SHORT RESEARCH ARTICLE

Impact of iron levels on cognitive functioning among dental students of Udaipur, Rajasthan (India) [version 1; referees: 1 approved, 1 approved with reservations, 1 not approved]

Mohit Sareen¹, Rateesh Sareen², Sarang Khajuria³, Sayak Roy⁴

¹Department of Oral Medicine and Radiology, Rajasthan Dental College and Hospital, Jaipur, Rajasthan, India
²Department of Pathology and Transfusion Medicine, Santokba Durlabji Memorial Hospital & Research Center, Jaipur, Rajasthan, India
³Department of Oral Medicine and Radiology, Darshan Dental College and Hospital, Udaipur, Rajasthan, India
⁴Department of Oral Medicine and Radiology, Hazaribag College of Dental Sciences and Hospital, Jharkhand, India

Abstract

Health and intelligence are two closely related aspects of human well being. Nutrition, including iron levels, affects cognitive function and thereby may influence the occupational performance of an individual. Inadequate nutrition during adulthood may lead to decreased work efficiency, poor exercise tolerance and increased susceptibility to infections. The profession of dentistry requires keen recognizing abilities and decision making skills as well as ample physical stamina, which may be impaired in a state of malnourishment. Keeping this in view, this study was designed to assess the possible impact of iron levels on cognitive function among dental students. In this study 206 dental students (150 females and 56 males) participated and their cognitive functioning was determined by answering a questionnaire. The questionnaire evaluated the confidence level, work pattern and the tendency to be distracted by the physical environment of the study participants. Iron status was determined by estimating the hemoglobin level of the individuals. Each of the three cognitive traits was correlated with hemoglobin levels. The results revealed that that majority of dental students had good levels of confidence, work patterns with a low level of restriction and low levels of distraction by the physical environment. No significant correlations were found between any of the cognitive parameters and hemoglobin levels (p>0.05) in female participants. In male participants significant correlations were found in two out of three cognitive functioning tests, confidence levels and work pattern (p<0.05). The results of this study suggest that these three cognitive functions may not be influenced by hemoglobin levels in females and may be slightly or, due to the small male sample size which may have confounded the results, not influenced by hemoglobin in males.
Corresponding author: Mohit Sareen (mohitsareen99@gmail.com)

How to cite this article: Sareen M, Sareen R, Khajuria S and Roy S. Impact of iron levels on cognitive functioning among dental students of Udaipur, Rajasthan (India) [version 1; referees: 1 approved, 1 approved with reservations, 1 not approved] F1000Research 2012, 1:54 (doi: 10.12688/f1000research.1-54.v1)

Copyright: © 2012 Sareen M et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: The author(s) declared that no grants were involved in supporting this work.

Competing interests: No competing interests were disclosed.

Impact of iron levels on cognitive functioning among dental students of Udaipur, Rajasthan (India) [v1; ref status: awaiting peer review, http://f1000r.es/T4aiJR]

Mohit Sareen¹, Rateesh Sareen², Sarang Khajuria³ and Sayak Roy⁴

¹ Department of Oral Medicine and Radiology, Rajasthan Dental College and Hospital, Jaipur, Rajasthan, India
² Department of Pathology and Transfusion Medicine, Santokba Durlabji Memorial Hospital & Research Center, Jaipur, Rajasthan, India
³ Department of Oral Medicine and Radiology, Darshan Dental College and Hospital, Udaipur, Rajasthan, India
⁴ Department of Oral Medicine and Radiology, Hazaribag College of Dental Sciences and Hospital, Jharkhand, India

Correspondence to Mohit Sareen: mohitsareen99@gmail.com

Introduction
Nutrition is a fundamental pillar of human life. The influence of nutrition on cognitive functioning may in turn influence the occupational performance of an individual. Inadequate nutrition during adulthood may lead to decreased work efficiency, poor exercise tolerance and increased susceptibility to infections. The profession of dentistry requires keen recognizing abilities and decision making skills as well as ample physical stamina, which may be impaired in a state of malnourishment. Keeping this in view, this study was designed to assess the possible impact of iron levels on cognitive function among dental students. In this study 206 dental students (150 females and 56 males) participated and their cognitive functioning was determined by answering questionnaires. The questionnaire evaluated the confidence level, work pattern and the tendency to be distracted by the physical environment of the study participants. Iron status was determined by estimating the haemoglobin level of the individuals. Each of the three cognitive traits was correlated with haemoglobin levels. The results revealed that that majority of dental students had good levels of confidence, work patterns with a low level of restriction and low levels of distraction by the physical environment. No significant correlations were found between any of the cognitive parameters and haemoglobin levels (p value>0.05) in female participants. In male participants significant correlations were found in two out of three cognitive functioning tests, confidence levels and work pattern (p<0.05). The results of this study suggest that these three cognitive functions may not be influenced by haemoglobin levels in females and may be slightly or, due to the small male sample size which may have confounded the results, not influenced by haemoglobin in males.

ABSTRACT
Health and intelligence are two closely related aspects of human well being. Nutrition, including iron levels, affects cognitive function and thereby may influence the occupational performance of an individual. Inadequate nutrition during adulthood may lead to decreased work efficiency, poor exercise tolerance and increased susceptibility to infections. The profession of dentistry requires keen recognizing abilities and decision making skills as well as ample physical stamina, which may be impaired in a state of malnourishment. Keeping this in view, this study was designed to assess the possible impact of iron levels on cognitive function among dental students. In this study 206 dental students (150 females and 56 males) participated and their cognitive functioning was determined by answering questionnaires. The questionnaire evaluated the confidence level, work pattern and the tendency to be distracted by the physical environment of the study participants. Iron status was determined by estimating the haemoglobin level of the individuals. Each of the three cognitive traits was correlated with haemoglobin levels. The results revealed that that majority of dental students had good levels of confidence, work patterns with a low level of restriction and low levels of distraction by the physical environment. No significant correlations were found between any of the cognitive parameters and haemoglobin levels (p value>0.05) in female participants. In male participants significant correlations were found in two out of three cognitive functioning tests, confidence levels and work pattern (p<0.05). The results of this study suggest that these three cognitive functions may not be influenced by haemoglobin levels in females and may be slightly or, due to the small male sample size which may have confounded the results, not influenced by haemoglobin in males.
adverse outcomes are not age limited. Inadequate nutrition during adulthood may lead to decreased work efficiency, poor exercise tolerance and increased susceptibility to infection.

Studies related to the impact of hemoglobin levels on mental functioning in adult populations are few and the outcomes are inconclusive. Keeping this in view, the present study was designed to assess the possible impact of iron nutritional status on cognitive functioning among dental students between the ages of 18–25 years as the profession of dentistry requires keen recognizing abilities, decision making skills as well as ample physical stamina, which may be impaired by low iron/hemoglobin levels thereby influencing one’s ability to be a successful dentist.

Materials and methodology
A total of 206 students, 150 (73%) females and 56 (27%) males studying dentistry at Udaipur, Rajasthan, India, volunteered for the study. The brain functioning of the individuals was determined by answering a questionnaire.

The questionnaire was adapted from the Inventory of Barriers to Creative Thought and Innovative Action. This test identified and measured the degree of inhibitors affecting a person's ability to create and innovate. The questionnaire consisted of thirty-six items, set up in a sixpoint Likert-scale format. This test identifies and measures barriers in six different categories. Out of these six traits the scores identifying barriers related to ‘need for conformity’, ‘ability to abstract’ and ‘ability to use systematic analysis’ were not considered. Only scores of three traits were included which consisted of barriers related to self confidence, task achievement and ease of distraction by the physical environment. Each trait was graded according to the scores obtained and a grading system was introduced to classify each trait into different categories (Tables 1, 2 and 3).

The second stage in the study involved estimation of haemoglobin levels of the individuals. The haemoglobin level was determined by Sahli’s method. In this method the fingertip was first sterilized using rectified spirit. A quick prick was made to get a moderately large drop of blood. The blood was aspirated in the haemoglobin pipette up to the 20 cubic millimeter mark. The blood was immediately transferred into the hydrochloric acid taken in the diluting tube. The acid and blood was mixed and kept undisturbed for 10 minutes, to ensure that the haemoglobin was converted to acid haematin. After 10 minutes, the contents were diluted by adding distilled water drop by drop and mixing the contents after each drop with the stirrer, till the colour matches with the colour of the standard. Then the reading was taken both in grams and percentages by noting the lower meniscus.

Results
The mean haemoglobin level of female participants was 10.4gm/dL and that of male participants was found to be 11.6gm/dL. Considering the normal range of haemoglobin is 12–14g/dL for females and 14–16g/dL for males, only 8% females (n=13) had haemoglobin within the normal range and none of the male participants (n=0) had haemoglobin level over 14g/dL.

The outcome of the cognitive functioning tests revealed that no study participant scored grade 1 in any of the categories, and the greatest proportion of participants scored grade 4 in all three categories indicating good level of confidence, less restricted work patterns and lower amounts of physical distraction respectively. 47% females and 57% males belonged to grade 4 in confidence level, 61% females and 53% males belonged to grade 4 in work pattern and 50% females and 57% males belonged to grade 4 in physical distraction (Table 4, 5 and 6).
A significant positive correlation was revealed between haemoglobin levels and both confidence levels and work pattern restrictiveness in males ($r=0.20$ and 0.25 respectively). However, no significant correlation was found between haemoglobin levels and distraction in males and haemoglobin levels did not significantly correlate with any of these three parameters in females ($r=-0.11$, 0.10 and 0.10 for confidence levels, work pattern restrictiveness and ease of distraction by the physical environment respectively) [Table 7].

Discussion

The present study revealed that the correlations of all the cognitive function tests with haemoglobin levels in male participants were found to be positive. This could be explained by the fact that the number of male participants compared with the number of female participants was far less. Out of the 206 study participants 150 (73%) were females and 56 (27%) were males. This could be a reason for getting such correlations in male participants as the smaller number of male participants might have affected the statistical analysis.

Further the results of the study reflected a few limitations of the present study.

First as the evaluation of the cognitive function was determined by using questionnaire, the chances of getting exact results were diminished. The chances of giving fake answers by the study participants, particularly by the male participants who had a chauvinistic approach in answering questions evaluating confidence level and work efficiency could have attributed to such results.

Secondly the assessment of nutritional status was done by evaluating only the haemoglobin level of study participants, which had its own limitations. For the assessment of haemoglobin level Sahli’s method was used. This method is not highly sensitive and resulted in errors in determining the exact values of haemoglobin levels of individuals in the present study.

Conclusion

The results of the study revealed that iron levels appears to have less of an impact on cognitive functioning in adult female participants than it does in adult male participants, though the smaller male sample size may have contributed to a false

Table 4 Number of individuals and mean hemoglobin levels in each confidence level grade.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Female Average of Hbg/dL</th>
<th>n</th>
<th>n%</th>
<th>Male Average of Hbg/dL</th>
<th>n</th>
<th>n%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.60</td>
<td>12</td>
<td>8%</td>
<td>11.65</td>
<td>4</td>
<td>7%</td>
</tr>
<tr>
<td>3</td>
<td>10.48</td>
<td>52</td>
<td>35%</td>
<td>11.39</td>
<td>17</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>10.40</td>
<td>71</td>
<td>47%</td>
<td>11.83</td>
<td>32</td>
<td>57%</td>
</tr>
<tr>
<td>5</td>
<td>10.11</td>
<td>15</td>
<td>10%</td>
<td>12.07</td>
<td>3</td>
<td>6%</td>
</tr>
<tr>
<td>Total</td>
<td>10.42</td>
<td>150</td>
<td></td>
<td>11.70</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Number of individuals and mean hemoglobin levels in each work pattern grade.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Female Average of Hbg/dL</th>
<th>n</th>
<th>n%</th>
<th>Male Average of Hbg/dL</th>
<th>n</th>
<th>n%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.60</td>
<td>12</td>
<td>8%</td>
<td>11.65</td>
<td>4</td>
<td>7%</td>
</tr>
<tr>
<td>3</td>
<td>10.48</td>
<td>52</td>
<td>35%</td>
<td>11.39</td>
<td>17</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>10.40</td>
<td>71</td>
<td>47%</td>
<td>11.83</td>
<td>32</td>
<td>57%</td>
</tr>
<tr>
<td>5</td>
<td>10.11</td>
<td>15</td>
<td>10%</td>
<td>12.07</td>
<td>3</td>
<td>6%</td>
</tr>
<tr>
<td>Total</td>
<td>10.42</td>
<td>150</td>
<td></td>
<td>11.70</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 Number of individuals and mean hemoglobin levels for each physical distraction grade.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Female Average of Hbg/dL</th>
<th>n</th>
<th>n%</th>
<th>Male Average of Hbg/dL</th>
<th>n</th>
<th>n%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.60</td>
<td>12</td>
<td>8%</td>
<td>11.65</td>
<td>4</td>
<td>7%</td>
</tr>
<tr>
<td>3</td>
<td>10.48</td>
<td>52</td>
<td>35%</td>
<td>11.39</td>
<td>17</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>10.40</td>
<td>71</td>
<td>47%</td>
<td>11.83</td>
<td>32</td>
<td>57%</td>
</tr>
<tr>
<td>5</td>
<td>10.11</td>
<td>15</td>
<td>10%</td>
<td>12.07</td>
<td>3</td>
<td>6%</td>
</tr>
<tr>
<td>Total</td>
<td>10.42</td>
<td>150</td>
<td></td>
<td>11.70</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Correlation coefficients between haemoglobin levels and each of the three mental functioning categories in males and females.

<table>
<thead>
<tr>
<th>Coefficient of correlation (r)</th>
<th>Confidence level</th>
<th>Work pattern</th>
<th>Physical distraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (r)</td>
<td>-0.11</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Male (r)</td>
<td>0.20</td>
<td>0.25</td>
<td>-0.09</td>
</tr>
<tr>
<td>P Value</td>
<td><0.05 (S)</td>
<td><0.05 (S)</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS-Not significant, S-Significant
positive result in males. These results may be due, in part, to limitations with the study. As such we recommend further studies in this regard.

Author contributions
Mohit Sareen wrote the article and carried out research. Ra-
teesh Sareen contributed to the design of study. Sarang Khaju-
ria contributed in conception of study and revised the article
for intellectual content. Sayak Roy contributed to the data
analysis.

Competing interests
No competing interests were disclosed.

Grant information
The authors declared that no grants were involved in support-
ing this work.

References
1. Duska Petranovi, Vladimir Taki, Renata Dobrila-Dintinjana, Ika
Ron-Evi-Greta, Klementina Ru-I, Sanja Janovi, Iva Cmari, Antica
Duleti-Na-Inovi And Branka Sin-Mijandru. Correlation of Anaemia
and Cognitive Functions Measured By The Complex Reactiometer,
2. R. Bandhu, N. Shankar, O. P. Tandon and N. Madan. Effects of
Iron Therapy on Cognition in Anemic School Going Boys. Indian J
3. O.S. Ijarotimi and K.T. Ijadunola. Nutritional Status and Intelligence
Quotient of Primary School Children in Akure Community of Ondo
State, Nigeria. Tanzania Health Research Bulletin; 2007; Vol 9;
No. 2: 69–76.
Nutritional Status & Its Impact on Health, Intellectual Development
and Scholastic Achievement in Pre-School and Primary School
Children in Cairo. Bull. Nutr. Inst. Cairo; 1990; Egypt; Vol-10, No-1:
43–59.
5. Buzina-Suboticane, Kornelija, Buzina, Ratko; Stavljenic, Ana,
Tadinac-Babic, Meri; Juhovic-Markus, Vesna. Effects of Iron
Supplementation on Iron Nutrition Status and Cognitive Functions
6. D. Ivanovic, et al. Nutritional Status, Brain Development and
Scholastic Achievement of Chilean High School Graduates From
High and Low Intellectual Quotient and Socio-Economic Status.
7. R. Sungthong, L. Mo-Suwan, and V. Chongsuvivatwong. Effects of
Haemoglobin and Serum Ferritin on Cognitive Functions in School
117–122.
on Young Adolescent School Girls. Journal Of Indian Pediatrics;
9. HJPS. Sachdev, T. Gera, P. Nestel. Effects of Iron
Supplementation on Mental Motor Development in Children.
Systematic Review of Randomized Controlled Trails. Public Health
10. Rajbir Sachdeva, Simran Chug and Jaswinder Sangha,
Haemopoitic, Serum Minerals and Intellectual Status of
Institutionalized and Non Institutionalized Boys. J. Hum. Ecol;
11. A Nemati, M Barak, M H Dehgan. Relation Between
Iron Deficiency and Anemia with School Success, Weight and
Height in Schoolgirls Aged 12 Year Old in Ardebil Province
of Iran. Research Journal Of Biological Sciences; 2007;
Cognitive Function, Iron Status, and Haemoglobin Concentration in Obese
Women. Food and Nutrition Bulletin; July 1998, Vol. 52 No. 7:
512–518.
13. Paul B. Jacobsen, Linda L. Garland, Margaret Booth-Jones,
Kristine A. Donovan, Christina L. Thors, Erin Winters
and Edward Grenys. Relationship of Haemoglobin Levels
to Fatigue and Cognitive Functioning Among Cancer
Patients Receiving Chemotherapy. Journal of Pain
and Symptom Management; 2004; Vol. 28 No. 1:
7–18.
Jossey-Bass/Pfeiffer- Inventory of Barriers to Creative Thought and
Innovative Action; 46–56.
15. Balasubramaniam P, Malathi A. Comparative study of hemoglobin
estimated by Drabkin’s and Sahli’s methods. J Postgrad Med
Open Peer Review

Current Referee Status: ✗ ✔ ?

Version 1

Referee Report 02 May 2014

doi:10.5256/f1000research.224.r4633

Huguette Turgeon
Department of Food Science and Nutrition, Laval University, Québec, Canada

In my opinion, the title is misleading because iron levels are not measured in this study, only hemoglobin levels. The summary does reflect the content of the article. However, the introduction needs to be revised. Firstly, it is mentioned that malnutrition is associated with low iron levels and that anaemia, via cerebral hypoxia and other possible mechanisms, has a major negative influence on cognitive function. Malnutrition is not always associated with low iron levels as it depends on what nutrients are missing in the diet. Also, anemia (low hemoglobin levels) is not always caused by a low iron status. Considering that only hemoglobin levels are measured, I suggest approaching the introduction from this angle. Materials and methodology have been correctly explained and correspond with the topic being studied. However, the precision of the Sahli’s method of measuring hemoglobin compared to the hemiglobincyanide or cyanmethemoglobin method should be mentioned, as well as the statistical software and correlation coefficients used. Concerning the discussion and conclusion, I don’t think that the smaller number of male participants explains why positive results were observed in male participants only. Factors related to women’s physiology such as the moment of the menstrual cycle is an important factor affecting cognitive functioning and this should be brought up here. In my opinion, we can’t explain the absence of significant relationships in female participants saying that male participants reached statistical significances because there were a smaller number of them. The discussion and conclusion need to be revised.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Competing Interests: No competing interests were disclosed.

Referee Report 02 December 2013

doi:10.5256/f1000research.224.r2242

Victoria Arija Val1, Blanca Ribot Serra2
1 Public Health and Community Nutrition, Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
2 Department of Basic Medical Sciences, Rovira i Virgili University, Tarragona, Spain
The title is appropriate for the content of the article and the abstract gives a suitable summary of the investigation.

The design, methods and analysis of the results from the study have been correctly explained and correspond with the topic being studied.

The conclusions are in accordance with the results obtained from the study.

The authors have provided enough information to be able to replicate the experiment.

The format/structure of the article are adequate.

We have read this submission. We believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Referee Report 17 September 2013

doi:10.5256/f1000research.224.r1842

Gerald Keusch

Boston University, Boston, USA

The title is misleading because iron levels are not measured in this study. The summary does reflect the content of the article. However, there are serious concerns about the validity of even the limited findings related to cognition and iron status in Indian dental students. First of all, dental students as a population reflect a group of academic attainers, who have distinguished themselves sufficiently to be admitted to dental school. This is a skewed and privileged cohort to begin with, who are likely to have come from economically stable families and are less likely to have suffered from significant malnutrition earlier in life. Second, early nutritional insults affecting cognitive development can be overcome with nutritional and educational interventions, and this cohort is likely to have benefitted from these inputs. Third, the hemoglobin levels as reported (means without standard deviations) are mostly in the low normal range, with the lowest reported hemoglobin (8 Gm/DL) in 5 females who would be labelled moderately anemic. The lowest hemoglobin a male was 9.7 Gm/DL, and would not likely be symptomatic except with considerable physical stress. Fifth, the authors themselves do not have confidence in the accuracy of the methodology to assess hemoglobin. Sixth, iron levels are not in fact measured, just hemoglobin. While iron deficiency in menstruating females can explain the lower hemoglobin levels compared to males, there are many other causes of mild-moderate anemia which have not been assessed. Finally, the testing of cognitive function was by questionnaire rather than more rigorous assessment tools. It is for these reasons that I judge the work to be irrelevant to any evaluation of the relationship between iron levels and cognitive function in Indian dental students.

I have read this submission. I believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Competing Interests: No competing interests were disclosed.