The yield of continuous EEG monitoring in the intensive care unit at a tertiary care hospital in Saudi Arabia: A retrospective study [version 2; peer review: 1 approved, 1 approved with reservations, 1 not approved]

Haythum O. Tayeb
Division of Neurology, Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Background: The practice of continuous EEG monitoring (CEEG) in the intensive care unit (ICU) has spread over the past decade. Building an effective ICU CEEG program demands adequate EEG equipment and human resources. This may not be available in developing healthcare systems. This study sought to shed light on the real-life utility of CEEG at a tertiary healthcare center in the developing healthcare system of Saudi Arabia.

Methods: This is a retrospective review of CEEG findings, along with mortality and duration of hospitalization of patients who had CEEG during a 12-month period at the adult ICU at the King Abdulaziz University Hospital (KAUH) in Jeddah, Saudi Arabia.

Results: A total of 202 CEEG records were identified. A total of 52 patients had non-convulsive seizures (NCS); 10 clearly fulfilled criteria for non-convulsive status epilepticus. There were 120 patients that had clinical seizures upon presentation. Among them, 36 (30%) had NCS on EEG. The proportion of patients who were deceased at 60 days was higher in patients with NCS than those who didn’t have NCS (42% vs 27%, \( \chi^2 = 4.4, df=2, p=0.03 \)). The proportion with long hospitalization was higher in those who had periodic or rhythmic CEEG patterns (33.3% vs 28.1%, \( \chi^2 = 8.02, df=2, p=0.02 \)) but there was no significant relationship with mortality at 60 days.

Conclusion: This study demonstrates a real-world experience from a tertiary care center in Saudi Arabia, a developing healthcare system. Findings are consistent with prior experience that ICU CEEG is effective in detecting potentially harmful subclinical patterns, supporting the need to develop ICU CEEG programs. However, the incurred excesses in morbidity and mortality associated with CEEG patterns were relatively modest.

Further studies are needed to delineate how the practice of CEEG may be developed to provide meaningful data to clinicians with regards to patient outcomes.

Keywords
Neurocritical care, EEG, non-convulsive seizures, status epilepticus, Saudi Arabia

Open Peer Review

Invited Reviewers

<table>
<thead>
<tr>
<th>Invited Reviewers</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 2</td>
<td>✓</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>published</td>
<td>16 Sep 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>version 1</td>
<td>report</td>
<td>report</td>
<td>report</td>
</tr>
<tr>
<td>published</td>
<td>15 May 2019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Peter W Kaplan, Johns Hopkins University School of Medicine, Baltimore, USA
2 Robert C. Tasker, Harvard Medical School, Boston, USA
3 Yara Mikhaeil-Demo, University of Illinois at Chicago, Chicago, USA
Elizabeth E Gerard, Northwestern University (NU), Chicago, USA

Any reports and responses or comments on the article can be found at the end of the article.
Corresponding author: Haythum O. Tayeb (hostayeb@kau.edu.sa)

Author roles: Tayeb HO: Conceptualization, Formal Analysis, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Tayeb HO. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Tayeb HO. The yield of continuous EEG monitoring in the intensive care unit at a tertiary care hospital in Saudi Arabia: A retrospective study [version 2; peer review: 1 approved, 1 approved with reservations, 1 not approved] F1000Research 2019, 8:663 (https://doi.org/10.12688/f1000research.19237.2)

First published: 15 May 2019, 8:663 (https://doi.org/10.12688/f1000research.19237.1)
Amendments from Version 1

This version of the article provides details about the clinical setting in which the data were gathered, including the general guidelines clinicians follow in the ICU to select patients for CEEG and determine the duration of monitoring. This version of the article presents a flow chart summarizing the study data and provides EEG examples of lateralized periodic discharges and non-convulsive seizures from the data. The results section has been scrutinized. The frequency of seizure etiologies and the frequency of different rhythmic and periodic patterns are now included. The discussion section now highlights that CEEG is effective in detecting potentially harmful subclinical EEG patterns that are worth treating but it also emphasizes that the magnitude of increase in morbidity and mortality indicated by CEEG may not always be clinically meaningful. The limitations of the study are clearly stated, including the lack of accurate knowledge of the timing of the EEG changes in relation to mental status changes, patient outcomes, and sedative use. This is in addition to the practical limitations of the developing CEEG program, the small numbers in some subgroups, and the retrospective study design.

Introduction

Continuous electroencephalography (CEEG), the practice of continuously recording an electroencephalogram and a time-synchronized video of the patient, is commonly utilized to monitor critically ill patients with acute brain injury or altered mental status. CEEG is instrumental in the diagnosis and management of nonconvulsive seizures (NCS) and status epilepticus, detection of cerebral ischemia, prognostication of outcomes after cardiorespiratory arrest, and evaluation of abnormal movements and altered mental status. The practice of CEEG monitoring of critically ill patients in the intensive care unit (ICU) has been spreading in Europe and North America over the past decade. Building an effective ICU CEEG program with sufficient quality demands not only adequate EEG equipment but also significant human resources, including trained electroencephalographers and technologists with enough time to review large amounts of CEEG data. While this is available in large tertiary care centers in North America and Europe where the practice of CEEG has developed, it may not be available in developing healthcare systems with constrained resources.

This study reviewed data generated from a CEEG program in the adult ICU at a tertiary healthcare center in Saudi Arabia, aiming to shed light on the real-life utility of CEEG in a developing healthcare system outside North America and Europe.

Methods

Data gathering

This is a retrospective review of ICU CEEG findings, as well as mortality status and duration of hospitalization of all patients who underwent CEEG monitoring during a 12-month period from September 2016 to August 2017 at the adult ICU at the King Abdulaziz University Hospital (KAUH) in Jeddah, Saudi Arabia. This is an academic, tertiary-care, 600-bed hospital. Its adult ICU is comprised of 30 beds and is divided into medical and surgical divisions. The average APACHE II (Acute Physiology and Chronic Health Evaluation II) score of medical patients admitted to the ICU ranges between 10–30 on average. The scores are routinely calculated but not recorded in the electronic medical records (EMR). ICU physicians or neurologists request CEEG to search for NCS or patterns on the ictal-interictal continuum when critically ill patients have a disturbance in the level of consciousness that is unexplained by apparent underlying neurological or medical conditions. CEEG is initiated and stopped based on the clinical judgement of the treating teams. Generally, physicians aim to continue monitoring for 24 hours in patients with altered mental status but may allow discontinuation of CEEG for clinical or practical constraints (e.g. EEG machine availability or the need to relocate a patient to conduct an procedure or test). EEGs with a duration that is less than 2 hours were not included in the study as they were considered extended but not long-term studies. An EEG technologist is available during the day time to set up ICU CEEGs. EEG leads are placed using the 10–20 international system of lead placement. CEEGs are digitally recorded, including synchronized video recording of the patient. An epileptologist with fellowship training in CEEG interpretation reviewed the records on daily basis and reported them using the American Clinical Neurophysiology Society (ACNS) ICU EEG consortium proposed nomenclature for ICU EEG reporting, and the Salzburg criteria for non-convulsive status epilepticus.

Data analysis

Reports of CEEGs performed in the adult ICU during the study period were retrieved from the hospital’s EMR. The author extracted key data, including background demographics, diagnoses, length of hospital stay, mortality status at 60 days after admission, and the presence of rhythmic and periodic patterns (RPPs) or NCS. Frequencies, percentages, means, standard deviation, and Chi square were performed using the IBM SPSS Statistics for Windows, version 20.0.

Ethical approval

This study was approved by the Institutional Review Board of KAUH as a retrospective study of anonymized clinical data with waiver of additional patient consent.

Results

A total of 202 CEEG records fulfilling the criteria were identified; complete, raw figures are available as Underlying data. There were 116 female patients. The mean age was 53 (standard deviation=21). The primary diagnosis was cerebrovascular disease in 61 patients (30.2%), Epilepsy in 53 patients (26.2%), sepsis or metabolic derangement in 40 patients (19.8%), CNS infection in 24 patients (11.9%), post-cardiac arrests in 10 patients (5%), brain neoplasm in 8 patients (4%), and traumatic brain injury in 6 patients (3%). The duration of CEEG recording varied, with 48 (24%) recorded for 2–6 hours and 154 (76%) recorded for 6–24 hours. Figure 1 shows a flowchart...
demonstrating the frequencies of CEEG findings in the sample and their distribution over the outcome categories. There were 52 patients with NCS. Among them, 30 were of focal onset (57.7%) and 10 (5%) clearly fulfilled criteria for non-convulsive status epilepticus. There were 120 patients that had clinical seizures prior to CEEG monitoring. Among them, 36 (30%) had NCS on EEG. A total of 138 records showed RPPs, including 26 that had more than one RPP and 34 of the 52 records with NCS. A total of 78 records had only one type of RPP, including 22 (10.9%) with generalized periodic discharges (GPDs), 20 (9.9%) with lateralized periodic discharges (LPDs), 22 (10.9%) with generalized rhythmic delta activity (GRDA), and 14 (6.9%) with lateralized rhythmic delta activity (LRDA). Figure 2 shows EEG examples of LPDs and focal and generalized NCS. Sixty-two patients (30.7%) out of the entire sample were deceased at 60 days after admission. This proportion was significantly higher in patients who had NCS than those who didn’t (42% vs 27%, $\chi^2 = 4.4$, df=2, $p=0.03$) (Table 1). The frequency of NCS etiologies in the group that was deceased at 60 days is shown in Figure 1. There was no statistically significant difference in mortality risk between the etiologies. There was no significant difference in the duration of hospital stay between those who had seizures and those who didn’t ($p=0.2$) (Table 1). Sixty-four patients stayed in the hospital for more than a month (31.7% of the entire sample). This proportion was slightly larger in patients with RPPs (33.3%). The duration of hospital stay was longer for those who had RPPs than those without RPPs ($\chi^2 = 8.02$, df=2, $p=0.02$) but there was no significant relationship between RPPs and mortality at 60 days ($\chi^2 = 1.1$, df=2, $p=0.3$) (Table 1).

**Discussion**

The practice of using CEEG in the ICU has developed rapidly over the past decade, particularly in North America and Europe. This study is one of the first to report the experience of using ICU CEEG in Saudi Arabia, a country with a rapidly developing healthcare system that faces economic constraints. The data are consistent with prior knowledge and experience from other countries that CEEG is effective in detecting NCS and other likely harmful subclinical EEG patterns on the ictal-interictal continuum. This study reveals statistically significant associations between NCS and mortality and between RPPs and longer hospital stays, supporting the clinical gestalt of identifying and treating potentially harmful CEEG patterns. However, the incurred excess risks of morbidity and mortality in patients with NCS or RPPs was relatively modest. Such modest increases are not likely to be of clinical significance to clinicians evaluating patient prognoses. Nonetheless, this study was a retrospective study with limitations that preclude definitive conclusions about morbidity and mortality risk magnitudes. These are better assessed by prospective studies and in well-developed CEEG programs.

Prior studies have not definitively proven that utilizing CEEG leads to better outcomes. This, coupled with the significant resources required to effectively run an ICU CEEG program, may lead decision makers in developing healthcare systems to hesitate to support the development of CEEG practices and research. This study presents data from a small and developing program to demonstrate real-world effectiveness of CEEG in detecting potentially harmful electrophysiological patterns. In addition, the study highlights the uncertainties regarding the
Figure 2. EEG examples of patterns on the ictal interictal continuum from the sample. EEGs are displayed in a longitudinal bipolar montage with a sensitivity of 7 uV/mm and a time base of 30 mm/second. The high frequency filter is set to 70 Hz and the low frequency filter is set to 1 Hz. (a) Right temporal lateralized periodic discharges (LPDs). (b) The same record showing evolution of the LPDs into 2.5 Hz rhythmic theta activity, fulfilling seizure criteria. (c) Another record showing very long runs of generalized spike and wave activity that recur for most of the recording, fulfilling criteria of non-convulsive status epilepticus.
Table 1. Cross-tabulation of mortality and duration of hospital stay in relation to the presence of non-convulsive seizures (NCS) and rhythmic or periodic patterns (RPPs) on CEEG on CEEG.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mortality</th>
<th>Hospital Stay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dead at 60 days</td>
<td>Alive at 60 days</td>
</tr>
<tr>
<td>NCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>Row%</td>
<td>26.7%</td>
<td>73.3%</td>
</tr>
<tr>
<td>Col. %</td>
<td>64.5%</td>
<td>78.6%</td>
</tr>
<tr>
<td>Yes</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Row%</td>
<td>42.3%*</td>
<td>57.7%</td>
</tr>
<tr>
<td>Col. %</td>
<td>35.5%</td>
<td>21.4%</td>
</tr>
<tr>
<td>RPPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>Row%</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>Col. %</td>
<td>25.8%</td>
<td>34.3%</td>
</tr>
<tr>
<td>Yes</td>
<td>46</td>
<td>92</td>
</tr>
<tr>
<td>Row%</td>
<td>33.3%</td>
<td>66.7%</td>
</tr>
<tr>
<td>Col. %</td>
<td>74.2%</td>
<td>65.7%</td>
</tr>
</tbody>
</table>

*p<0.05.

clinical significance of the prognostic information provided by CEEG. Hopefully, this should lead to further development of ICU CEEG programs with embedded prospective, patient-centered research programs. Such research should focus on how CEEG may be used effectively and optimally and how the generated data may impact clinical decisions and patient outcomes in the ICU.

This study is a retrospective analysis with limitations. Retrospective EMR data did not contain accurate information with regards to the extent and evolution of mental status changes relative to the timing of the CEEG changes, use and titration of sedatives, and other management decisions. It was difficult to ascertain the timing of EEG initiation in relation to these dynamic variables of interest. Physicians did not follow a clear protocol when deciding the duration of the CEEG study. Furthermore, a selection bias is introduced because of the lack of EEG technologists at night. Longer studies may lead to higher detection rates of relevant CEEG patterns. Although the total number of cases was 202, the number of cases in most diagnostic categories was not high enough to permit subgroup analyses. The clinical setting is that of a developing program with limited resources and must be interpreted in this context. Further studies from developing healthcare systems like Saudi Arabia’s are needed to illuminate how the practice of CEEG monitoring may be best utilized to provide clinically meaningful data while caring for patients in the ICU.

Data availability

This project contains all raw de-identified data associated with this study.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

References

Open Peer Review

Current Peer Review Status: ✓ ❌ ❓

Version 2

Reviewer Report 18 September 2019

https://doi.org/10.5256/f1000research.22446.r54081

© 2019 Gerard E et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Yara Mikhaeil-Demo
University of Illinois at Chicago, Chicago, USA

Elizabeth E Gerard
Department of Neurology, Feinberg School of Medicine, Northwestern University (NU), Chicago, IL, 60611, USA

This paper describes a one-year experience using continuous EEG monitoring in a developing healthcare system. The authors experience with a growing cEEG program is a valuable addition to the literature. We have some comments and questions to better understand the results described:

Methods:
1. What were the inclusions and exclusions criteria? Was EEG duration less than two hours the only exclusion criteria?

2. How frequently were studies reviewed and results communicated to treating team? It would be helpful to know the timing of when the seizure occurred on EEG and the identification of these findings on EEG and communication with the treating physician.

3. When discussing mortality and morbidity, it would be helpful to adjust for comorbid conditions and severity of underlying illness.

4. In the statistical analysis were p values adjusted for multiple comparisons?

Results:
1. The author indicates a total of 202 cEEG records were identified. Are these for 202 unique patients? Did any patients have more than one cEEG study during this time? If so, were the subsequent studies excluded if the patients had more than one cEEG study during the one-year period?

2. How were the clinical diagnoses defined? For example, was “epilepsy” used only if the patient had a prior diagnosis of epilepsy, or was it also used for new-onset seizures? Subcategorization of
“cerebrovascular disease” would also be helpful. (Based on prior studies intracranial hemorrhage is much more likely to be associated with seizures than ischemic stroke.)

3. For Table 2, did any patients have more than one of the periodic patterns? Did patients have NCS and periodic patterns? Why is NCSE not listed in the table?

4. It would be interesting to look at the diagnoses associated with NCS, NCSE and periodic patterns.

5. In addition to describing the primary diagnosis of the patients it would be helpful to know why they were connected to cEEG. What were the indications for EEG monitoring and frequency for each indication? It would be helpful to describe a table of indication for EEG monitoring and percentage for each reason (example, clinical seizure, altered mental status, abnormal movements, etc).

Discussion:
1. The author states: “The data are consistent with prior knowledge and experience from other countries that CEEG is effective in detecting NCS and other likely harmful subclinical EEG patterns on the ictal-interictal continuum.” This paper does not define nor discuss the ictal-interictal continuum.

2. The discussion should compare the findings at the current center to prior publications on the yield of CEEG.

3. Without adjusting for underlying diagnosis and comorbidities, it is difficult to claim that there is “a significant association between NCS and mortality.”

4. It would be helpful to provide a more detailed discussion as to why the following finding was noted “periodic or rhythmic patterns was significantly associated with longer hospital stays.”

5. In the method section, the author states: “The duration of CEEG monitoring is decided by the neurology consultation or ICU physicians.” It appears that the longest duration for a study was 24 hours; however, as mentioned 52 patients had nonconvulsive seizures, with 10 patients fulfilling the criteria for non-convulsive status epilepticus. How were these patients monitored for response to treatment? Were NCS and NCSE successfully treated by the time of disconnect?

6. Throughout the article the authors refer to the resource requirement for CEEG monitoring. It would be interesting to know if and how resource limitations affected monitoring. What was the time from request to connection? Is there any reason to suspect this affected outcomes?

Is the work clearly and accurately presented and does it cite the current literature? Yes

Is the study design appropriate and is the work technically sound? Yes

Are sufficient details of methods and analysis provided to allow replication by others? No

If applicable, is the statistical analysis and its interpretation appropriate? I cannot comment. A qualified statistician is required.
Are all the source data underlying the results available to ensure full reproducibility? Partly

Are the conclusions drawn adequately supported by the results? Partly

**Competing Interests:** No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

© 2019 Kaplan P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peter W Kaplan
Department of Neurology, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Is the work clearly and accurately presented and does it cite the current literature? Partly

Is the study design appropriate and is the work technically sound? Partly

Are sufficient details of methods and analysis provided to allow replication by others? Partly

If applicable, is the statistical analysis and its interpretation appropriate? Partly

Are all the source data underlying the results available to ensure full reproducibility? Partly

Are the conclusions drawn adequately supported by the results? Partly

**Competing Interests:** No competing interests were disclosed.

**Reviewer Expertise:** EEG
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 23 July 2019

https://doi.org/10.5256/f1000research.21080.r51103

© 2019 Tasker R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Robert C. Tasker
Department of Neurology, Harvard Medical School, Boston, MA, USA

The author has described a practice of continuous EEG monitoring in an intensive care unit in a University Hospital in Jeddah, Saudi Arabia.

I have a number of comments that will help readers better understand what these data mean, and how they might reflect on the implications for ICU practice.

**Method** (page 3)

1. In the first paragraph (line 8) the author describes "CEEG are requested by ICU physician or neurologists according to the clinical needs". In order to understand the significance of some of the analyses provided, it would be helpful to know what were the inclusion criteria, or the 'standard operating procedure' for the ICU. For example, were all patients comatose, and the clinician was unable to assess a clinical response?

2. In the first paragraph (lines 13-15) the authors describes "The duration of CEEG monitoring is decided by the neurology consultation or ICU physicians":
   - In order to understand the significance of some of the analyses later in the manuscript, it would be helpful to know when CEEG was started and finished in relation to admission and discharge/death.
   - It would also be helpful to know the timing of when NCS occurred.

3. Since this population has been gathered from ICU admissions, it would be helpful to have some description of ICU severity-of-illness, according to the risk-adjustment score used by the unit. The examination of any illness feature that might be associated with death needs to be adjusted for severity of illness. There were 62 observed deaths in 200 cases - what was the expected number of deaths from the admission data?

**Results** (pages 3 and 4)

1. The presentation of findings in the Results section and the Abstract is a little confusing:
• The author has a starting population of 202 patients undergoing CEEG monitoring. Then, the denominators being used in the data summaries are n=120, and n=200. I think that a flow chart would help here.

2. Table 2 can be summarized as text, which will make room for a flow-diagram and better review of the data presented in Table 3.

3. Table 3 needs some attention to data accuracy. For example, in Row 2 (Hospital stay data) the percentages add up to 101%, which is just a rounding error. In Row 3 (Hospital stay data) the percentages add up to 99%.

4. Yes, the author has found some associations with death, and length of stay, but does the information gained from CEEG have the potential to help with decision making? For example, if we imagined that CEEG was a 'diagnostic test', then:
   • The pre-CEEG probability of death in this population was 31%. The finding of EEG-seizures could change your pre-test to a post-test probability of death of 39%. I don't think that physicians would find this a helpful piece of information. That is, it is not about death, rather it is something we should use to identify a need for treatment, for example.
   • Similarly, the pre-CEEG probability of hospital stay >1 month was 32%. The finding of periodic or rhythmic patterns could change the pre-test to post-test probability of hospital stay >1 month to 34%. Again, I don't think that physicians would find this a helpful piece of information.
   • Obviously, both of these points would need to be tested and validated in a prospective study (as well as knowing details of when these CEEG features were found), but it may lead to a change in emphasis in the first paragraph of the Discussion.

Discussion (pages 3 and 4)

Based on the above results, one could conclude that identifying EEG seizures on CEEG does not provide a significant 'quantum' in prognostic evidence. Similarly, identifying periodic or rhythmic patterns on CEEG does not provide a significant 'quantum' in identifying cases that will be likely be in-hospital >1 month.

I am wondering whether the focus should be on 'what are we doing the CEEG': surely it is to identify something that we can/should treat; and, to identify something that will help us determine that we no longer need to do CEEG.

Is the work clearly and accurately presented and does it cite the current literature?  
Yes

Is the study design appropriate and is the work technically sound?  
Partly

Are sufficient details of methods and analysis provided to allow replication by others?  
No

If applicable, is the statistical analysis and its interpretation appropriate?  
No

Are all the source data underlying the results available to ensure full reproducibility?
Partly

**Are the conclusions drawn adequately supported by the results?**

Partly

**Competing Interests:** Researcher in the 'Pediatric Status Epilepticus Research Group' (PSERG); Journal reviewer; Senior Editor

**Reviewer Expertise:** Pediatric Neurocritical Care; Pediatric ICU

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

---

**Author Response 25 Aug 2019**

**Haythum Tayeb**, King Abdulaziz University, Jeddah, Saudi Arabia

Dear Dr. Tasker,

Thank you very much for your time and detailed review of my manuscript entitled: “The yield of continuous EEG monitoring in the intensive care unit at a tertiary care hospital in Saudi Arabia: A retrospective study”. I value your insights. I have submitted a new version of this manuscript that took into consideration all of your comments and followed your suggestions as well as the other peer review I received. I respond to your comments below as well:

1. it would be helpful to know what were the inclusion criteria, or the 'standard operating procedure' for the ICU.

I added this statement in the Data Gathering section of the new version of the article to clarify the standard practice of the physicians when it comes to ordering, starting and stopping CEEG: “ICU physicians or neurologists request CEEG to search for NCS or patterns on the ictal-interictal continuum when critically ill patients have a disturbance in the level of consciousness that is unexplained by apparent underlying neurological or medical conditions. CEEG is initiated and stopped based on the clinical judgment of the treating teams. Generally, physicians aim to continue monitoring for 24 hours in patients with altered mental status but may allow discontinuation of CEEG for clinical or practical constraints (e.g. EEG machine availability or the need to relocate the patients).”

In this developing program, there is no hospital protocol with regards to patient selection, CEEG initiation or termination. This is entirely left to the discretion of the treating physicians and is typically reached through discussion and consultation between neurology and ICU. Generally, all patients with unexplained altered mental status were included. It was difficult to ascertain from the EMR documentation how the mental status evolved during the time of the CEEG, unfortunately. This is a limitation I state in the Discussion section.

2. In order to understand the significance of some of the analyses later in the manuscript, it would be helpful to know when CEEG was started and finished in relation to admission and discharge/death. It would also be helpful to know the timing of when NCS occurred.

It was difficult to determine with consistency retrospectively from EMR how the duration of monitoring was decided and when the seizures occurred relative to the outcomes of interest. I
agree that this is a limitation and would be best addressed in a prospective study. I added this to
the new version of the article in the discussion section: “Retrospective EMR data did not contain
accurate information with regards to the extent and evolution of mental status changes relative to
the timing of the CEEG, use and titration of sedatives, and other management decisions. It was
difficult to ascertain the timing of EEG initiation in relation to these dynamic variables of interest.
Physicians did not follow a clear protocol when deciding the duration of the CEEG study.”

3. Since this population has been gathered from ICU admissions, it would be helpful to have some
description of ICU severity-of-illness, according to the risk-adjustment score used by the unit. The
examination of any illness feature that might be associated with death needs to be adjusted for
severity of illness. There were 62 observed deaths in 200 cases - what was the expected number
of deaths from the admission data?
Thank you for pointing this out. I added this to the methods section: “The average APACHE II
(Acute Physiology and Chronic Health Evaluation II) score of medical patients admitted to the ICU
ranges between 10-30 on average. The scores are routinely calculated but not recorded in the
electronic medical records (EMR).” This was a limitation of the study and we could not remedy this
by calculating scores retrospectively.

4. The author has a starting population of 202 patients undergoing CEEG monitoring. Then, the
denominators being used in the data summaries are n=120, and n=200. I think that a flow chart
would help here.
I added a flow chart. Thank you for suggesting it. n=120 is the number of patients who had clinical
seizures prior to CEEG initiation. This is a group of interest since data have previously shown a
~30% risk of NCS. We replicated this. I removed n=200 from the prior reporting of the Chi-square
to avoid ambiguity. Thank you.

5. Table 2 can be summarized as text, which will make room for a flow-diagram and better review
of the data presented in Table 3.
Done. I expanded table 1 (formerly table 3) by adding row and column percentages.

6. Table 3 needs some attention to data accuracy.
Thank you for pointing this out. I scrutinized the data and ensured accuracy. I fixed several coding
errors that altered the proportions slightly without altering the overall outlook of the results as well.

7. Does the information gained from CEEG have the potential to help with decision making?
Thank you very much for highlighting this issue. To address it, I reported the “pre-test” proportions
to show that the “post-test” proportions are not of large magnitudes. I also added row and column
percentages in table 1.

8. I am wondering whether the focus should be on ‘what are we doing the CEEG’: surely it is to
identify something that we can/should treat; and, to identify something that will help us determine
that we no longer need to do CEEG.
Thank you for this insight. I altered the discussion to reflect the uncertainty about the clinical
meaningfulness of the prognostic information and highlight the need for prospective studies to
address the important questions. This is from the new version of the manuscript: “This study
reveals statistically significant associations between NCS and mortality and between RPPs and
longer hospital stays, supporting the clinical gestalt of identifying and treating potentially harmful
CEEG patterns is worthwhile. However, the incurred excess risks of morbidity and mortality in
patients with NCS or RPPs was relatively modest. Such modest increases are not likely to be of
clinical significance to clinicians evaluating patient prognoses. Nonetheless, this study was a retrospective study with limitations that preclude definitive conclusions about morbidity and mortality risk magnitudes, which are better assessed with prospective studies and in well-developed CEEG programs.

Prior studies have not definitively proven that utilizing CEEG leads to better outcomes\(^2\),\(^5\). This, coupled with the significant resources required to effectively run an ICU CEEG program\(^2\), may lead decision-makers in developing healthcare systems to hesitate to support the development of CEEG practices and research. This study presents data from a small and developing program to demonstrate the real-world effectiveness of CEEG in detecting potentially harmful electrophysiological patterns. In addition, the study highlights the uncertainties regarding the clinical significance of the prognostic information provided by CEEG. Hopefully, this should lead to further development of ICU CEEG programs with embedded prospective, patient-centered research programs. Such research should focus on how CEEG may be used effectively and optimally and how the generated data may impact clinical decisions and patient outcomes in the ICU.”

Once again, thank you very much for your thorough review of this manuscript and your valuable insights. Much appreciated.

Sincerely,
Haythum Tayeb

**Competing Interests:** No competing interests were disclosed.

---

Reviewer Report 23 May 2019

https://doi.org/10.5256/f1000research.21080.r48822

© 2019 Kaplan P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

**Peter W Kaplan**

Department of Neurology, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA

How many of the NCSE were focal versus generalized?

Did not the mortality vary with etiology of NCSE and PDs?

I would add in the final section on limitations of the study that there is perforce selection bias as the EEG techs were not available during certain periods (if I remember, overnight and other times) and this should be stated.

Possibly an EEG example of NCSE should be provided.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: EEG

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 25 Aug 2019

Haythum Tayeb, King Abdulaziz University, Jeddah, Saudi Arabia

Dear Dr. Kaplan,

Thank you very much for kindly reviewing my manuscript entitled: “The yield of continuous EEG monitoring in the intensive care unit at a tertiary care hospital in Saudi Arabia: A retrospective study”. I value your insights. I have submitted a new version of this manuscript that took in consideration your comments and followed your suggestions as well as the other peer review I received. I briefly respond to your comments below as well:

1. How many of the NCSE were focal versus generalized?
I included in the new version of the article that "There were 52 patients with NCS. Among them, 30 were of focal onset (57.7%)".

2. Did not the mortality vary with etiology of NCSE and PDs?
The frequency of NCS etiologies in the group that was deceased at 60 days is now shown in a flow chart figure (figure 1). There was no statistically significant difference in mortality risk between the etiologies. Unfortunately, the number of cases in most subgroups was too small to permit subgroup analysis. I addressed this in the new version of the manuscript.

3. I would add in the final section on limitations of the study that there is perforce selection bias as the EEG techs were not available during certain periods (if I remember, overnight and other times) and this should be stated.
Added.
4. Possibly an EEG example of NCSE should be provided.
Added.

Once again, thank very much for your time and insights.

Sincerely,
Haythum Tayeb

**Competing Interests:** No competing interests were disclosed.