Measurement properties of the translations of instruments evaluating the subjective effects of tobacco- and nicotine-containing products: a systematic review of the literature [version 1; peer review: awaiting peer review]

Catherine Acquadro, Céline Desvignes-Gleizes, Nelly Mainy, Matthew Hankins, Rolf Weitkunat, Christelle Chrea

1Patient-Centered Sciences, ICON plc, Lyon, 69003, France
2Mapi Research Trust, Lyon, 69003, France
3PMI R&D, Philip Morris Products S.A, Neuchâtel, CH-2000, Switzerland

Abstract

Background: Several instruments are widely used for assessing dependence, craving, withdrawal symptoms, and reinforcing effects in users of tobacco- and nicotine-containing products (TNP), including the Fagerström Test for Nicotine Dependence (FTND), Questionnaire of Smoking Urges, original (QSU) and brief (QSU-b) versions; Minnesota Nicotine Withdrawal Scale, original (MNWS) and revised (MNWS-R) versions; and Cigarette Evaluation Questionnaire, original (CEQ) and modified (mCEQ) versions. Although these instruments have been translated extensively, their translations and corresponding measurement properties have not been systematically assessed. This study aimed to (1) identify the translations of these instruments for which psychometric properties have been published, (2) describe the methods used for translation, and (3) describe the measurement properties and the context in which these translations were evaluated (e.g., target population and TNP used).

Methods: Embase and MEDLINE databases were systematically searched.

Results: While no information could be found for the CEQ/mCEQ, several translations were available for the remaining instruments: FTND, 25; QSU and QSU-b, 4 each; QSU (12-item version), 1; MNWS, 4; and MNWS-R, 1. Cigarette smokers represented the main target population in which the validation studies were conducted. Information about the translation process was reported for 25 translations. In most cases, the properties of the translations mirrored those of the originals. Differential item functioning was explored in only one case.

Conclusions: There are few publications describing the measurement properties of the translations of the FTND, QSU/QSU-b, and
MNWS/MNWS-R. None of these translations have been validated for TNPs other than cigarettes, which suggests the need for greater development and validation of instruments in this area.

Keywords
Fagerström Test for Nicotine Dependence, Questionnaire of Smoking Urges, Minnesota Nicotine Withdrawal Scale, Cigarette Evaluation Questionnaire, translations, measurement properties; cross-cultural equivalence, tobacco research

Corresponding author: Catherine Acquadro (Catherine.Acquadro@iconplc.com)

Author roles: Acquadro C: Formal Analysis, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Desvignes-Gleizes C: Conceptualization, Data Curation, Methodology, Writing – Review & Editing; Mainy N: Supervision, Writing – Review & Editing; Hankins M: Supervision, Writing – Review & Editing; Weltkunat R: Supervision, Validation, Writing – Review & Editing; Chrea C: Conceptualization, Funding Acquisition, Methodology, Supervision, Validation, Writing – Review & Editing

Competing interests: CC, MH, NM, and RW are employees of Philip Morris International. All other authors are contracted by Philip Morris International for consulting services on the work presented in this communication.

Grant information: The work presented in this communication was sponsored by Philip Morris International.

Copyright: © 2019 Acquadro C et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Acquadro C, Desvignes-Gleizes C, Mainy N et al. Measurement properties of the translations of instruments evaluating the subjective effects of tobacco- and nicotine-containing products: a systematic review of the literature [version 1; peer review: awaiting peer review] F1000Research 2019, 8:2056 (https://doi.org/10.12688/f1000research.20595.1)

First published: 04 Dec 2019, 8:2056 (https://doi.org/10.12688/f1000research.20595.1)
List of abbreviations
ABOUT: Assessment of Behavioral Outcomes related to Tobacco and nicotine products; BAI: Beck Anxiety Inventory; BDI: Beck Depression Inventory; CDER: Center for Drug Evaluation and Research; CDS: Cigarette Dependence Scale; CEQ: Cigarette Evaluation Questionnaire; CESDS: Center for Epidemiological Studies Depression Scale; CO: carbon monoxide; COSMIN: Consensus-based Standards for the selection of health Measurement Instruments; CTP: Center for Tobacco Products; CCT: classical test theory; DIF: differential item functioning; DSM: Diagnostic and Statistical Manual; F: factor; FDA: US Food and Drug Administration; FTND: Fagerström Test for Nicotine Dependence; IRT: item-response theory; mCEQ: Modified Cigarette Evaluation Questionnaire; MNWS: Minnesota Nicotine Withdrawal Scale; MNWS-R: revised version of the Minnesota Nicotine Withdrawal Scale; MRTP: Modified risk tobacco product; PREP: potential reduced exposure products; NDSS: Nicotine Dependence Syndrome Scale; PRO: Patient-reported outcomes; PROQOLID: Patient-Reported Outcome and Quality of Life Instruments Database; Q: question; QSU: Questionnaire of Smoking Urges; QSU-b: brief version of the Questionnaire of Smoking Urges; TDS: Tobacco Dependence Scale (TDS); TNP: tobacco- and nicotine-containing products.

Introduction
On June 22, 2009, the US Congress enacted a legislation (US Congress, 2009) that granted the US Food and Drug Administration (FDA) the authority to regulate tobacco products and the advertising and promotion of such products. In March 2012, the FDA Center for Tobacco Products (CTP) issued a draft guidance regulating applications for modified risk tobacco products (MRTPs) (US Department of Health and Human Services, 2012). This draft guidance mandates that applications must include scientific evidence about the effects of the products on tobacco-use behavior among current tobacco users. In particular, the guidance clearly states that submissions should present “nonclinical and/or human studies to assess the abuse liability and the potential for misuse of the product as compared to other tobacco products on the market.” In this guidance, the FDA defines abuse liability as “the likelihood that individuals will develop physical and/or psychological dependence on the tobacco product.” Physical dependence encompasses a growing tolerance to product use and/or the inception of withdrawal symptoms when product use cessation occurs. Psychological dependence is mainly characterized by craving and persistent tobacco-seeking and tobacco-use behaviors.

Several authors (Carter et al., 2009; Hanson et al., 2009; Institute of Medicine, 2012) have extensively reviewed measures and methods for assessing dependence, craving, withdrawal symptoms, and reinforcing effects in tobacco- and nicotine-containing product (TNP) users. They have identified some measures either widely used or recommended in tobacco research for the evaluation of tobacco products in general and MRTPs in particular. The most commonly quoted are the Fagerström Test for Nicotine Dependence (FTND) (Fagerström, 1978; Fagerström, 2012; Heatherton et al., 1991), Questionnaire of Smoking Urges (QSU) (Kozlowski et al., 1996; Tiffany & Drobes, 1991), Minnesota Nicotine Withdrawal Scale (MNWS) (Cox et al., 2001; Hughes, 2017; Hughes & Hatsukami, 1986; Hughes, 1992; Hughes & Hatsukami, 1998), and Cigarette Evaluation Questionnaire (CEQ) (Cappelleri et al., 2007; Rose et al., 1998; Westman et al., 1992). In terms of tobacco dependence assessment, the US Institute of Medicine report (2012) acknowledges that the FTND appears to contribute to a more precise estimation of dependence than the “Diagnostic and Statistical Manual of Mental Disorders” criteria. Regarding withdrawal symptoms, the same report mentions the MNWS as a well-characterized measure for assessing reduction of withdrawal symptoms. In their paper describing traditional tools and methods for abuse liability assessment, Carter et al. (2009) make references to the FTND for assessing the magnitude of nicotine dependence, the MNWS for assessing nicotine withdrawal signs and symptoms, and the QSU for measuring craving. In their review on questionnaires for measuring the subjective effects of potential reduced exposure products (PREP), Hanson et al. (2009) conclude that the most widely used scale has been the MNWS or its revised version (MNWS-R), followed by the QSU. They recommend that, at a minimum, these two scales should be included in a battery of assessment tests for PREPs. In addition, the authors also mention the CEQ and its modified version (mCEQ) as being widely used.

Table 1 describes these measures (FTND, QSU, MNWS, and CEQ) and their evolution over time (QSU-brief [QSU-b], MNWS-R, and mCEQ).

The content and measurement properties of the original versions of these four measures in different settings and populations have been documented in the literature (Buckley et al., 2005; Burling & Burling, 2003; Cappelleri et al., 2005; Cappelleri et al., 2007; Cox et al., 2001; Davies et al., 2000; Eter & Hughes, 2006; Fagerström et al., 2012; Haddock et al., 1999; Heatherton et al., 1991; Hudmon et al., 2005; Hughes, 2017; Hughes & Hatsukami, 1986; Hughes, 1992; Hughes & Hatsukami, 1998; Hughes et al., 2004; Kozlowski et al., 1994; Kozlowski et al., 1996; Okuyemi et al., 2007; Payne et al., 1994; Pomerleau et al., 1994; Radziuś et al., 2003; Rose et al., 1998; Sledjeski et al., 2007; Steinberg et al., 2005; Tiffany & Drobes, 1991; Toll et al., 2006; Toll et al., 2004; Weinberger et al., 2007; West & Ussher, 2010; West et al., 2006; Westman et al., 1992). However, in the context of globalization of tobacco consumption (with an estimate of almost 972 million smokers in the world in 2012 (Ng et al., 2014) and internationalization of tobacco control (Reubi & Berridge, 2016), it is fundamental to obtain information about the measurement properties of the translations of these self-report instruments since it is crucial to ensure cross-cultural equivalence between the original versions and their translations (Petersen et al., 2003; Regnault & Herdman, 2015; US Department of Health and Human Services, 2009).
Table 1. Brief description of the Fagerström Test for Nicotine Dependence (FTND), Questionnaire of Smoking Urges (QSU), Minnesota Nicotine Withdrawal Scale (MNWS), and Cigarette Evaluation Questionnaire (CEQ) and the corresponding brief, revised, or modified versions.

<table>
<thead>
<tr>
<th>Measure</th>
<th>History/content</th>
<th>Response scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTND</td>
<td>Revised version of the Fagerström Tolerance Questionnaire (FTQ), which was developed in 1978 to provide a short, convenient self-reported measure of nicotine dependence (Fagerström, 1978). It includes 6 questions. In 2012, in an effort to integrate the total dependence panorama and the fact that the FTND has not been validated against all forms of tobacco use—from cigarettes to smokeless tobacco—Dr. Fagerström suggested that the FTND be renamed the Fagerström Test for Cigarette Dependence (FTCD) (Fagerström, 2012).</td>
<td>- Yes/No for Q2, Q5, and Q6 - Four options for Q1 and Q4: ✓ Q1: Within 5 minutes, 6–30 minutes, 31–60 minutes, after 60 minutes ✓ Q4: ≤10, 11–20, 21–30, ≥31 - Two options for Q3: The first one in the morning, All others. The scores enable the classification of nicotine dependence into five levels: very low (0–2 points); low (3–4 points); moderate (5 points); high (6–7 points); and very high (8–10 points).</td>
</tr>
<tr>
<td>QSU (32 items)</td>
<td>Developed in 1991 (Tiffany & Drobes, 1991) to assess the potential multidimensional nature of craving report. It originally consisted of 32 items. A two-factor item structure was shown, with factor 1 representing a desire and intention to smoke, with smoking anticipated as pleasurable (15 items of which 10 are negatively keyed), and factor 2 representing an anticipation of relief from negative affect and nicotine withdrawal, with an urgent desire to smoke (11 items positively keyed). The type of desire represented on the first factor was characterized by items such as “I have an urge for a cigarette,” and “I have no desire for a cigarette right now” (negatively keyed). In contrast, the second factor seemed to represent a more pressing and urgent state of desire as indicated by items such as “All I want right now is a cigarette,” and “My desire to smoke seems overpowering.”</td>
<td>Seven-point Likert-type scale (1 = strongly disagree and 7 = strongly agree)</td>
</tr>
<tr>
<td>QSU (12 items)</td>
<td>Kozlowski et al. (1996) proposed an alternative model using the 12 most robust items from the original analysis.</td>
<td>Seven-point Likert-type scale (1 = strongly disagree and 7 = strongly agree)</td>
</tr>
<tr>
<td>QSU Brief Version (QSU-b) (10 items)</td>
<td>Cox et al. (2001) developed a 10-item version, which they called the QSU-Brief (QSU-b), to facilitate use in laboratory and clinical settings. When used to derive a global measure of craving, QSU-b displayed high internal consistency across settings, providing a reliable assessment of desire to smoke. Factor analyses showed two distinct manifestations of verbal report of craving. Factor 1 represented a strong desire and intention to smoke, with smoking perceived as rewarding for active smokers, while factor 2 reflected an anticipation of relief from negative affect and an urgent desire to smoke.</td>
<td>100-point scale ranging (0 = strongly disagree and 100 = strongly agree)</td>
</tr>
<tr>
<td>MNWS and MNWS revised version (MNWS-R)</td>
<td>The MNWS was developed in 1986 when Hughes & Hatsukami (1986) provided a detailed description of tobacco withdrawal and listed several signs and symptoms to be assessed (seven to nine items) rated on a 4-point scale (not present, mild, moderate, or severe). This measure has evolved over the years (Hughes, 1992), and the scale is now composed of eight symptoms associated with nicotine withdrawal (i.e., craving, irritability, anxiety, difficulty concentrating, restlessness, increased appetite or weight gain, depression, and insomnia). In a short communication, Hughes & Hatsukami (1998) encouraged researchers to use a scale that includes only seven DSM items: depression, insomnia, irritability/frustration/anger, anxiety, difficulty concentrating, restlessness, and increased appetite/weight gain. Finally, a revised version was proposed—the MNWS-R (Hughes, 2017)—which includes 15 items. The first eight symptoms are well-validated items (and the ones to be used if calculating a total withdrawal discomfort score), with the first seven being the DSM original items and the eighth investigating craving. The remaining seven symptoms were considered promising candidate symptoms (impatience, constipation, dizziness, increased coughing, increased dreaming or nightmares, nausea, and sore throat). Items can be rated on an ordinal scale (0 = not present, 1 = mild, 2 = moderate, and 3 = severe) or on a 0–4 scale with the additional descriptor of “slight” between not present and mild, or by using a 100-mm visual analogue scale.</td>
<td>Five-point Likert scale with 0 = none, 1 = slight, 2 = mild, 3 = moderate, and 4 = severe</td>
</tr>
<tr>
<td>CEQ / Modified CEQ (mCEQ)</td>
<td>The CEQ is a self-reported questionnaire containing 11 items covering both the reinforcing effects (i.e., smoking satisfaction, psychological reward, and enjoyment of respiratory tract sensations) and aversive effects (i.e., dizziness and nausea) of smoking (Rose et al., 1998; Westman et al., 1992). Cappelleri et al. (2007) developed a modified version (mCEQ) by adding one item on enjoying smoking.</td>
<td>Items are rated on a seven-point scale (1 = not at all and 7 = extremely).</td>
</tr>
</tbody>
</table>

Abbreviations: DSM: Diagnostic and Statistical Manual.
The objectives of this paper were:

1. To identify translations of the FTND, QSU/QSU-b, MNWS/MNWS-R, and CEQ/mCEQ for which psychometric properties are available;
2. To describe the methods used for translation;
3. To describe the measurement properties and the context in which these translations were evaluated (i.e., study design, target population, and TNP used by the study population).

Methods

Search strategy

Embase and MEDLINE databases were searched (in March 2018) with no limitation in timeframe, by using the following keywords and Boolean operators: (1) translation OR language OR version or cross-cultural valid* OR internal consistency OR Cronbach’s alpha OR reliability OR validation OR responsiveness OR validity, combined (AND) with (2) QSU OR Questionnaire on Smoking Urges OR Cigarette Evaluation Questionnaire OR Fagerström Test for Nicotine Dependence OR FTND OR Fagerström Test for Cigarette Dependence OR Minnesota Nicotine Withdrawing Scale OR MNWS. The combination of (1) and (2) was limited to Abstract, Human research, and English. We screened reference lists to identify supplemental pertinent studies.

Selection criteria

Abstracts retrieved through the search strategy were reviewed and excluded if they (1) did not refer to the instruments of interest; (2) referred to the original version of the instruments of interest; or (3) referred to a translation used (a) in an epidemiological or behavioral context (i.e., not reporting measurement properties) or (b) for validating another measure and not for assessing/reporting the internal consistency or structural validity of the instruments of interest. Conference abstracts were excluded.

The reference lists of the papers considered for inclusion were reviewed, and articles of interest were included if they (a) referred to a translation for which internal consistency or structural validity was assessed at minimum or (b) provided additional information on an existing translation identified through the first round of review.

Two independent reviewers performed the selection. Initial data were extracted by one reviewer and then reviewed (and complemented if needed) by another.

Measurement properties

We used the COmensus-based Standards for the selection of health Measurment INstruments (COSMIN) categorization (Mokkink et al., 2010a; Mokkink et al., 2010b; Mokkink et al., 2010c; Mokkink et al., 2018), to classify the measurement properties as follows: reliability, validity, and responsiveness to change. A fourth category, sensitivity and specificity, was added where appropriate (e.g., when the instrument was used for screening).

Reliability is described as the overall consistency of a measure, i.e., the degree to which scores for subjects who have not changed are the same when the measurement is repeated over time [test–retest reliability], is done with different evaluators on the same occasion [inter-rater reliability] or with the same evaluator on different occasions [intra-rater reliability]). As for internal consistency reliability, this estimate assesses the consistency of scores across items within a measurement instrument.

Validity is the degree to which an instrument measures what it is supposed to measure and includes the following:

- Content validity: The extent to which the content of a questionnaire is an appropriate manifestation of the construct to be assessed. The key features are whether or not the items are relevant and that not important concept is missing, i.e., that the measure is comprehensive. As this review deals with translations, this part will include a description of the translation process and whether or not, on a qualitative level, the content of some items was changed to reflect cultural aspects.
- Construct validity: The extent to which the scores of a measure are in accordance with hypotheses based on the assumption that the questionnaire accurately measures the construct to be measured (Mokkink et al., 2010a). We have included the following aspects in construct validity:
 - Structural validity: The degree to which the scores of an instrument are an adequate reflection of the dimensionality of the construct to be measured (Mokkink, et al., 2010a). Factor analysis should be performed to confirm the number of subscales present in a questionnaire.
 - Hypothesis testing: The extent to which an instrument relates to other instruments in a way that is expected if it is accurately measuring the supposed construct (i.e., in accordance with predefined hypotheses about the correlation or differences between the measures). We have included the following aspects in this category:
 - The degree to which the instrument scores correlate with changes in instruments assessing similar constructs, connected but dissimilar constructs, or unconnected constructs.
 - The degree to which the instrument scores correlate with biomarkers or measures of TNP consumption (consumption patterns).
 - Predictive validity: The degree to which the considered instrument score is predictive of a future outcome or event.
 - Cross-cultural validity: The extent to which the items performance in a translated or culturally
adapted instrument appropriately reflects the performance of the items in the original version of the instrument (Mokkink et al., 2010a). This is evaluated using multi-group factor analysis or differential item functioning (DIF) by utilizing data from populations who completed the original version of the questionnaire and its translations.

Responsiveness to change (Hays & Hadorn, 1992) is the ability of an instrument to detect change over time in the construct to be measured. Responsiveness to change is considered an aspect of validity in a longitudinal context.

Sensitivity and specificity are used to evaluate the screening performance of a measure. Sensitivity is the proportion of true positives that are exactly identified, whereas specificity relates to the proportion of true negatives correctly identified. Generally, an optimal cutoff point for the score is selected to reduce the sum of false-positive and false-negative results.

Results
The search retrieved 193 articles (Table 2), of which 47 were selected for data extraction. While 46 of these articles described individual investigations on the measurement properties of translated versions of the FTND, QSU/QSU-b, and MNWS/MNWS-R, one was a review of the psychometric properties of the FTND (original and translations) (Meneses-Gaya et al., 2009). No references were found on the CEQ or mCEQ. More details are presented in Figure 1 and Supplementary Material 1 (Table S1), which provides a list of references retrieved and reasons for inclusion/exclusion.

FTND results
The search retrieved 34 FTND studies and one review. We identified 25 different FTND translations (Table 3), including two different Arabic versions for Yemeni speakers [Yemeni immigrants in the UK (Kassim, et al., 2012) and inhabitants of Yemen (Nakajima et al., 2012)], two different Chinese versions [Taiwanese (Huang et al., 2009; Huang et al., 2006) and Chinese immigrants in the US (Yamada et al., 2009)], two different Dutch versions (Breteler et al., 2004; Vink et al., 2005), two different Farsi versions (Iran) (Robabeh et al., 2017; Sarbandi et al., 2015), and two different Portuguese versions for Brazil (Carno & Pueyo, 2002; de Meneses-Gaya et al., 2009).

In case of different studies exploring the same language (e.g., Japanese versions reported in two independent studies or French versions reported in French and Swiss studies), we contacted the authors for clarification about the version used (personal communications by email). Authors confirmed using either an existing translation [Japanese (Kawada et al., 2010)] or their own version [French (Chabrol et al., 2003); Portuguese for Brazil (de Meneses-Gaya et al., 2009); Spanish for Mexico (Moreno-Coutinho & Villalobos-Gallegos, 2017); and Dutch (Vink et al., 2005)]. In cases where we did not receive any answer, we counted only one version. We did not include the study by de Leon et al. (2003), as the results were based on a combined sample of Spanish and American smokers [study reported in the review by Meneses-Gaya et al. (2009)].

The main objective of the majority of the studies was to investigate the psychometric properties of the FTND in a specific target language and population. In some instances, the studies aimed to develop other dependence scales by using the FTND as a reference instrument [Spanish (Becó et al., 2010); French (Etter, 2005); Italian (Grassi et al., 2014); Japanese (Kawada et al., 2010); and Arabic (Salameh et al., 2013; Salameh & Khayat, 2014)] while also exploring the properties of the FTND (Table 3).

Supplementary Material 2 describes the sociodemographic/design characteristics and targeted country/language of each study retrieved (Table S2.1), translation process (steps and people involved if mentioned) as described in the paper (Table S2.2), and measurement properties of the translations (Table S2.3). Combustible cigarettes were the TNP evaluated in all studies. Studies in India had evaluated bidis (cigarettes made locally by wrapping coarse tobacco in dried tendu leaf) [Malayalam (Jayakrishnan et al., 2012) and Hindi (Jhanjee & Sethi, 2010)].

A wide range of populations was investigated (Table S2.1). Participants were recruited from the general population in 24% of the studies (Becó & Vázquez, 1998; Etter, 2005; John et al., 2004; Klonsophon et al., 2017; Nakajima et al., 2012; Salameh & Khayat, 2014; Stavem et al., 2008; Yamada et al., 2009). While 12% of the studies investigated youth samples, such as students (de Meneses-Gaya et al., 2009; Etter et al., 1997; Nakajima et al., 2012; Salameh & Jomaa, 2014), 20% studied patients with comorbidities or drug dependence (Becó et al., 2010; de Meneses-Gaya et al., 2009; Jhanjee & Sethi, 2010; ...

Table 2. Results of the search strategy (Medline and Embase, March 8, 2018).

<table>
<thead>
<tr>
<th>Search no.</th>
<th>Strategy</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Translation OR Language OR Version or Cross-Cultural Valid* OR Internal Consistency OR Cronbach alpha or Reliability OR Validation OR Responsiveness OR Validity</td>
<td>1862311</td>
</tr>
<tr>
<td>2</td>
<td>QSU OR Questionnaire on Smoking Urges OR Cigarette Evaluation Questionnaire OR Fagerström Test for Nicotine Dependence or FTND or Fagerström Test for Cigarette Dependence OR Minnesota Nicotine Withdrawing Scale or MNWS</td>
<td>2247</td>
</tr>
<tr>
<td>3</td>
<td>#1 AND #2 Limit to Abstract, Human and English</td>
<td>193 references without duplicates</td>
</tr>
</tbody>
</table>
The sex ratio was balanced, except in some languages or countries with predominantly male samples [e.g., Iran (Robabeh et al., 2017; Sarbandi et al., 2015), India (Jayakrishnan et al., 2012; Jhanjee & Sethi, 2010), Japan (Kawada et al., 2010; Mikami et al., 1999), Korea (Park et al., 2004), Malaysia (Yee et al., 2011), Taiwan (Huang et al., 2006, Huang et al., 2009), Thailand (Klinsphon et al., 2017), and the Yemeni population in the U.K. (Kassim et al., 2012)]. With regard to cigarette consumption, participants in most countries were light to moderate smokers, except in India (Jhanjee & Sethi, 2010), Italy (Ferketich et al., 2008; Grassi et al., 2014; Svicher et al., 2018), Japan (Kawada et al., 2010; Mikami et al., 1999), Spain (Becoña & Vázquez, 1998), Taiwan (Huang et al., 2006, Huang et al., 2009), and Turkey (Uysal et al., 2004; Uysal et al., 2015), where the samples included a mix of moderate to heavy smokers. The original version of the FTND (Heatherton et al., 1991) was developed with a sample of 254 adult visitors (male, 111; female, 143) at the Ontario Science Centre, who ranged in age from 17 to 77 years (mean age, 33.5 ± 12.7 years) and smoked an average of 20.7 cigarettes per day.

Translation process. Of the translations, 60% (15 out of 25) were documented with a description of the translation process used to develop each of them (Table S2.2). Out of these...
<table>
<thead>
<tr>
<th>Language</th>
<th>Country</th>
<th>Study</th>
<th>Study objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>Lebanon</td>
<td>Salameh et al., 2013</td>
<td>To validate the use of the FTND in a Lebanese university student population and to create the YACD scale</td>
</tr>
<tr>
<td>Arabic</td>
<td>Lebanon</td>
<td>Salameh & Khayat, 2014</td>
<td>To validate the use of the FTND in a Lebanese adult population and to create the LCD Score</td>
</tr>
<tr>
<td>Arabic</td>
<td>UK (Yemenite immigrants)</td>
<td>Kassim et al., 2012</td>
<td>To explore the cross-cultural validity and reliability of the FTND among Arabic-speaking cigarette consumers who chew khat leaf</td>
</tr>
<tr>
<td>Arabic</td>
<td>Yemen</td>
<td>Nakajima et al., 2012</td>
<td>To examine the reliability and validity of the FTND among concurrent users of tobacco and khat in Yemen</td>
</tr>
<tr>
<td>Chinese</td>
<td>Taiwan</td>
<td>Huang et al., 2006</td>
<td>To examine the psychometric properties of the FTND Chinese version</td>
</tr>
<tr>
<td>Chinese</td>
<td>USA</td>
<td>Yamada et al., 2009</td>
<td>To investigate DIF of the English and Chinese versions of the FTND</td>
</tr>
<tr>
<td>Dutch</td>
<td>The Netherlands</td>
<td>Breteler et al., 2004</td>
<td>To investigate the dimensionality of the FTND and explore the dimensional properties of the nicotine dependence construct by factor analysis and Rasch modeling</td>
</tr>
<tr>
<td>Dutch</td>
<td>The Netherlands</td>
<td>Vink et al., 2005</td>
<td>To explore the performance of the FTND in a sample of daily smokers and ex-smokers</td>
</tr>
<tr>
<td>Farsi</td>
<td>Iran</td>
<td>Sarbandi et al., 2015</td>
<td>To evaluate the psychometric properties of the Persian FTND and HSI in smokers</td>
</tr>
<tr>
<td>Farsi</td>
<td>Iran</td>
<td>Robabeh et al., 2017</td>
<td>To verify the usefulness of the Persian version of the FTND in patients with opioid-use disorder/cigarette smokers undergoing methadone maintenance treatment</td>
</tr>
<tr>
<td>French</td>
<td>France</td>
<td>Chabrol et al., 2003</td>
<td>To report the first study of the factorial structure of the FTND in a French population</td>
</tr>
<tr>
<td>French</td>
<td>Switzerland</td>
<td>Etter et al., 1999</td>
<td>To assess the validity of the FTND and HSI in a population of relatively light smokers</td>
</tr>
<tr>
<td>German</td>
<td>Germany</td>
<td>John et al., 2004</td>
<td>To present the results of using a short version of the FTND in two population samples</td>
</tr>
<tr>
<td>Hindi</td>
<td>India</td>
<td>Jhanjee & Sethi, 2010</td>
<td>To verify the usefulness of the FTND in an Indian sample of daily smokers</td>
</tr>
<tr>
<td>Italian</td>
<td>Italy</td>
<td>Ferketich et al., 2008</td>
<td>To examine the properties of the Italian version of the FTND</td>
</tr>
<tr>
<td>Italian</td>
<td>Italy</td>
<td>Grassi et al., 2014</td>
<td>To test the psychometric properties of an Italian version of the Severity of Dependence Scale with the FTND as a comparative measure</td>
</tr>
<tr>
<td>Italian</td>
<td>Italy</td>
<td>Svicher et al., 2018</td>
<td>To examine the psychometrics properties of the FTCD and HSI through IRT</td>
</tr>
<tr>
<td>Japanese</td>
<td>Japan</td>
<td>Mikami et al., 1999</td>
<td>To examine the reliability and validity of the FTND in patients with smoking-related cancers</td>
</tr>
<tr>
<td>Japanese</td>
<td>Japan</td>
<td>Kawada et al., 2010</td>
<td>To validate a 100-point scale for evaluating perceived tobacco dependence with the FTND as a comparative measure</td>
</tr>
<tr>
<td>Korean</td>
<td>Korea</td>
<td>Park et al., 2004</td>
<td>To assess the validity of the Korean FTND</td>
</tr>
<tr>
<td>Malay</td>
<td>Malaysia</td>
<td>Yee et al., 2011</td>
<td>To evaluate the validity and reliability of the Malay FTND version</td>
</tr>
<tr>
<td>Malayalam</td>
<td>India</td>
<td>Jayakrishnan et al., 2012</td>
<td>To assess nicotine dependence among smokers in a selected rural population in Kerala, India</td>
</tr>
<tr>
<td>Norwegian</td>
<td>Norway</td>
<td>Stavem et al., 2008</td>
<td>To compare the properties of four measures of dependence to nicotine/tobacco: the CDS-12, the FTND, and two shorter versions of the same measures</td>
</tr>
<tr>
<td>Portuguese</td>
<td>Brazil</td>
<td>Carmo & Pueyo, 2002</td>
<td>To present the results of an adaptation of the Brazilian version of the FTND</td>
</tr>
<tr>
<td>Portuguese</td>
<td>Brazil</td>
<td>Osório Fde et al., 2013</td>
<td>To conduct a psychometric study of the FTND</td>
</tr>
<tr>
<td>Portuguese</td>
<td>Brazil</td>
<td>de Meneses Gaya et al., 2009</td>
<td>To examine the psychometric properties of the Brazilian versions of the FTND and HSI</td>
</tr>
<tr>
<td>Language</td>
<td>Country</td>
<td>Study</td>
<td>Study objectives</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>Spanish</td>
<td>Spain</td>
<td>Becoña & Vázquez, 1998</td>
<td>To verify the usefulness of the FTND in a sample of Spanish smokers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Becoña et al., 2010</td>
<td>To validate the Spanish NDSS with the FTND as a comparative measure</td>
</tr>
<tr>
<td>Spanish</td>
<td>Mexico</td>
<td>Moreno-Coutiño & Villalobos-Gallegos, 2017</td>
<td>To assess the psychometric properties of the FTND in Spanish Mexican speakers</td>
</tr>
<tr>
<td>Thai</td>
<td>Thailand</td>
<td>Klinsophon et al., 2017</td>
<td>To evaluate the test–retest reliability and internal consistency of the Thai version of the FTND</td>
</tr>
<tr>
<td>Turkish</td>
<td>Turkey</td>
<td>Uysal et al., 2004</td>
<td>To study the reliability and present a factor analysis of the FTND in a Turkish sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uysal et al., 2015</td>
<td>To assess the psychometric properties of the Turkish version of the FTND</td>
</tr>
</tbody>
</table>

Abbreviations: CDS-5: Cigarette Dependence Scale (5-item version); CDS-12: Cigarette Dependence Scale (12-item version); DIF: differential item functioning; FTCD: Fagerström Test of Cigarette Dependence; FTND: Fagerström Test for Nicotine Dependence; FTQ: Fagerström Tolerance Scale; HSI: Heaviness of Smoking Index; IRT: item response theory; LCD: Lebanese Cigarette Dependence; NDSS: Nicotine Dependence Syndrome Scale; YACD: Young Adults’ Cigarette Dependence.

15 translations, only three (Kassim et al., 2012; Uysal et al., 2004; Yee et al., 2011) were presented with a brief report of the difficulties encountered and solutions found. References to guidelines or recommendations were given for six translations (Becoña & Vázquez, 1998; Kassim et al., 2012; Klinsophon et al., 2017; Sarbandi et al., 2015; Yamada et al., 2009; Yee et al., 2011). Descriptions of the translation process were either minimal, with only a mention of the steps performed (Becoña & Vázquez, 1998; Jayakrishnan et al., 2012; Jhanjee & Sethi, 2010; Mikami et al., 1999; Nakajima et al., 2012; Robabeh et al., 2017), or more detailed, with information about the people involved in the process (Etter et al., 1999; Kassim et al., 2012; Klinsophon et al., 2017; Park et al., 2004; Salameh et al., 2013; Salameh & Khayat, 2014; Sarbandi et al., 2015; Uysal et al., 2004; Yamada et al., 2009; Yee et al., 2011). Except for one translation, i.e., French for Switzerland (Etter et al., 1999), all teams included in their process a backward translation step (i.e., the translation of the target language version back to the source language, English).

Measurement properties All translations were assessed using the classical test theory (CTT), except for the Chinese version developed for immigrants to the US (Yamada et al., 2009), which was assessed only by an item response theory (IRT)-based approach. The Dutch (Breteler et al., 2004) and Italian versions (Svicher et al., 2018) were assessed by IRT supplemented with CTT. Table S2.3 provides detailed information on all properties.

Measurement equivalence was explored for only one translation—Chinese for immigrants to the US (Yamada et al., 2009)—for which DIF was examined by using IRT. Question (Q) 2 (difficult to refrain) showed a significantly substantial DIF, indicating that users of the Chinese version were more likely to support this item and to report more difficulty in refraining from smoking at several public places even after controlling for the nicotine-dependence level. As this DIF item in the Chinese version contributed minimally at the aggregate level, the authors concluded that its impact was negligible on scale scores. Neither unidimensional nor multidimensional results showed DIF for Q1 (time to first cigarette) or Q3 (cigarette hated most to give up), indicating that these two items are DIF-free. Authors concluded that these two items should be retained in the FTND to enable comparison between Chinese- and English-speaking smokers.

Structural validity was documented for 72% of the translations (18 of 25): Arabic for Lebanon (Salameh et al., 2013; Salameh & Khayat, 2014); Arabic for Yemenites living in the UK (Kassim et al., 2012) and Yemen (Nakajima et al., 2012); Chinese for Taiwan (Huang et al., 2006) and the US (Yamada et al., 2009); Dutch (Breteler et al., 2004); both Farsi versions (Robabeh et al., 2017; Sarbandi et al., 2015); French for France (Chabrol et al., 2003) and Switzerland (Etter, 2005; Etter et al., 1999); German (John et al., 2004); Hindi (Jhanjee & Sethi, 2010); Italian (Grassi et al., 2014; Svičer et al., 2018); Korean (Park et al., 2004); Malay (Yee et al., 2011); Portuguese for Brazil (de Meneses-Gaya et al., 2009); Spanish for Mexico (Moreno-Coutiño & Villalobos-Gallegos, 2017); and Turkish (Uysal et al., 2004; Uysal et al., 2015). Six of the translations had a monofactorial structure, similar to their original versions (Heatherton et al., 1991): Arabic (Lebanon) (Salameh et al., 2013); Farsi (Sarbandi et al., 2015); French for France (Chabrol et al., 2003) and Switzerland (Etter, 2005; Etter et al., 1999); Italian (Svičer et al., 2018); and Spanish for Mexico (Moreno-Coutiño & Villalobos-Gallegos, 2017). The bifactorial structure, described by Haddock et al. (1999) and Radzius et al. (2003) (i.e., one factor labeled “Smoking Pattern” with Q1, Q2, Q4, and Q6 and the other factor labeled “Morning Pattern” with Q3 and Q5, without and with cross-loading of Q1), was replicated in six studies: Chinese for Taiwan (Huang et al., 2006) and the US (Yamada et al., 2009); Farsi (Robabeh et al., 2017); German (John et al., 2004); Korean (Park et al., 2004); and
Portuguese for Brazil (de Meneses-Gaya et al., 2009). For the Arabic version for Lebanon (different from the original version), Salameh & Khayat (2014) reported a bifactorial structure in a general population sample but a monofactorial structure in a student sample (Salameh et al., 2013).

Internal consistency was explored for all translations. In monofactorial structures, Cronbach’s alpha ranged from 0.52 (Thai version, Klinsophon et al., 2017) to 0.82 (Portuguese for Brazil, Osório Fde et al., 2013). For the French version (France, Chabrol et al., 2003), Cronbach’s alpha was 0.86 after deletion of Q3, which led the authors to propose a revised FTND without Q3. Removing Q3 improved the Cronbach’s alpha of the French for Switzerland (Etter et al., 1999), Portuguese for Brazil (Carmo & Puyo, 2002) (slightly), and Turkish (Uysal et al., 2004) versions as well. In the original version (Heatherton et al., 1991), the alpha value was low (0.61), and Q3 loaded less than 0.30 (i.e., 0.23).

Test–retest reliability was assessed for 40% of the translations (10 of 25)—Dutch (Vink et al., 2005); French (Switzerland) (Etter et al., 1999); Farsi (Sabandi et al., 2015); Japanese (Mikami et al., 1999); Malay (Yee et al., 2011); Malayalam (Jayakrishnan et al., 2012); Norwegian (Stavem et al., 2008); Portuguese for Brazil (Carmo & Puyo, 2002; de Meneses-Gaya et al., 2009; Osório Fde et al., 2013); Thai (Klinsophon et al., 2017); and Turkish (Uysal et al., 2004)—with coefficients ranging from 0.50 (Yee et al., 2011) to 0.92 (de Meneses-Gaya et al., 2009) and intervals from 1 week (Moreno-Coutiño & Villalobos-Gallegos, 2017; Yee et al., 2011) to 1.8 years (Vink et al., 2005). In comparison, test–retest reliability analyses conducted on the original version showed coefficients ranging from 0.65 (smokers with schizophrenia, interval not specified) (Weinberger et al., 2007) to 0.87 (a sample of young smokers during military training, 6-week interval) (Haddock et al., 1999).

Inter-rater reliability was investigated for only one translation—Portuguese for Brazil (de Meneses-Gaya et al., 2009)—with the authors reporting an intraclass coefficient of 0.99 (95% confidence interval [CI]: 0.98–1.0) for two raters (sample size, 40).

Correlations with biomarkers and consumption patterns were documented for 52% of the translations (13 of 25): Arabic (Lebanon) (Salameh et al., 2013; Salameh & Khayat, 2014); Chinese (Taiwan) (Huang et al., 2006; Huang et al., 2009); Dutch (Vink et al., 2005); Farsi (Sabandi et al., 2015); French (Switzerland) (Etter et al., 1999); Hindi (Jhanjee & Sethi, 2010); Italian (Ferketich et al., 2008; Grassi et al., 2014); Japanese (Kawada et al., 2010); Korean (Park et al., 2004); Malay (Yee et al., 2011); Malayalam (Jayakrishnan et al., 2012); Norwegian (Stavem et al., 2008); and Spanish (Spain (Becoña & Vázquez, 1998) and Mexico (Moreno-Coutiño & Villalobos-Gallegos, 2017)). Correlations with biomarkers such as exhaled carbon monoxide and salivary and urinary cotinine levels were explored, as were correlations with duration of smoking (years), packs/year, packs/day, age of regular smoking, age of first cigarette, and willingness to pay for a cigarette after a day of abstinence. Correlations with biomarkers ranged from weak to moderate [e.g., CO: $r = 0.288$ (Salameh & Khayat, 2014) to 0.535 (Salameh et al., 2013)], in agreement with the correlations reported in studies that had used the original FTND [CO: $r = 0.210$ (Steinberg et al., 2005), 0.40 (Buckley et al., 2005), and 0.59 (Burling & Burling, 2003)].

Correlations with self-reported instruments investigating similar or dissimilar constructs was explored for 24% of the translations (6 of 25): Farsi (Robabeh et al., 2017); French for Switzerland (Etter et al., 1999); Japanese (Kawada et al., 2010; Mikami et al., 1999); Norwegian (Stavem et al., 2008); and Spanish (Spain (Becoña et al., 2010) and Mexico (Moreno-Coutiño & Villalobos-Gallegos, 2017)). Correlations with the following scales were investigated: Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) ($r = 0.091$ and 0.116, respectively) (Moreno-Coutiño & Villalobos-Gallegos, 2017); Cigarette Dependence Scale (CDS) 12 and 5 ($r = 0.60$ and 0.72, respectively) (Stavem et al., 2008); Diagnostic and Statistical Manual (DSM) diagnostic criteria for nicotine dependence (DSM II-R: $r = 0.70$) (Mikami et al., 1999); DSM-V nicotine dependence (no correlation) (Robabeh et al., 2017); Nicotine Dependence Syndrome Scale (NDSS) ($r = 0.58$) (Becoña et al., 2010); Structured Clinical Interview for DSM-IV ($r = 0.38$) (Becoña et al., 2010); Tobacco Dependence Scale (TDS) ($r = 0.352$) (Kawada et al., 2010); and withdrawal symptoms (irritability, sensation of relief, and embarrassment: relative validity 93, 100, and 100, respectively) (Etter et al., 1999). For the original version, Pomerleau et al. (1994) showed a correlation with the Classification of Smoking by Motives addictive factor ($r = 0.53$). No relationship was detected with depression measured by using the Center for Epidemiological Studies Depression Scale (CESD) ($r = -0.24$).

Predictive validity was investigated for 12% of the translations (3 of 25): French for Switzerland (Etter, 2005); Italian (Ferketich et al., 2008); and Spanish for Mexico (Moreno-Coutiño & Villalobos-Gallegos, 2017). The FTND predicted abstinence only at 7 weeks (Ferketich et al., 2008) and not in the long term (Etter, 2005; Moreno-Coutiño & Villalobos-Gallegos, 2017). In contrast, Kozlowski et al. (1994) showed that the FTND could predict smoking cessation to a small degree (Study 2: 16-month follow-up, $r = -0.11$).

Sensitivity/specificity (Se/Sp) was explored for 28% of the translations (7 of 25): Chinese for Taiwan (Huang et al., 2009); Italian (Svicher et al., 2018); Japanese (Mikami et al., 1999); Malay (Yee et al., 2011); Portuguese for Brazil (de Meneses-Gaya et al., 2009; Osório Fde et al., 2013); and Spanish for Spain (Becoña et al., 2010). Measures of reference varied among the studies: biomarkers (Huang et al., 2009): salivary cotinine – cutoff score = +4, $Se = 76.2\%, Sp = 67.5\%$); status (Svicher et al., 2018); measures of dependence (Becoña et al., 2010): score under the curve, 0.69; Osório Fde et al., 2013: cutoff score = +2, $Se = 76\%, Sp = 91\%$; de Meneses-Gaya et al., 2009: cutoff score = +4, $Se = 80\%, Sp = 74\%$; Mikami et al., 1999: cutoff score = +5/6, $Se = 75\%, Sp = 80\%$; and others (Yee et al., 2011).
Responsiveness to change has never been assessed.

QSU/QSU-b results

We retrieved four translations for the QSU, four for the QSU-b, and one for the QSU-12 (Table 4).

Table 5 presents the general characteristics of each study. Combustible cigarettes were the TNP evaluated in all studies. Nearly all studies involved moderate smoker samples, on average. In comparison, the original QSU (Tiffany & Drobes, 1991) and QSU-b (Cox et al., 2001) were developed with heavy smoker samples. Most studies had recruited samples from the general population, excepting studies in Spain (QSU (Cepeda-Benito et al., 2004) and QSU-b (Cepeda-Benito & Reig-Ferrer, 2004)) and the Netherlands [QSU-b (Littel et al., 2011)], which had recruited students. The sex ratio was balanced in all countries except China [QSU-b (Yu et al., 2010)] and Malaysia [QSU-b (Blebil et al., 2015)], where men were predominant (98% and 99%, respectively) and Spain [QSU (Cepeda-Benito et al., 2004)], where the sample comprised a majority of women (81.5%).

In comparison, the original version of the QSU (Tiffany & Drobes, 1991) was developed in a sample of 230 daily cigarette smokers (141 men and 89 women) assigned to one of three levels of deprivation (0, 1, or 6 hours). The mean participant age in each subgroup was 20.91, 20.64, and 22.73 years (SD not shown), and the consumption rate was 23.3, 21.28, and 22.36 cig/day, respectively (SD not shown). The QSU-b (Cox et al., 2001) was developed in two populations: Study 1 included 221 continuing smokers (111 men and 110 women; mean age, 30.23 ± 10.27 years; consumption rate, 26.95 ± 10.68 cig/day), while Study 2 included 112 smokers who were contemplating quitting (49 men and 63 women; mean age, 43.15 ± 11.60 years; consumption rate, 27.82 ± 12.57 cig/day).

Translation process. The translation process (Table 6) was not described for three translations: German QSU (Müller et al., 2001); French QSU-12 (Dethier et al., 2014); and Dutch QSU-b (Littel et al., 2011). References to guidelines were provided for three translations: Brazilian (Araujo et al., 2006); Chinese (Yu et al., 2010); and Malay (Blebil et al., 2015). The description for the Chinese QSU-b was minimal. Only the Brazilian team had provided some insight into the problems that arose during translation and the solutions they found.

Measurement properties. Table 7 reports the measurement properties explored for each translation. The results of the Spanish QSU-b (Cepeda-Benito & Reig-Ferrer, 2004) are not included, as the version developed by the authors is not a translation of the QSU-b but a new version with completely different content derived from the QSU, with items being positively keyed. It, therefore, represents a new version not comparable to the original US version of the QSU-b.

Measurement equivalence using DIF was never assessed. Structural validity was explored for all translations:

- **QSU:** The Brazilian (Araujo et al., 2006) and French (Guillin et al., 2000) versions of the QSU have a similar bifactorial structure as the original (Tiffany & Drobes, 1991) (i.e., with factor 1 [F1] representing a desire and intention to smoke, with smoking anticipated as pleasurable [15 items of which 10 are negatively keyed]), and

Table 4. List of Questionnaire of Smoking Urges (QSU)/QSU-brief version (QSU-b) translations and corresponding studies.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Language</th>
<th>Country</th>
<th>Study</th>
<th>Study objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSU-32</td>
<td>French</td>
<td>France</td>
<td>Guillin et al., 2000</td>
<td>French translation and validation of the factorial structure of the QSU</td>
</tr>
<tr>
<td>German</td>
<td>Germany</td>
<td>Müller et al., 2001</td>
<td>To translate the QSU into German and examine its factorial structure, reliability, and validity</td>
<td></td>
</tr>
<tr>
<td>Portuguese</td>
<td>Brazil</td>
<td>Araujo et al., 2006</td>
<td>To validate the Brazilian version of the QSU</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>Spain</td>
<td>Cepeda-Benito et al., 2004</td>
<td>To evaluate the factorial structure of the QSU across American and Spanish smokers</td>
<td></td>
</tr>
<tr>
<td>QSU-12</td>
<td>French</td>
<td>Belgium</td>
<td>Dethier et al., 2014</td>
<td>To examine the psychometric properties of the 12-item French version of the QSU</td>
</tr>
<tr>
<td>QSU-10</td>
<td>Chinese</td>
<td>China</td>
<td>Yu et al., 2010</td>
<td>To evaluate the reliability and validity of the Chinese versions of the MNWS and QSU-b in Chinese smokers</td>
</tr>
<tr>
<td>Dutch</td>
<td>The Netherlands</td>
<td>Littel et al., 2011</td>
<td>To investigate the reliability, validity, and factorial structure of the QSU-b in a Dutch smoker sample</td>
<td></td>
</tr>
<tr>
<td>Malay</td>
<td>Malaysia</td>
<td>Blebil et al., 2015</td>
<td>To evaluate the psychometric properties of the Malaysian version of the QSU-b</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>Spain</td>
<td>Cepeda-Benito & Reig-Ferrer, 2004</td>
<td>To develop a brief version of the QSU by using an all positively worded version of the QSU to avoid the confounding interpretations that arise from mixing positively and negatively worded items</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: MNWS: Minnesota Nicotine Withdrawal Scale.
<table>
<thead>
<tr>
<th>Measure</th>
<th>Authors</th>
<th>Study design</th>
<th>Language</th>
<th>Country</th>
<th>Sample details</th>
<th>Sex M/F (%</th>
<th>Number of cigarette smokers</th>
<th>Age in years (mean ± SD/range)</th>
<th>Number of cigarettes per day (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSU-32</td>
<td>Guillin et al. 2000</td>
<td>Cross-sectional</td>
<td>French</td>
<td>France</td>
<td>General population</td>
<td>37/63</td>
<td>38.7 (SD NS)/18–74</td>
<td>111</td>
<td>61/39</td>
</tr>
<tr>
<td></td>
<td>Müller et al. 2001</td>
<td>Cross-sectional</td>
<td>German</td>
<td>Germany</td>
<td>General population</td>
<td>32/68</td>
<td>28.3 ± 0.7/range NS</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Araujo et al. 2006</td>
<td>Cross-sectional</td>
<td>Portuguese</td>
<td>Brazil</td>
<td>General population and staff from psychiatric hospital</td>
<td>33/67</td>
<td>38.15 ± 11.93/18–65</td>
<td>201</td>
<td>8.5/81.5</td>
</tr>
<tr>
<td>QSU-12</td>
<td>Cepeda-Benito et al. 2004</td>
<td>Cross-sectional</td>
<td>Spanish</td>
<td>Spain</td>
<td>Undergraduate psychology students</td>
<td>26/3</td>
<td>32.3 ± 11.4/range NS</td>
<td>374</td>
<td>8.5/81.5</td>
</tr>
<tr>
<td></td>
<td>Dethier et al. 2014</td>
<td>Cross-sectional</td>
<td>French</td>
<td>Belgium</td>
<td>General population recruited through advertisements posted in specialized French forums and research networks</td>
<td>3/2</td>
<td>47.5/52.5</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yu et al. 2010</td>
<td>Cross-sectional</td>
<td>Chinese</td>
<td>China</td>
<td>NS</td>
<td>39.6 ±</td>
<td>355</td>
<td>9/2</td>
<td></td>
</tr>
<tr>
<td>QSU-10</td>
<td>Littel et al. 2011</td>
<td>Cross-sectional</td>
<td>Dutch</td>
<td>The Netherlands</td>
<td>Participants recruited by advertisements on internet forums and communities and through invitations to the Erasmus University Rotterdam</td>
<td>23/8</td>
<td>24.4 ± 7.9/range NS</td>
<td>133</td>
<td>41/38/7</td>
</tr>
<tr>
<td></td>
<td>Blebil et al. 2015</td>
<td>Cross-sectional</td>
<td>Malay</td>
<td>Malaysia</td>
<td>Smokers attending the Out Smoking Clinic in Pulau Pinang Hospital, Penang State, Malaysia</td>
<td>12/24</td>
<td>43.5/66.5</td>
<td>S1: 224 (SD NS)/86–50</td>
<td>S1: 11.25 ± 6.91</td>
</tr>
<tr>
<td></td>
<td>Cepeda-Benito & Reig-Ferrer 2004</td>
<td>Cross-sectional</td>
<td>Spanish</td>
<td>Spain</td>
<td>Student and staff of the University of Alicante; Smokers from the province of Alicante</td>
<td>22/25</td>
<td>57.2/42.8</td>
<td>S2: 225</td>
<td>8/2</td>
</tr>
</tbody>
</table>

Abbreviations: F, female; M, male; NA, not available in this paper (reference to another publication); NS, not specified in this paper; SD, standard deviation; S1: Sample 1; S2: Sample 2.
<table>
<thead>
<tr>
<th>Measure/language/country of study</th>
<th>Conceptual evaluation</th>
<th>FT step (people involved in the process and number of FTs)</th>
<th>Reconciliation/consensus (people involved in process)</th>
<th>Pilot/test (people involved in the process and number of BTs)</th>
<th>Report (i.e., description of issues, changes made for cultural, semantic, or syntactic reasons)</th>
<th>Reference (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6. Description of</td>
<td>QSU-32 French/France</td>
<td>No</td>
<td>✓</td>
<td>✓</td>
<td>Numbers 1 to 7 were added above the Likert scale points that would visually be related to these numbers in the original scale. Due to differences in the meaning of urge and craving, the initials in the English language (QSU) were used in the name of the scale; "Brazilian version" being added</td>
<td>Guillin et al., 2000</td>
</tr>
<tr>
<td>translation processes used (steps and people involved if mentioned) for the Questionnaire of Smoking Urges (QSU)/QSU-brief version (QSU-b)</td>
<td>QSU-32 Portuguese/Brazil</td>
<td>No</td>
<td>✓</td>
<td>✓</td>
<td>FT1 translated (by a native English speaker fluent in Portuguese, who understood the purpose of the translation) and backtranslated (by a native Portuguese speaker fluent in English)</td>
<td>Araujo et al., 2006</td>
</tr>
<tr>
<td></td>
<td>QSU-32 Spanish/Spain</td>
<td>No</td>
<td>✓</td>
<td>✓</td>
<td>FT1 tested on 10 subjects for understandability and comprehensibility by 5 individuals to test clarity</td>
<td>Cepeda-Benito et al., 2004</td>
</tr>
<tr>
<td></td>
<td>QSU-32 Chinese/China</td>
<td>No</td>
<td>✓</td>
<td>✓</td>
<td>FT1 tested on 10 subjects for understandability and comprehensibility by 5 individuals to test clarity</td>
<td>Yu et al., 2010</td>
</tr>
<tr>
<td></td>
<td>QSU-32 Italian/Italy</td>
<td>No</td>
<td>✓</td>
<td>✓</td>
<td>FT1 tested on 10 subjects for understandability and comprehensibility by 5 individuals to test clarity</td>
<td>Ciconelli, 1997; Pasquali, 1998</td>
</tr>
<tr>
<td></td>
<td>QSU-32 Dutch/Netherlands</td>
<td>No</td>
<td>✓</td>
<td>✓</td>
<td>FT1 tested on 10 subjects for understandability and comprehensibility by 5 individuals to test clarity</td>
<td>Wild et al., 2005</td>
</tr>
<tr>
<td>Measure language/country of study</td>
<td>Conceptual evaluation</td>
<td>FT step (people involved in the process and number of FTs)</td>
<td>Consensus on the FT step to produce one FT (people involved in process)</td>
<td>BT step (people involved in the process and number of BTs)</td>
<td>Reconciliation / consensus (people involved in process)</td>
<td>Pilot/test (people involved in the process)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>QSU-10 Malay/Malaysia** Bleibl et al., 2015</td>
<td>✓ Not formal, but authors stress the need for conceptual equivalence between the original and translation</td>
<td>✓ (translators from the School of Language, Literacies and Translation, Universiti Sains Malaysia; native Malaysian; 2 FT)</td>
<td>✓ (two native Malaysian researchers)</td>
<td>✓ (third translator fluent in both languages)</td>
<td>✓ (NS)</td>
<td>✓ (20 smokers)</td>
</tr>
<tr>
<td>QSU-10 Spanish/Spain Cepeda-Benito & Reig-Ferrer, 2004</td>
<td>No</td>
<td>✓ (a Spanish native fluent in both English and Spanish; 1 FT)</td>
<td>No</td>
<td>✓ (a US native fluent in Spanish as a second language; 1BT)</td>
<td>✓ (FT and BT translators)</td>
<td>✓ (10 smokers)</td>
</tr>
</tbody>
</table>

Abbreviations: BT: backward translation; FT: forward translation.

* ?: Not clearly specified in the paper, but recommended in quoted guidelines; **Translation Process referred to as Linguistic Validation Process.
<table>
<thead>
<tr>
<th>Measure Language / country of study</th>
<th>Reliability</th>
<th>Validity</th>
<th>Correlations with biomarkers or consumption patterns</th>
<th>Correlations of total score/factors score with other measures assessing similar or dissimilar constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSU-32 French / France</td>
<td>Yes</td>
<td>F1: $\alpha = 0.89$; F2: $\alpha = 0.91$</td>
<td>Two factors: F1: Urges to smoke/craving – 15 items (1, 2, 3, 7, 12, 13, 14, 15, 18, 19, 20, 23, 24, 29, 30) F2: Pleasure to smoke – 10 items (6, 10, 11, 16, 17, 21, 22, 27, 28, 32) Cross loading: 5 items (4, 5, 9, 25, 31) Poor loading: 2 items (8, 26)</td>
<td>No. of cig./day: $r = 0.54$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(EFA, CFA), ITC, IRT</td>
<td>Craving VAS:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F1 and craving VAS were significantly correlated with each other before ($r = 0.55$) and after ($r = 0.60$) smoking. F2 and craving VAS were also significantly correlated with each other before ($r = 0.45$) and after ($r = 0.44$) smoking. - Deprived smokers: F1 and craving VAS were significantly correlated ($r = 0.68$) after smoking but not before ($r = 0.31$). F2 and craving VAS were significantly correlated with each other only after smoking ($r = 0.50$); before smoking, their correlation was $r = 0.02$. FTQ: F1: $r = 0.04$; F2: $r = 0.16$</td>
</tr>
<tr>
<td>QSU-32 Portuguese / Brazil</td>
<td>Yes</td>
<td>$\alpha = 0.97$ F1: $\alpha = 0.96$; F2: $\alpha = 0.92$</td>
<td>Two factors: F1: Urgent and overwhelming desire to smoke – 17 items (2, 3, 5, 7, 12, 13, 14, 15, 18, 19, 20, 23, 24, 25, 29, 30, 31) F2: Desire to smoke and the anticipation of smoking pleasure – 13 items (4, 6, 8, 10, 11, 16, 17, 21, 22, 26, 27, 28, 32) Cross loading: 2 items (1, 2)</td>
<td>No. of cig./day: F1: $r = 0.197$; F2: $r = 0.182$ Age of 1st cig.: F1: $r = 0.026$; F2: $r = 0.051$ No. of years smoked: F1: $r = -0.085$; F2: $r = -0.117$ No. of attempts to quit: F1: $r = -0.016$; F2: $r = -0.064$ Tobacco treatment: F1: $r = 0.103$; F2: $r = 0.034$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F1: $r = 0.643$; F2: $r = 0.636$ FTND sum score: F1: $r = 0.244$; F2: $r = 0.163$ Q1 FTND: F1: $r = 0.188$; F2: $r = 0.104$ Q2 FTND: F1: $r = 0.242$; F2: $r = 0.268$ BAI: F1: $r = 0.249$; F2: $r = 0.090$ BDI: F1: $r = 0.249$; F2: $r = 0.076$</td>
</tr>
</tbody>
</table>

Table 7. Measurement properties of the translations of the Questionnaire of Smoking Urges (QSU)/QSU-brief version (QSU-b).
<table>
<thead>
<tr>
<th>Measure</th>
<th>Language / country of study</th>
<th>Translation process described in paper</th>
<th>Internal consistency</th>
<th>Structural validity</th>
<th>Correlations with biomarkers or consumption patterns</th>
<th>Correlations of total score/factors score with other measures assessing similar or dissimilar constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSU-32</td>
<td>Spanish / Spain Cepeda-Benito et al., 2004</td>
<td>Yes</td>
<td>F1: $\alpha = 0.95$; F2: $\alpha = 0.88$</td>
<td>Two factors. F1 and F2, same as the original (better fit). CFA exclusively by using either the positively worded or negatively worded items of F1 showed that retention of only the negatively worded items in F1 substantially improved model fit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSU-12</td>
<td>French / Belgium Dethier et al., 2014</td>
<td>No</td>
<td>F1: $\alpha = 0.90$; F2: $\alpha = 0.80$</td>
<td>Two factors. F1: Relief of negative affect – 7 items (1, 2, 4, 7, 9, 10, 12) F2: Intention and desire to smoke – 5 items (3, 5, 6 8, 11)</td>
<td>No. of cig./day: Total score: $r = 0.357$; F1: $r = 0.342$; F2: $r = 0.323$ Time since last cig.: Total score: $r = -0.025$; F1: $r = -0.058$; F2: $r = -0.009$ CO: Total score: $r = -0.136$; F1: $r = 0.201$; F2: $r = -0.050$ FTND: Total score: $r = 0.375$; F1: $r = 0.399$; F2: $r = 0.303$ Loss of control associated with smoking: Total score: $r = 0.169$; F1: $r = 0.152$; F2: $r = 0.167$ Frequency of intrusive thoughts related to smoking behaviors: Total score: $r = 0.291$; F1: $r = 0.335$; F2: $r = 0.211$</td>
<td></td>
</tr>
<tr>
<td>QSU-10</td>
<td>Chinese / China Yu et al., 2010</td>
<td>Yes</td>
<td>A = 0.92</td>
<td>Two factors. F1: Desire and intention to smoke with smoking anticipated as being pleasurable – 5 items (1, 3, 6, 7, 10) F2: Anticipation of relief from negative affect and nicotine withdrawal, with urgent desire to smoke – 3 items (4, 8, 9) ITC: $r = 0.57$ to 0.85</td>
<td>Patient-evaluated craving scores: $r = 0.75$</td>
<td></td>
</tr>
</tbody>
</table>

Reliability

- Cronbach's alpha

Validity

- Structural validity: Factorial analyses (EFA, CFA), ITC, IRT
- Correlations with biomarkers or consumption patterns
- Correlations of total score/factors score with other measures assessing similar or dissimilar constructs
<table>
<thead>
<tr>
<th>Measure Language / country of study</th>
<th>Translation process described in paper</th>
<th>Internal consistency Cronbach’s alpha</th>
<th>Structural validity Factorial analyses (EFA, CFA), ITC, IRT</th>
<th>Correlations with biomarkers or consumption patterns</th>
<th>Correlations of total score/factors score with other measures assessing similar or dissimilar constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSU-10 Dutch / The Netherlands</td>
<td>No</td>
<td>$\alpha = 0.83$ F1: $\alpha = 0.84$; F2: $\alpha = 0.84$</td>
<td>Two factors. F1: Anticipation of relief from negative affect with an urgent desire to smoke – 5 items (2, 4, 5, 8, 9) F2: Desire and intention to smoke – 5 items (1, 3, 6, 7, 10) (cross-loading items 1 and 6)</td>
<td>No. of cig./day: $r = 0.25$</td>
<td>0–100 craving rating scale: $r = 0.80$ Desire VAS: $r = 0.76$ Urge VAS: $r = 0.77$ FTND: $r = 0.14$ PANAS (subsample, $n = 84$): F1: $r = 0.25$ PANAS-NA; F2: $r = 0.16$ PANAS-NA F1: $r = -0.02$ PANAS-PA; F2: $r = -0.01$ PANAS-PA SHAPS (subsample, $n = 84$): F1: $r = 0.23$; F2: $r = 0.22$</td>
</tr>
<tr>
<td>QSU-10 Malay / Malaysia</td>
<td>Yes</td>
<td>$\alpha = 0.81$</td>
<td>Two factors. F1: Desire and intention to smoke, with an anticipation of pleasure from smoking – 5 items (1, 3, 6, 7, 10) F2: Anticipation of relief from negative affect with an urgent desire to smoke – 5 items (2, 4, 5, 8, 9) ITC: $r = 0.29$ to 0.71</td>
<td>CO: $r = 0.024$ No. of cig./day: $r = 0.30$ Duration of smoking: $r = 0.06$ Chances for quitting: $r = -0.29$ Previous quit attempts: $r = 0.15$</td>
<td>FTND: $r = 0.24$</td>
</tr>
</tbody>
</table>

Abbreviations: BAI: Beck Anxiety Inventory; Beck Depression Inventory; Cig.: cigarettes; CFA: confirmatory factorial analysis; CO: carbon monoxide; EFA: exploratory factorial analysis; F1: factor 1; F2: factor 2; FTND: Fagerström Test for Nicotine Dependence; FTQ: Fagerström Tolerance Questionnaire; ITC: item-to-total correlation; ns: not significant; PANAS: Positive Affect Negative Affect Scales; PANAS-NA: PANAS Negative Affect; PANAS-PA: PANAS Positive Affect; SHAPS: Snaith–Hamilton Pleasure Scale; VAS: visual analog scale.
factor 2 (F2) representing an anticipation of relief from negative affect and nicotine withdrawal, with an urgent desire to smoke (11 items positively keyed)). However, the French and Brazilian translations show a difference in the order of factor extraction: Craving (urgent desire to smoke) was extracted first. According to the French authors, the duration of smoking abstinence of the French sample at the time of evaluation (1.5 to 3 hours) might explain the inversion of order of the two factors. Two-thirds of the subjects in the study of Tiffany & Drobos (1991) had been abstinent for 1 hour or less, which might have resulted in lesser craving in the US sample. The Spanish authors (Cepeda-Benito et al., 2004) compared the factorial structures of the original US and translated Spanish versions and found that: (1) a better fit was found with the four-factor and two-factor models than with the one-factor model, and (2) the two-factor model provided a better fit than the four-factor model in both samples. In addition, their data suggested that the presence of mostly negatively worded items in F1 contributed largely to the two-factor structure of the QSU. Analysis with only negative items in F1 greatly improved the model fit in both data sets. According to the authors, these findings question the original interpretation of the nature of the dimensions measured by the two factors of the QSU.

- QSU-b: The authors of the Dutch and Malay versions reported differences from the original QSU-b (Cox et al., 2001), which, when used to derive a global measure of craving, showed high internal consistency across settings and provided reliable assessment of the desire to smoke. In contrast, factor analyses generated two instances of verbal report of craving. F1 represented a strong desire and intention to smoke, with smoking perceived as satisfying for active smokers, when an anticipation of relief from negative affect and an urgent desire to smoke was reflected by F2.

The first factor (F1) of the Dutch version (Littel et al., 2011) corresponded with the second factor (F2) of the English QSU-b (items 2, 4, 5, 8, and 9). F2 comprised items 1, 3, 6, 7, and 10. Items 2 and 5 loaded strongly on F1, whereas they had originally cross-loaded. The authors attributed this discrepancy to language differences. Items 2 and 5 (i.e., “nothing would be better than smoking a cigarette right now” and “all I want right now is a cigarette”) communicate quite extreme statements, especially when literally translated into Dutch. F2 corresponded with the first factor of the original QSU-b, although, in the Dutch study, items 1 and 6 loaded on two factors. Again, Dutch language might be an explanation for these items loading on both factors. Items 1 and 6 include the words “desire” and “urge.” Although phrases such as “I have a strong desire or urge for a cigarette,” might be used in Dutch, it is far more common to use less potent expressions (e.g., “I would like/fancy a cigarette”). Nevertheless, items 1 and 6 are less extreme than the items assigned to F1. The authors did not add “anticipation of pleasure from smoking” to the name of this factor, because the subscale was not significantly correlated with either positive or negative affect.

In the Malay version (Blebil et al., 2015), factors 1 and 2 corresponded with those in the original version, with items 2 and 5 strongly loading on F2. The authors attributed this cross-loading to the phrase “strong urge” conveying extreme utterances when literally translated into Malay.

Internal consistency was explored for all translations of the QSU. The alpha values for QSU F1 and F2 ranged from 0.89 (Guillin et al., 2000) to 0.96 (Araujo et al., 2006) and 0.87 (Cepeda-Benito et al., 2004) to 0.92 (Araujo et al., 2006), respectively, in line with the values of the original version, in which scores representing these two factors demonstrated strong internal consistency (Cronbach’s α = 0.95 and 0.93, respectively). The Cronbach’s α values of the QSU-b translations in Malay (Blebil et al., 2015), Dutch (Littel et al., 2011), and Chinese (Yu et al., 2010) were 0.81, 0.83, and 0.92, respectively. When scored as a 10-item scale, the original QSU-b demonstrated high reliability as a measure of global craving in both initial and follow-up sessions (α = 0.89 and 0.87, respectively).

Test–retest reliability was never assessed.

Correlations with biomarkers and consumption patterns were explored for all translations (QSU/QSU-b) except the German (Müller et al., 2001) and Spanish (Cepeda-Benito et al., 2004) QSU versions, with the latter focusing only on factor analysis.

- QSU: As in the original development, correlations with biomarkers were not explored in the translations. The correlation with number of cigarettes per day was weak to moderate (Brazilian version: F1 and F2 QSU, r = 0.197 and 0.182, respectively (Araujo et al., 2006); French QSU, r = 0.54 (Guillin et al., 2000) (not explored in the original)).

- QSU-b: Correlation with exhaled CO was explored for the Malay version (r = 0.0024; not explored in the original development) (Blebil et al., 2015). The correlation with number of cigarettes per day was weak (Dutch QSU-b, r = 0.25 (Littel et al., 2011); Malay QSU-b, r = 0.30 (Blebil et al., 2015) (not explored in the original)).

Correlations with self-reported measures exploring similar or dissimilar constructs were not studied in the French (Guillin et al., 2000) or Spanish versions of the QSU (Cepeda-Benito et al., 2004) but were investigated in other translations (QSU/QSU-b):

- QSU: Correlations with the Craving Visual Analog Scale (VAS) German (Müller et al., 2001) and Brazilian (Araujo et al., 2006) versions, Fagerström Tolerance Questionnaire (FTQ) (Müller et al., 2001), FTND (Araujo et al., 2006), BAI, and BDI (Araujo et al., 2006) were explored. Weak correlations were found with the FTQ (F2, r = 0.16), FTND (F1, r = 0.244; F2, r = 0.163), BAI (F1, r = 0.249), and BDI (F1 r = 0.249).
For the original QSU, correlations with the Withdrawal Symptoms Checklist (WSC) and Mood Form were assessed. F1 showed a strong correlation with the craving subscale of the WSC.

- **QSU-b**: Correlations with the FTND Malay and Dutch versions (Blebil et al., 2015; Littel et al., 2011), craving scales Dutch and Chinese versions (Littel et al., 2011; Yu et al., 2010), desire and urge VAS, the Positive Affect Negative Affect Scale (PANAS), and the Snaith-Hamilton Pleasure Scale (SHAPS) Dutch version (Littel et al., 2011) were explored. Weak correlations were found with the FTND (Malay: r = 0.24; Dutch: r = 0.14), and strong correlations were found with the craving scales (Chinese: r = 0.75; Dutch: r = 0.80). Only a weak correlation with the Negative Affect scale of the PANAS was found for F1 of the Dutch version (r = 0.25). Weak correlations were found with the SHAPS (F1 and F2 of the Dutch version: r = 0.23 and 0.22, respectively). Correlations with the Mood Form were assessed in the original version.

Responsiveness to change, predictive validity, sensitivity, and specificity were not assessed.

MNWS results

Four studies were retrieved for the MNWS (Table 8), corresponding to three translations of the MNWS (nine-item version) into Chinese (China) (Yu et al., 2010), Korean (Kim et al., 2007), and Malay (Blebil et al., 2014) and one translation of the MNWS-R and MNWS (eight-item version) into Italian (same paper) (Sвicher et al., 2017).

In the MNWS, there were variations in the items included in the original versions that were used as a basis for translation. The Chinese version was based on the MNWS developed by Cappelleri et al. (2005), while the Italian version was based on that by Hughes (1992). The Malay and Korean versions included “impatience” and were based on the MNWS developed by Jorenby et al. (1996) (Table 9).

Table 10 presents the general characteristics of each study. Combustible cigarettes were the TNP evaluated in all studies.

Table 8. List of Minnesota Nicotine Withdrawal Scale (MNWS)/MNWS-revised (MNWS-R) translations and corresponding studies.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Language</th>
<th>Country</th>
<th>Study</th>
<th>Study objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNWS 8-item version and MNWS-R</td>
<td>Italian</td>
<td>Italy</td>
<td>Svicher et al., 2017</td>
<td>To perform factor analysis and explore the psychometric properties of the Italian version of the MNWS and MNWS-R</td>
</tr>
<tr>
<td>MNWS 9-item version</td>
<td>Chinese</td>
<td>China</td>
<td>Yu et al., 2010</td>
<td>To evaluate the reliability and validity of the Chinese versions of the MNWS and QSU-b in Chinese smokers</td>
</tr>
<tr>
<td></td>
<td>Korean</td>
<td>USA</td>
<td>Kim et al., 2007</td>
<td>To develop and assess the psychometric properties of a Korean version of the MNWS for Korean Americans</td>
</tr>
<tr>
<td></td>
<td>Malay</td>
<td>Malaysia</td>
<td>Blebil et al., 2014</td>
<td>To evaluate the psychometric properties of the Malaysian version of the MNWS</td>
</tr>
</tbody>
</table>

Table 9. Items included in the Minnesota Nicotine Withdrawal Scale (MNWS) (original and translations).

<table>
<thead>
<tr>
<th>Items</th>
<th>Original (Hughes, 1992)</th>
<th>Original (Hughes & Hatsukami, 1996)</th>
<th>Original (Cappelleri et al., 2005)</th>
<th>Chinese (Yu et al., 2010)</th>
<th>Italian (Sвicher et al., 2017)</th>
<th>Korean* (Kim et al., 2007)</th>
<th>Malay* (Blebil et al., 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craving</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Depression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Irritability/frustration/anger</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anxiety</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Difficulty concentrating</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Restlessness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Increased appetite/weight gain</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Insomnia</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Difficulty going to sleep</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Difficulty staying asleep</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Impatience</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Based on symptoms listed in Jorenby et al., 1996.
Table 10. Sociodemographic/design characteristics and targeted country/language of studies evaluating the measurement properties of the Minnesota Nicotine Withdrawal Scale (MNWS)/MNWS-revised (MNWS-R) translations.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Authors</th>
<th>Study design</th>
<th>Language</th>
<th>Country</th>
<th>Sample details</th>
<th>Number of participants</th>
<th>Sex M/F (%)</th>
<th>Age in years (mean ± SD/range)</th>
<th>Number of cigarettes per day (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNWS and MNWS-R</td>
<td>MNWS 9-item version Yu et al., 2010</td>
<td>Cross-sectional</td>
<td>Chinese</td>
<td>China</td>
<td>NS</td>
<td>355</td>
<td>98/2</td>
<td>39.6 ± 11.6/18–65</td>
<td>17.8 ± 7.7 (based on consumption 1 month before quitting)</td>
</tr>
<tr>
<td></td>
<td>MNWS-R and 8-item version Sweeney et al., 2017</td>
<td>Longitudinal</td>
<td>Italian</td>
<td>Italy</td>
<td>General population</td>
<td>366 (133 for test-retest)</td>
<td>40.7/59.3</td>
<td>34.00 ± 11.29</td>
<td>13.0 ± 7.0 (in supplementary materials)</td>
</tr>
<tr>
<td></td>
<td>MNWS 9-item version Kim et al., 2007</td>
<td>Cross-sectional</td>
<td>Korean</td>
<td>USA</td>
<td>Immigrants</td>
<td>118 (93 for test-retest)</td>
<td>100/0</td>
<td>42.11 ± 10.42/20–63</td>
<td>5.0 (SD NS) (current smokers, asked to rate themselves based on the time not smoking)</td>
</tr>
<tr>
<td></td>
<td>MNWS 9-item version Blebil et al., 2014</td>
<td>Cross-sectional</td>
<td>Malay</td>
<td>Malaysia</td>
<td>Smokers who attended the Quit Smoking Clinic at Penang General Hospital</td>
<td>133 (75 for test-retest)</td>
<td>99.2/0.8</td>
<td>47.7 ± 14.0/18–76</td>
<td>14.92 ± 9.10 (more than 77% of sample had not attempted quitting previously)</td>
</tr>
</tbody>
</table>

Abbreviations: F: female; M: male; MNWS: Minnesota Nicotine Withdrawal Scale; MNWS-R: Minnesota Nicotine Withdrawal Scale revised version; NS: not specified in this paper; SD: standard deviation.
Most subjects reported previous attempts to quit, except in the Malay sample (Blebil et al., 2014), where 77% of the subjects had not attempted to quit previously.

All studies were run with moderate smoker samples, on average, except for the study involving Koreans living in the US, which had recruited light smokers (Kim et al., 2007). In comparison, the original MNWS was developed with heavy smokers (Hughes & Hatsukami, 1986). Mean participant age ranged from 34 to 47.7 years. Men were predominant in all studies except in that in Italy, where women were slightly preponderant (59%) (Svicher et al., 2017).

Translation process. All four papers provided a description of the translation process used to develop each translation (Table 11). Only the Korean version (Kim et al., 2007) presented a brief report of the difficulties encountered and solutions found. References to guidelines or recommendations were given for all translations except for the Italian version (Svicher et al., 2017). Descriptions of the translation process were detailed for all translations except the Chinese version (Yu et al., 2010).

Measurement properties. Table 12 reports the measurement properties explored for each translation. All translations were assessed for structural validity, with a one-factor structure reported for the Italian MNWS eight-item version (Svicher et al., 2017) and the Malay nine-item version (Blebil et al., 2014).

A two-factor structure was reported for the Chinese version of the MNWS nine-item version (Yu et al., 2010) and the Korean nine-item version (Kim et al., 2007). The structure of the Chinese version was identical to the two-factor structure of the original version reported by Cappelleri et al. (2005): negative effect (F1, four items: depressed mood; irritability, frustration, or anger; anxiety; and difficulty concentrating), insomnia (F2, two items: difficulty going to sleep and difficulty staying asleep), and three single items (craving, restlessness, and increased appetite). A review of the items showed a slight discrepancy in those used as originals, with impatience listed in the Korean version but not in the Chinese, where insomnia represents two items (difficulty going to sleep and difficulty staying asleep). For the Korean version, F1 represented early-occurring disorders in mental functioning, and F2 represented disorders in physiological functioning and late-occurring disorders in mental functioning (i.e., increased appetite, disturbed sleep, depression, and impatience), explaining 66% of the variance. A two-factor structure was also reported in the Italian MNWS-R.

Internal consistency was explored for all translations, with Cronbach’s alpha values of 0.85 (Italian MNWS eight-item version) and 0.91 (Malay nine-item version) reported for the monofactorial structure. In comparison, the Cronbach’s alpha values of the original eight-item MNWS explored by Toll et al. (2007) were 0.80 (abstinence study), 0.83 (framing study), and 0.82 (naltrexone + patch study) at the initial time point after quitting. Internal consistency was not evaluated by Jorenby et al. (1996). With regard to the bifactorial structure, only a global alpha value was provided for the Chinese version (0.90). Cappelleri et al. (2005) reported alpha values ranging from 0.76 to 0.87 for the negative domain and 0.71 to 0.83 for the insomnia domain in the studies and time assessed.

Measurement equivalence using DIF was never assessed.

In total, 75% percent of the translations (3 of 4; Italian, Korean, and Malay) were assessed for test-retest reliability, with coefficients ranging from 0.51 (Kim et al., 2007) to 0.88 (Blebil et al., 2014) and intervals from 1 (Blebil et al., 2014; Kim et al., 2007) to 3 (Svicher et al., 2017) months.

Correlations with consumption patterns and biomarkers were reported for three translations: Chinese, Italian, and Malay. Correlations with self-reported measures of dependence, craving, and anxiety were explored for all translations (Table 12).

Responsiveness to change, predictive validity, sensitivity, and specificity were not assessed.

Discussion

Given the globalization of tobacco research and control, we expected to retrieve more than 25, 9, 4, and 1 translations—documented with measurement properties—of the FTND, QSU/QSU-b, MNWS, and MNWS-R, respectively. A search on the Patient-Reported Outcome Quality Of Life Instrument Database (PROQOLID™; https://eprovide.mapi-trust.org/) reveals that there are 19 translations available for the QSU-b and 12 for the MNWS-R. No information was retrieved for the FTND, as it is not listed or documented on PROQOLID™.

- Among the 19 QSU-b translations listed on PROQOLID™ and indicated as translated by Mapi, we found two versions overlapping with our research (i.e., the Dutch and Spanish versions for Spain), indicating that there are at least two versions of the QSU-b in those languages. PROQOLID™ does not mention whether those 19 translations have undergone any evaluation of their measurement properties. Our review found three translations of the QSU-b (Chinese, Dutch, and Malay) and one Spanish version derived from the Spanish QSU, with content different from the original QSU-b.

- A review of the information on the Vermont University website reveals the existence of seven translations of the MNWS (nine-item versions: Chinese, Czech, Dutch, Japanese, and Korean; 11-item version: Arabic; 14-item version: Portuguese) and five of the MNWS-R (Bosnian, German, Italian, Russian, and Spanish), all listed under the acronym of MNWS. A comparison of the information on PROQOLID™ and the Vermont University website reveals no overlap for the MNWS-R translations, raising the number to 17 translations available. Our review found only one MNWS-R translation (Italian) with documented measurement properties.
<table>
<thead>
<tr>
<th>Language/country study</th>
<th>Conceptual evaluation</th>
<th>FT step (people involved in the process and number of FTs)</th>
<th>Consensus on the FT step to produce one FT (people involved in the process)</th>
<th>BT step (people involved in the process and number of BTs)</th>
<th>Reconciliation/consensus (people involved in the process)</th>
<th>Pilot/test (people involved in the process)</th>
<th>Report (i.e., description of issues, changes made for cultural, semantic, or syntactic reasons)</th>
<th>Reference (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese/China Yu et al., 2010</td>
<td>✓ (called preparation)</td>
<td>✓ (NS)</td>
<td>✓ (NS)</td>
<td>✓ (NS)</td>
<td>✓ (23 subjects)</td>
<td>No</td>
<td>No</td>
<td>Wild et al., 2005</td>
</tr>
<tr>
<td>Italian/Italy Svicher et al., 2017</td>
<td>No</td>
<td>✓ (two independent English lecturers; 2 FT)</td>
<td>✓ (NS)</td>
<td>✓ (another bilingual expert; 1 BT)</td>
<td>✓ (NS)</td>
<td>✓ (10 healthy volunteers)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Korean/USA Kim et al., 2007</td>
<td>?*</td>
<td>✓ (1st and 3rd authors of paper, native Korean speakers; 2 FT)</td>
<td>✓ (same as that for FT)</td>
<td>✓ (two research assistants, native English speakers; 2 BT) – 2 rounds of BT</td>
<td>✓ (expert review by 10 Korean American professionals in behavioral health)</td>
<td>No</td>
<td>Item 2: the Korean word shyn-kyung-jil-juck-im used for “irritability” was changed to zta-seung-nam after the panel review. Most of the members stated that the first Korean word was too strong to translate “irritability” because it is often used to describe a person with emotional instability. Item 5: “restlessness” was translated as an-jul-boo-jul-mot-haam; which was then translated back to agitation or feeling unstable.</td>
<td>Flaherty et al., 1988</td>
</tr>
<tr>
<td>Malay/Malaysia Blebil et al., 2014</td>
<td>?*</td>
<td>✓ (two University lecturers, native Malaysian speakers; 2 FT)</td>
<td>✓ (two authors of the manuscript)</td>
<td>✓ (one translator, native Malay, proficient in English; 1 BT)</td>
<td>✓ (NS)</td>
<td>✓ (20 smokers)</td>
<td>No</td>
<td>Guillemin et al., 1993; 1993; Wild et al., 2005</td>
</tr>
</tbody>
</table>

Abbreviations: BT: backward translation; FT: forward translation; NS: not specified.
*: Not clearly specified in the paper, but recommended in quoted guidelines; **: Translation Process referred to as Linguistic Validation Process.
<table>
<thead>
<tr>
<th>Measure language / country of study</th>
<th>Reliability</th>
<th>Validity</th>
<th>Correlations of total score/factors score with other measures assessing similar or dissimilar constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNWS 9-item version Chinese / China</td>
<td>Yes</td>
<td>α = 0.9 (alpha for each factor not provided)</td>
<td>Two factors + 3 individual items (CTT): same as in Cappelleri et al., 2005. F1: Negative effect (depressed mood; irritability, frustration, or anger; anxiety; difficulty concentrating) F2: Insomnia (difficulty going to sleep; difficulty staying asleep) Single items: Craving, restlessness, and increased appetite ITC: r = 0.54 to 0.85</td>
</tr>
<tr>
<td>MNWS 8-item version & MNWS-R Italian / Italy</td>
<td>Yes</td>
<td>α = 0.85</td>
<td>Patient-evaluated discomfort scores: r = 0.68</td>
</tr>
</tbody>
</table>

Table 12. Measurement properties of the translations of the Minnesota Nicotine Withdrawal Scale (MNWS)/MNWS-revised (MNWS-R).

<table>
<thead>
<tr>
<th>Reliability</th>
<th>Validity</th>
<th>Correlations of total score/factors score with other measures assessing similar or dissimilar constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal consistency Cronbach’s alpha</td>
<td>Structural validity Factor analyses (EFA, CFA) ITC IRT</td>
<td>Correlations with biomarkers or consumption patterns</td>
</tr>
</tbody>
</table>

- **Reliability:**
 - Test–retest Correlation coeff +
 - Inter-rater Correlation coeff +
 - number of raters

- **Validity:**
 - Reliability
 - Validity
 - Structural validity
 - Factor analyses (EFA, CFA) ITC IRT
 - Correlations with biomarkers or consumption patterns
 - Correlations of total score/factors score with other measures assessing similar or dissimilar constructs

- **Measure language / country of study:**
 - MNWS 9-item version Chinese / China
 - Yes
 - MNWS α = 0.9 (alpha for each factor not provided)

- **Translation process described in paper:**
 - Yes

- **Internal consistency Cronbach’s alpha:**
 - MNWS-R α = 0.87 (F1: 0.86, FI: 0.64)
 - MNWS Test-retest: r = 0.59 3 months
 - MNWS-R Test-retest total score: r = 0.60 F1: r = 0.59; F2: r = 0.45 3 months
 - MNWS: one factor ITC: r > 0.30
 - MNWS-R: two factors F1: Psychological symptoms (10 items) F2: Somatic features (5 items) ITC r > 0.30 (except for sore throat r = 0.27)

- **Structural validity Factor analyses (EFA, CFA) ITC IRT:**
 - Two factors + 3 individual items (CTT): same as in Cappelleri et al., 2005.
 - F1: Negative effect (depressed mood; irritability, frustration, or anger; anxiety; difficulty concentrating)
 - F2: Insomnia (difficulty going to sleep; difficulty staying asleep)
 - Single items: Craving, restlessness, and increased appetite
 - ITC: r = 0.54 to 0.85

- **Correlations of total score/factors score with other measures assessing similar or dissimilar constructs:**
 - MNWS SCS: r = 0.69 SCS craving: r = 0.34 SCS abstinence: r = 0.61 FTCD: r = 0.29 ASI-3: r = 0.53 ASI-3 physical concerns: r = 0.41 ASI-3 mental concerns: r = 0.44 ASI-3 social concerns: r = 0.42 PANAS negative affect: r = 0.54 AUDIT: r = 0.29
 - MNWS-R SCS: r = 0.56 (F1: 0.62; F2: 0.22) SCS craving: r = 0.34 (F1: 0.32; F2: 0.18) SCS abstinence: r = 0.55 (F1: 0.62; F2: 0.20) FTCD: r = 0.25 (F1: 0.25; F2: 0.17) ASI-3: r = 0.56 (F1: 0.55; F2: 0.40) ASI-3 physical concerns: r = 0.47 (F1: 0.44; F2: 0.38) ASI-3 mental concerns: r = 0.45 ASI-3 social concerns: r = 0.38 (F1: 0.35; F2: 0.31) PANAS negative affect: r = 0.57 (F1: 0.57; F2: 0.27) AUDIT: r = 0.29 (F1: 0.28; F2: 0.22)
<table>
<thead>
<tr>
<th>Measure language / country of study</th>
<th>Reliability</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure language / country of study</td>
<td>Translation process described in paper</td>
<td>Internal consistency Cronbach’s alpha</td>
</tr>
<tr>
<td>MNWS 9-item version Korean / USA Kim et al., 2007</td>
<td>Yes</td>
<td>α = 0.88 (F1: 0.88, F2: 0.79)</td>
</tr>
<tr>
<td>MNWS 9-item version Malay / Malaysia Blebil et al., 2014</td>
<td>Yes</td>
<td>α = 0.91</td>
</tr>
</tbody>
</table>

Abbreviations: ASI-3: Anxiety Sensitivity Index-3; AUDIT: Alcohol Use Disorder Identification Test; CI: confidence interval; cig.: cigarettes; CO: carbon monoxide; Coeff.: coefficient; CTT: classical test theory; FTCD: Fagerström Test for Cigarette Dependence; F1: factor 1; F2: factor 2; FTND-M: Malay version of the Fagerström Test for Nicotine Dependence; ICC: intraclass coefficient; IRT: item-response theory; ITC: item-to-total correlation; ns: not significant; PANAS: Positive and Negative Affect Schedule; SCS: Smoker Complaint Scale; SERS: Self-Efficacy in Resisting Smoking Scale
Overall, our review showed that the process used to elaborate the translations of the FTND, QSU/QSU-b, and MNWS/MNWS-R is not standardized and is not always documented. This could prove to be a challenge if the US FDA CTP aligns any future guidance with the 2009 patient-reported outcome (PRO) guidance published by the US FDA Center for Drug Evaluation and Research (CDER) (US Department of Health and Human Services, 2009). Appendix VIII of this PRO guidance outlines that all translation documents should be provided for CDER review. This includes a report on the process(es) used and challenges encountered during the translation process, especially during testing of the translation on the target population.

There is a great heterogeneity in the populations recruited for each study, in terms of sample characteristics (e.g., sex [samples with mixed sexes or a majority of male subjects], age, or level of cigarette consumption [light to heavy smokers]). In addition, depending on the objectives of the research teams, not all properties are explored for each language. Our review showed that most of the translations have measurement properties similar to their original versions.

Results concerning the MNWS might be found to be problematic as the number of items used are different across the languages (e.g., eight for Italian vs. nine for Chinese, Korean, and Malay), and there is variation in which items are included, making it impossible to compare scores across studies. Translations of the FTND revealed the same concerns about the structural validity of the original version (mono vs. bifactorial), low internal consistency (except for some versions (de Meneses-Gaya et al., 2009; Osório Fde et al., 2013), and validity of Q3 (hated the most to give up). Those translation measurement outcomes questioning the validity of the original instrument may raise questions about the need to modify the content of the original. In this context, there is a well-known precedent: The International Quality of Life Assessment Project (Aaronson et al., 1992) is a notorious example of the development of translations of a PRO measure (i.e., the Short Form-36 [SF-36] Health Survey, which led the developer to change the original US instrument). The development and validation of the translated versions contributed to improvements in item wording and response categories and to the creation of the SF-36v2 Health Survey (Ware, 2007).

Our review showed that cross-cultural validity is rarely explored. Measurement equivalence using an IRT-based approach for examining DIF is almost never applied. This is a concern, as it might make it difficult to know if the scores obtained with the translations of these measures are comparable across languages and cultures and whether or not it is relevant to aggregate data from studies conducted in different countries. Based on their extensive experience in cross-cultural evaluation, researchers from the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Group have suggested that DIF should be part of the validation of questionnaire translations (Petersen et al., 2003; Scott et al., 2006; Scott et al., 2009). In their research, DIF analyses were conducted to identify items answered differently by language administration, reflecting either linguistic issues (e.g., imperfect translation) or cultural differences. Overall, they showed that, although most of the EORTC QLQ-C30 items seemed to have good linguistic equivalence, several scales presented highly conflicting results for some translations. They implied that some of these effects might be substantial enough to affect the outcomes of clinical studies, as translation differences in an item could result in clinically important differences at the scale score level.

Finally, our review showed that none of the translations has been validated with candidate MRTPs, indicating that more research is needed to comply with regulatory recommendations on the development of self-reported measures for use in labeling claims (US Department of Health and Human Services, 2009).

The main limitation of our research lies in its descriptive design. We did not provide insights on the quality of the translated versions (i.e., ratings on the translation process and the quality of the measurement properties) (Schellingerhout et al., 2011; Thoomes-de Graaf et al., 2016). Further research is needed to critically appraise the quality of the translations and guide researchers in their search for the best translation for their studies.

These results showing (1) discrepancies between the number of translations available, with and without documented information about their measurement properties, (2) heterogeneity in the scope of measurement properties explored and in the characteristics of the samples recruited, and (3) lack of validation with TNPs other than conventional cigarettes raise the need for generating a new initiative with two main goals (i.e., information and development).

First, implementation of a centralized repository for measurement instruments (original version and translations) with a licensing structure (endorsed by the developers of the originals) would enable researchers to have access to the most up-to-date information about measures (i.e., development story and psychometric properties). By identifying existing translations and documenting them, this implementation might also help prevent the development of multiple translations for the same language and avoid concerns about which translation to use (Anfray et al., 2009). Furthermore, engaging the developers of the original versions in this process might help protect the integrity of each measurement instrument included (Anfray et al., 2018).

Second, if the original versions and translations of these measures are not appropriate for candidate MRTPs, fit-for-purpose measurement instruments (i.e., concept-driven instruments providing interpretable outcomes for the intended purpose) should be developed to enable comparison of combustible and noncombustible products on the same risk continuum. A similar initiative was launched several years ago, which led to the development of the ABOUT™ Toolbox (Assessment of
Behavioral outcomes related to Tobacco and nicotine products (Chrea et al., 2018). The measurement instruments included in this Toolbox are at different degrees of development. With their dissemination on ePROVIDE™, researchers will be able to use instruments that are (1) developed and validated with state-of-the-art scientific methods to be psychometrically sound, straightforward to implement in clinical and population-based studies, and easy to interpret; (2) created to be relevant and applicable across the whole spectrum of TNPs and across various populations; and (3) designed to enhance standardization and comparison of data on perception and behaviors toward MRTPs across academic, industry, and public health research communities.

Data availability

Underlying data

All data underlying the results are available as part of the article and no additional source data are required.

Extended data

This project contains the following extended data:

- Supplementary file 1: List of the 193 references retrieved during the literature search.
- Supplementary file 2: Tables presenting detailed information on the FTND translations.
- Table S2.1. Sociodemographic/design characteristics and targeted country/language of studies evaluating the measurement properties of the translations.
- Table S2.2. Description of translation processes used (steps and people involved if mentioned) for the FTND translations.
- Table S2.3. Measurement properties of the translations of the FTND.

Reporting guidelines

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Author contributions

CA, CC and NM conceived the idea of the manuscript. CDG performed the literature search. CA and CDG reviewed the abstracts and selected the articles for review. CA developed and drafted the manuscript. CC, CDG, MH, NM, and RW reviewed critically the manuscript. All authors read and approved the final version of the manuscript.

References

Carmo JT, Pueyo AA: Adaptação do português do Fagerström test for nicotine

Reference Source

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Cicconelli RM: Tradução para o português e validação do questionário genérico de avaliação de qualidade de vida “medical outcomes study 36-item short-form health survey (SF-36)” [Tese de Doutorado]. São Paulo, Brazil: Escola Paulista de Medicina, Universidade Federal de São Paulo. 1997.

Reference Source

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text

Published Abstract

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text

Reference Source

Published Abstract | Publisher Full Text

Published Abstract | Publisher Full Text | Free Full Text

Published Abstract | Publisher Full Text | Publisher Full Text

Publisher Full Text

Published Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text

Reference Source

Publisher Full Text

Publisher Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Reference Source

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Reference Source

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

PubMed Full Text

Reference Source

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

PubMed Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text | Free Full Text

Publisher Full Text

PubMed Abstract | Publisher Full Text

Publisher Full Text

Reference Source

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com