extracts of *F. hildebrandtii* on the relative mean organ weight in mice over a 14-day period
- Table S5: Effect of graded doses of the aqueous root extract of *F. hildebrandtii* on the mean body weight in mice over a 28-day period
- Table S6: Effect of graded doses of root extracts of *F. hildebrandtii* on water and feed consumption in mice over a 28-day period
- Table S7: Effect of graded doses of the aqueous root extract of *F. hildebrandtii* on the mean body weight of mice over a 28-day period
- Table S8: Effect of graded doses of the hexane root extract of *F. hildebrandtii* on the mean relative organ weight in mice over a 28-day period
- Table S9: Effect of graded doses of the aqueous root extract of *F. hildebrandtii* on the relative mean organ weight in mice over a 28-day period
- Table S10: Effect of graded doses of the hexane root extract of *F. hildebrandtii* on the relative mean organ weight in mice over a 28-day period

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

 Published Abstract | Publisher Full Text

 Published Abstract | Publisher Full Text

 Published Abstract

 Published Abstract | Publisher Full Text | Free Full Text

 Published Abstract | Publisher Full Text

 Published Abstract | Publisher Full Text | Free Full Text

 Published Abstract | Publisher Full Text

 Published Abstract | Publisher Full Text | Free Full Text

 (Publisher Full Text)

 Reference Source

 Reference Source

 Reference Source

 Reference Source

 Reference Source

17. 7. Randomisation. [cited 2019 Jul 16].
 Reference Source

 Published Full Text

 Published Abstract | Publisher Full Text

Open Peer Review

Current Peer Review Status: ?

Version 1

Reviewer Report 07 October 2019

https://doi.org/10.5256/f1000research.21854.r54119

© 2019 Afework M et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mekbeb Afework
Department of Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia

Fikre Bayu
Department of Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia

This is a very good and up to the standard study that comprehensively investigated the acute and subacute toxicity and antimicrobial effects of the root extract of Fagaropsis hildebrandtii which is a widely used herbal medicine. It has a significant contribution towards the currently increasing search for safe, affordable and effective drugs of plant origin and we approve it. However, we have the following comments which would have been accommodated/explained. These include:

1. How was the starting doses of the extract (as 300 mg/kg for acute and 250 mg/kg for sub-acute) determined. Why was LD50 not determined?

2. When and during what season was the herb collected and the study conducted?

3. The root of the plant is mentioned used traditionally as boiled. However, the investigation was carried out on fresh root extract. Why not the boiled ones same as traditionally used? or do the authors believe heat has no effect on the active ingredients of the plant?

4. What could be the cause for the death of the female mice treated with the extract at the highest does (1000mg/kg body wt)? Why macroscopic and microscopic pathological observations were not done? At what date(s) did the mice die?

5. The description of histopathological observations made on page 10 appears an abridged version of figure legends. There are also statements that do not go along with the figure legends as pointed out below:

 • In Figure 5 micrographs for histopathology of kidney, only 4 pictures are presented. However, in the text, page 10, seven pictures (A-G) are described, and does not go along.
In Figure 6 micrographs for histopathology of liver.

- Picture “A” appears as at a lower magnification as compared to “B-F”, but is indicated as x400 same as others, and what B is meant to indicate is not stated.

- Picture “C” in the figure legend is stated to show diffuse cloudy swelling (CS) of the hepatocytes, but mentioned as normal same as A & B in the text, page 10.

We suggest these should be corrected in the text and better be briefly stated in a manner of reporting the observations.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Toxicological effects of herbal medicines on hematological and biochemical parameters and histopathology of vital organs including liver and kidneys.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com