SOFTWARE TOOL ARTICLE

Profile Comparer Extended: phylogeny of lytic polysaccharide monooxygenase families using profile hidden Markov model alignments [version 1; peer review: 1 approved, 2 approved with reservations]

Gerben P. Voshol¹,², Peter J. Punt¹,², Erik Vijgenboom ¹

¹Department of Microbial Biotechnology and Health, Institute of Biology Leiden, Leiden, 2333BE, The Netherlands
²Dutch DNA Biotech B.V., Utrecht, 3584CH, The Netherlands

Abstract
Insight into the inter- and intra-family relationship of protein families is important, since it can aid understanding of substrate specificity evolution and assign putative functions to proteins with unknown function. To study both these inter- and intra-family relationships, the ability to build phylogenetic trees using the most sensitive sequence similarity search methods (e.g. profile hidden Markov model (pHMM)-pHMM alignments) is required. However, existing solutions require a very long calculation time to obtain the phylogenetic tree. Therefore, a faster protocol is required to make this approach efficient for research. To contribute to this goal, we extended the original Profile Comparer program (PRC) for the construction of large pHMM phylogenetic trees at speeds several orders of magnitude faster compared to pHMM-tree. As an example, PRC Extended (PRCx) was used to study the phylogeny of over 10,000 sequences of lytic polysaccharide monooxygenase (LPMO) from over seven families. Using the newly developed program we were able to reveal previously unknown homologs of LPMOs, namely the PFAM Egh16-like family. Moreover, we show that the substrate specificities have evolved independently several times within the LPMO superfamily. Furthermore, the LPMO phylogenetic tree, does not seem to follow taxonomy-based classification.

Keywords
LPMO, HMM, Hidden Markov Model, Lytic Polysaccharide Mono-oxygenase, phylogeny
Corresponding author: Erik Vijgenboom (vijgenbo@biology.leidenuniv.nl)

Author roles: Voshol GP: Conceptualization, Data Curation, Formal Analysis, Investigation, Software, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Punt PJ: Writing – Review & Editing; Vijgenboom E: Project Administration, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The Netherlands Organisation for Scientific Research (NWO) supported this research in the framework of an ERA-IB project FilaZyme (053.80.721/EIB.14.021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Voshol GP et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Voshol GP, Punt PJ and Vijgenboom E. Profile Comparer Extended: phylogeny of lytic polysaccharide monooxygenase families using profile hidden Markov model alignments [version 1; peer review: 1 approved, 2 approved with reservations] F1000Research 2019, 8:1834 (https://doi.org/10.12688/f1000research.21104.1)

First published: 31 Oct 2019, 8:1834 (https://doi.org/10.12688/f1000research.21104.1)
Introduction
Renewable feedstocks, such as wheat straw, rice straw and other agricultural waste residues are used by the biotechnology for the production of sugars and value-added products. One of the first steps in this process is the enzymatic breakdown of these raw materials into smaller building blocks. For this, hydrolytic enzyme cocktails are extensively used. However, some biopolymers are resistant to complete enzymatic degradation by available enzyme cocktails. Lytic polysaccharide monoxygenases (LPMOs) are a relatively new class of metalloenzymes that can perform oxidative cleavage and aid breakdown by conventional hydrolytic enzymes (Harris et al., 2010; Vaaje-Kolstad et al., 2010).

Currently there are seven families of LPMOs defined in the Carbohydrate–Active Enzymes database (CAZy) (Lombard et al., 2014), namely the auxiliary activity families AA9 (formerly GH61), AA10 (formerly CBM33), AA11 (Hemsworth et al., 2014), AA13 (Vu et al., 2014), AA14 (Couturier et al., 2018), AA15 (Sabbadin et al., 2018; Voshol et al., 2017) and AA16 (Filiatrault-Chastel et al., 2019; Voshol et al., 2017). Although identifying members belonging to these known families is relatively easy, it is more difficult to identify members belonging to potentially novel LPMO families (Lo Leggio et al., 2015), given the very low level of overall sequence similarity between LPMO families. Therefore, we developed a profile hidden Markov model (pHMM) and used it to mine several genomes for new LPMO families (Voshol et al., 2017). pHMM-sequence searches are sensitive enough to identify putative LPMOs, but they are not suitable to establish the evolutionary relationship between these LPMOs. For example, a pHMM build from an alignment of AA13s was only able to identify AA13s (Lo Leggio et al., 2015) indicating that a more sensitive approach is necessary to build a phylogeny for all LPMOs.

pHMM-pHMM alignments are the most sensitive for this purpose (Sadreyev & Grishin, 2008; Söding, 2005). In 2017, Huo and colleagues developed a pHMM phylogenic tree approach and used it to study the evolutionary relationship of CAZy protein families with pHMM-pHMM alignments (pHMM-tree; Huo et al., 2017). Unfortunately, due to the exponential time required for generating the distance matrix and the tree, the number of pHMMs which can be included in the phylogenetic tree is limited (max 500). Therefore, this program is not applicable to study the relationship of proteins within large families.

In this study we apply both pHMM-sequence searches and pHMM-pHMM alignments to gain a deeper understanding of LPMO domain organization and phylogeny. To overcome the limitations of pHMM-tree, we extended the original ProfileComparer program (PRC; Madera, 2008) for the construction of large pHMM phylogenetic trees (>1800 HMMs) and added several additional capabilities. The resulting program, named PRCx (PRC eXtended) is several orders of magnitude faster than pHMM-tree and was used to reveal both the inter- and intra-family LPMO evolutionary relationship. Moreover, using PRCx, we were also able to reveal a previously unknown distantly related member of the LPMO superfamily.

Methods
To create the initial LPMO dataset (See Figure 1), the UniprotKB database (downloaded on 18-10-2017) was searched for 10 iterations using a truncated version (containing only the “core” LPMO domain, see Figure 2) of the previously published pHMM (Voshol et al., 2017). This core LPMO pHMM has a total model length of 165, starting at the N-terminal histidine, that makes up part of the histidine brace, up to a relatively well conserved threonine. With the aim to analyze proteins related to LPMOs an E-value of 1 was used. It is possible to extend

Figure 1. Flow chart indicating the steps in using PRCx. The steps are as follows. Create a sequence database, cluster sequences and construct alignments from them. Convert these alignments to pHMMs and construct the tree. The resulting tree can be used for example to identify relatives, extract sequences from a clade and mine determine their accessory domains or perform structural alignments to identify important residues.
the dataset with another ~20% using an E-value of 1000 at the
expense of increasing the number of unrelated hits (Wistrand &
Sonnhammer, 2005).

After generating the initial dataset, the taxonomic distribution
and the presence of accessory domains were analyzed using the
HMMER web server (Potter et al., 2018). The sequences were
retrieved and a non-redundant dataset was created by cluster-
ing sequences at a 100% sequence identity using the CD-HIT
toolset (Fu et al., 2012; Li & Godzik, 2006). The non-redundant
dataset was subsequently clustered at 70% sequence identity and
sequences contained within those clusters were grouped into
their respective fasta files. Fasta files containing two or more
sequences where aligned using the kalignP alignment program
(Lassmann et al., 2009; Shu & Elofsson, 2011) and pHMMs
were built using HMMer 3.0 (Eddy, 2011). This resulted in
1828 pHMMs and 2296 singletons (sequences which did not
cluster at 70% identity with any other sequence). PHMMs from
dbCAN2 and PFAM protein families were downloaded from their
respective web servers (El-Gebali et al., 2019; Yin et al., 2012;
Zhang et al., 2018). PRCx was used to search for distantly related
LPMO PFAM protein families that were used as an outgroup
during the tree building stage (see Results for more details).

Implementation
Several new features were added to the original PRC program
(Madera, 2008), including the ability to (i) use HMMer3.0
pHMM files, (ii) build pHMM using single or aligned fasta
files, (iii) speed up pHMM-pHMM searches using prefiltering
and (iv) generate a PHYLIP compatible distance matrix and
associated UPGMA Newick formatted phylogenetic tree
(Felsenstein, 1989).

The original PRC program has the ability to, amongst oth-
ers, load SAM3, HMMer2 and PSI-Blast profile files (Madera,
2008). However, since the release of the original PRC pro-
gram in 2008, a new version of HMMer was released in 2011
(Eddy, 2011). Soon thereafter, public databases such as PFAM
and dbCAN updated to the newer HMMer version. Since this format is used so extensively, we added support for HMMer3.0 pHMM files to PRC.

To facilitate both pHMM building and fast prefiltering, support for sequence context-specific pseudocounts was added. The idea behind context-specific pseudocounts is that the local environment around an amino acid determines what mutations can occur at that particular amino acid location (Overington et al., 1992). This rationale has been applied in numerous programs to increase the sensitivity of protein-protein alignments (Gambin et al., 2002; Huang & Bystroff, 2006; Jung & Lee, 2000). For PRCx we implemented the context-specific pseudocount method for the context-specific BLAST program (Biegert & Söding, 2009).

An additional advantage of implementing support for context-specific libraries is the ability to reduce the amino acid probability vectors of a pHMM to a discretized alphabet. This was achieved by the same method as used by HHblits to translate the amino acid profiles to 219 distinct letters (Remmert et al., 2011). Subsequently a mutational substitution matrix was calculated and used together with a fast implementation of the Single-Instruction-Multiple-Data Smith-Waterman algorithm (Zhao et al., 2013; Remmert et al., 2011).

The final noteworthy feature is the ability to create a distance matrix by comparing all the pHMMs in a library of pHMMs against each other and determining the simple co-emission score (Madera, 2008). This score is converted to a distance score identical to the algorithm as used by the pHMM-tree program (Huo et al., 2017). The resulting distance matrix is saved in a PHYLIP-compatible file and used to build an unweighted pair group method with arithmetic mean (UPGMA)-based phylogenetic tree. This means that given identical input pHMMs, trees generated using pHMM-tree and PRCx are identical. This was manually validated for a tree generated using the top 248 pHMMs out of the total 1828 pHMMs generated using both PRCx and pHMM-tree. In our implementation, the most time-consuming step was the UPGMA clustering. Therefore, we adapted the fast $O(n^2)$ algorithm as implemented in the MUSCLE and Clustal Omega alignment programs (Edgar, 2004; Sievers et al., 2011).

Operation
The PRCx program was developed and tested using both GNU/Linux (Ubuntu version 18.04) and MacOSX (version 10.14.5). The computer system used for testing contained an Intel Core i5 with 8 GB of memory.

Results
The initial sequence dataset was created by iteratively searching the UniprotKB database using the Jackhmmer program and our previously published LPMO pHMM (Johnson et al., 2010; Voshol et al., 2017). After 10 iterations, 12819 non-redundant putative LPMO sequences were identified. The resulting refined pHMM (Figure 2) clearly shows several residues that have a high informational content (i.e. conserved residues). Not surprisingly, these residues include the two histidines that form the essential copper binding histidine brace (Aachmann et al., 2012; Chaplin et al., 2016; Gudmundsson et al., 2014; Hemsworth et al., 2013). Another conserved feature is the N/Q/E-x-F/Y/(W) motif, which was previously used to mine for novel starch active LPMOs (Vu et al., 2014). Finally, there are two conserved cysteines and a proline. The proline is located distal from the active site therefore it is most likely important for structural reasons (Voshol et al., 2017).

Taxonomic occurrence and domain organization
After the initial dataset was created, the taxonomic occurrence and domain organization were analyzed using the HMMER web server (Potter et al., 2018). The dataset mainly contains sequences belonging to the domains of Eukaryota and Bacteria (98%) (Figure 3). Within the domain of Eukaryota, Fungi are by far the largest contributor of LPMO sequences (84%).

![Figure 3. Taxonomic occurrence of LPMO sequences mined.](Image)

From left to right, the first bar shows the distribution of the sequences according to their Domain, Eukaryota, Bacteria, Viruses, Others, indicated in percentages of total sequences. The following three bars indicate the distribution (in percentages) of sequences as a function of the total number of sequences in the Domain (indicated below the bar).
This is in line with the hypothesis that Fungi play a major role in the global carbon cycle and contain a large repertoire of carbohydrate-degrading enzymes (Benocci et al., 2017). Actinobacteria, proteobacteria and Firmicutes contribute most of the LPMO sequences (99%) within the domain of Bacteria. The sequences identified in viruses are predominantly from the Baculoviridae (65%) and Phycodinaviridae (28%). The only two Archaeal LPMO sequences that were found, both belong to the Euryarchaeota. Out of all the LPMO sequences identified, only 19% have known accessory, mainly carbohydrate binding, domains (Figure 4).

Phylogenetic tree

To gain a better understanding of LPMO evolution, Book et al. (2014) created two phylogenetic trees, one for the AA10s and one for the AA9s. With their approach, they were able to show that there are different clades within these two families and each clade has evolved a specific substrate and oxidation preference (e.g. C1, C4, C1/C4). However, their approach is not sensitive enough to show the relation between the different families of LPMOs, therefore we undertook the construction of a comprehensive phylogenetic tree using the sensitivity of pHMM alignments.

Before building the LPMO tree, we searched PFAM for related families of the core LPMO HMM to find an appropriate outgroup (starting point of the tree). As expected, the PFAM LPMO_10 (PF03067) and GH61 (PF03443) families were identified as close relatives. Surprisingly, we were also able to identify one distantly related family, namely the PFAM Egh16-like family, formerly known as DUF3129 (PF11327; available from http://pfam.xfam.org). The homology between the Egh16-like family and the LPMO family is in part due to the histidine located at the third position of the PFAM HMM, which in the LPMO family is part of the histidine brace. It should be noted that the Egh16-like family HMM is presumably based on an incorrectly predicted signal peptide cleavage site, resulting in the conserved histidine not being the first residue of the PFAM model. When examining several sequences within the Egh16-like family, the latest version of SignalP predicts the signal peptide cleavage site right before the histidine (Almagro Armenteros et al., 2019). Unlike the LPMO family however, the Egh16-like family does not appear to have a second histidine (forming the histidine brace), but instead contains a conserved aspartic acid. The Egh16-like family is restricted to Fungi and proteins within this family might play an important role in pathogenic fungi in the early stages of plant and insect infection (Xue et al., 2002).

After the outgroup was identified, the LPMO phylogenetic tree was built as follows. The original nonredundant dataset of 12,819 sequences was clustered at 70% homology (leaving 2296 sequences as singletons) and sequences contained within where aligned and used to build HMMs. Initially a small tree was constructed, containing a subset of 248 HMMs, using the pHMM-tree program (Huo et al., 2017). This process took 7.5 hours. Extrapolating this amount of time to the time required to make the entire tree (>1800 HMMs), would result in a tree construction time of 14 years. This is in line with the original paper describing pHMM-tree and its algorithm (Huo et al., 2017). As an alternative, it was decided to extend PRC to be able to make simple UPGMA phylogenetic trees. This resulted in PRCx, which was able to build the small tree (248 HMMs) in 0.5 hours and the final tree in approximately 20 hours. Which is a 15-6000x speed improvement versus the original pHMM-tree method (Figure 5).

The resulting tree was rooted using the Egh16-like family as an outgroup. A simplified representation is shown in Figure 6 and the entire tree is available as a searchable PDF (Figure S1) with sequence data (Table S1) (see Extended data; Voshol et al., 2019a). As can be seen from the tree, the AA9s are by far
Figure 5. The runtime of pHMM-tree (Huo et al., 2017), both simulated (based on pHMM-tree article in blue) and real (in orange), versus that of PRCx (gray). The X-axis indicates the number of pHMMs in the tree and the Y-axis is the runtime in seconds. For example, building a tree containing 248 pHMMs with pHMM-tree took 27,059 seconds (~7.5 hours), while building the same tree with PRCx took 1504 seconds (~25 minutes). The blue and grey lines are the estimated trend lines that best fits the data for pHMM-tree and PRCx, respectively.

Figure 6. Simplified LPMO phylogenetic tree and relative abundance of LPMO families. The initial non-redundant dataset was clustered at 70% sequence homology and each cluster resulted in a single alignment. PHMMs were build and a UPGMA tree was constructed using PRCx. The phylogenetic tree was subsequently rooted using the Egh16-like family as an outgroup.

The largest family (41%), followed by AA10s (27%), AA11s (14%), AA15s (7%), AA16s (4%), LPMO16s (4%), AA13s (1%) and AA14s (<0.5%). An additional 2% of HMMs branch off early in the LPMO tree before any of the known or putative LPMO families. The earliest branch splits into two branches, namely one strictly containing Egh16-like members and another which splits further and contains PFAM DOMON/EGF and LPMO_10 domain-containing sequences. The DOMON domain might play a role in metal or sugar binding and is often associated with redox enzymes (Iyer et al., 2007). A more detailed biochemical understanding of what the Egh16-like family does will shed a better light upon the possible relation of the Egh16-like, LPMO_10, DOMON and EGF domains.

When moving up the tree the first large branch contains the LPMO16s which were previously identified as putative LPMOs while mining genomes of filamentous Fungi (represented by An07g08250 in Aspergillus niger) (Voshol et al., 2017). This family is related to the AA16s (Filiatrault-Chastel et al., 2019; Voshol et al., 2017), AA14s (Couturier et al., 2018) and AA11s (Hemsworth et al., 2014). This suggests that the common ancestor of this branch evolved not only to oxidize cellulose (AA16s), but also xylan (AA14s) and even chitin (AA11s). A similar observation can be made for the next branch, which contains the AA15s and the AA13s. The AA15s were first identified in 2017 and later it was shown that they have the ability to cleave cellulose or chitin (Sabbadin et al., 2018; Voshol et al., 2017).
The AA13s were identified and characterized in 2014 and can cleave starch (Vu et al., 2014). Taken together, this suggests that ancestral LPMOs have evolved multiple times to oxidize a diverse range of substrates. The tree is completed with the large AA10 and AA9 family of LPMOs. The AA10 contains LPMOs which can cleave both cellulose and chitin, while the AA9 family contains members which can cleave cellulose or xylan. Similar to the observations by Book et al. (2014), clades within the AA9 and AA10 family appear to have a specific substrate and oxidation preference. However, only a tiny percentage of LPMOs have been characterized and even in these cases the measured enzyme activity may have been misinterpreted (Eijsink et al., 2019). This makes drawing general conclusions on functionality somewhat preliminary.

On closer examination, the AA9 clade also contains LPMOs which have either an arginine or a lysine instead of the N-terminal histidine (Yakovlev et al., 2012). An arginine containing LPMO has recently been characterized, but no activity was identified (Frandsen et al., 2019). The place of these LPMOs present in node 726 and 650 suggest that these LPMOs evolved relatively recently from “normal” histidine-containing AA9 LPMOs. It would therefore be interesting to see whether restoring the arginine or lysine to a histidine will result in active LPMOs.

Taxonomically, the LPMO subfamilies as we have classified them with PRCx, have a peculiar distribution different from either their substrate or taxonomic based classification. The subfamilies, AA9, AA11, AA13 and AA14 are mostly found in Fungi (>90% of LPMO sequences), the AA16 are found in both Fungi (82%) and Oomycetes (12%), while the AA10 are almost exclusively bacterial (99%) and the AA15 are mainly found predominantly in Metazoa (95%). The recently discovered LPMO16 are mostly found in Fungi (78%), but are also found in Metazoa (4%) and Oomycetes (6%). This observation suggests that LPMOs have found their true functional diversity in the fungal kingdom.

Use cases

After constructing the phylogenetic tree, it is possible to use it in several ways. For example, it is possible to search an unknown sequence against the pHMMs used for the tree building and discover to which LPMO subfamily and specific branch this protein belongs. This might give an indication of substrate specificity and oxidation preference that the newly discovered protein has.

It is also possible to extract sequences or pHMMs from the tree that belong to a specific LPMO subfamily or clade. These can subsequently be analyzed for the presence of specific accessory domains or domains of unknown function. This might also give an indication of localization or substrate preference. For example, after extracting all the AA15 pHMMs and searching them against the PFAM database using PRCx, it appears that some of the members have a fasciclin domain. This domain may be involved in cell adhesion, suggesting that some of these proteins are targeted to the cell membrane (Huber & Sump, 1994).

Lastly it is possible to take sequences belonging to one or several subtrees and align them using structural alignments. Using this approach, it is possible to get an indication of residues involved in substrate specificities or oxidation preference.

Conclusions

This is the first time that a phylogenetic tree showing both the intra- and inter-family relations of LPMOs is constructed. We believe that the new PRCx program will help researchers to determine where their LPMO is located in the phylogenetic tree, what the putative substrate specificities are and identify LPMOs with a yet unknown substrate specificity (e.g. the LPMO16s). Moreover, the PRCx program can also be applied to other large proteins families in which it can aid in discovering long distance evolutionary relations.

Data availability

Underlying data

All data underlying the results are available as part of the article and no additional source data are required.

Extended data

This project contains the following extended data:

- Figure S1 (searchable phylogenetic tree).
- Table S1 (sequence data used in this study).

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability

Source code for the PRCx program is available from: https://github.com/gerbenvoshol/PRCx.

License: GNU General Public License version 2.

References

Open Peer Review

Current Peer Review Status: ✔️ -question mark

Version 1

Reviewer Report 08 January 2020

https://doi.org/10.5256/f1000research.23227.r57830

© 2020 Kabel M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mirjam Kabel
Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands

The research describes the development of a sequence-model (profile hidden Markov model), which can be used to give insights into the inter- and intra-family relationships of protein families – based on their structure. The provided tool is, in particular, faster than the conventional tools to assess phylogenetic relationships.

A phylogenetic tree of over 10000 LPMO sequences was made to illustrate the usefulness of the LPMO-model developed. The authors show that their model indeed shows the expected AA families as listed in the CAZy database. But, what is less clear for me, is how could this LPMO-model be used to make phylogenetic trees within one AA family? The authors mention that their model has only a length of 165, starting from the N-terminal histidine. Others (various papers, please check) have shown that LPMO-segments important for substrate recognition, all neighboring the active site, are spread over the total sequence. Hence, using the 165 amino acids only would lack information of certain binding-segments. Do I understand correctly that such information cannot be picked up? I would appreciate if the authors can better highlight for which applications their pHMM-approach could be used and for which it would not be suitable.

As far as I can judge, still, the tool is an asset to make complex and more complete phylogenetic trees (more sequences) in a relatively short time. The research shown is relevant.

Overall, the manuscript is clearly written, although several choices made could have been explained better (see itemized points below).

- Abstract: please specify "speeds several orders of magnitude" to be more specific.
- Abstract: remove the last sentence, it is not relevant. Or explain.
- Intro: "aid breakdown by conventional enzymes". Not absolutely clear, please reformulate.
• Intro: "sequence similarity between LPMO families". The sequence similarities within for example the AA9 family is also rather low even. Add?

• Results: phylogenetic tree: The authors refer to a paper in which phylogenetic trees per AA family are described, and subsequently write that this approach was not sensitive enough to show the relationship between the different families. Are these two not based on completely different research questions? Instead of being not sensitive enough, could the authors rewrite this section to better highlight the value of trees within and between AA families and which tools/models are best to use?

• Figure 5: for clarity, the y-axes could be converted to minutes.

• Figure 6: the model seems to pick up well the large AA families (AA9 and AA10), but in some of the others extra branches appear (i.e. AA16 & LPMO16). Is this a ‘real’ branching or the result of using the short 165 amino acid model? Please discuss and explain the consequences in the manuscript.

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Enzyme conversion of plant biomass for food and biorefinery; LPMOs; lignin chemistry

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 30 Jan 2020

Erik Vijgenboom, Institute of Biology Leiden, Leiden, The Netherlands

Dear Dr. Kabel,
Thank you for taking the time to read and comment on our manuscript.

You are correct that the initial LPMO model contains only 165 match states. These states contain several aromatic amino acids which seems conserved within all LPMOs, but there is also for example a conserved proline distal from the active site necessary to maintain LPMO structure. This initial 165 state model was only used to mine LPMO sequences in the Uniprot database. For phylogenetic tree construction, sequences with 70% identity were clustered together and approximately 1800 HMMs were constructed from these sequences. These HMMs were subsequently used for phylogenetic tree construction. Therefore, conserved binding segments are present within the constructed HMMs.

The speed gain depends on the amount and the length of HMM sequences used. When comparing PRCx against pHMM-tree the small (248 HMMs) tree generation using PRCx is ~15x faster, while the final tree construction using ~1800 HMMs is roughly 6000x faster.

With the line “Furthermore, the LPMO phylogenetic tree, does not seem to follow taxonomy-based classification.”, we tried to indicate that different LPMO families are not restricted to a specific taxonomical class. For example, the AA15 LPMO family contains Fungi, Oomycetes and also Metazoa.

I'm afraid that converting from seconds to minutes does not improve Figure 5.

With "aid breakdown by conventional enzymes", we are referring to the synergy between LPMOs and hydrolytic enzymes.

You are correct in the observation that the sequence similarities within for example the AA9 family, is rather low. This is true when looking at all the sequences contained within these large families. However, a more detailed look at the subfamily sequences shows far less divergence.

We agree that the tools used depend on the research questions. The approach using pHMM-pHMM alignments is a good way to get a bird’s eye view of protein families and their inter-connectedness. However, it is not suitable for comparison of more closely related sequences. Therefore, sequences clustered closely in the tree should subsequently be analyzed with structural alignments to identify defining residues between these subfamilies.

As mentioned earlier, the initial 165 state model was only used to mine LPMOs. For the tree construction new HMMs were constructed (see earlier comments). Therefore, the distinct location of LPMO16 and AA16 are well supported. Whether the LPMO16 family actually contains active LPMOs still needs to be validated experimentally.

Competing Interests: No competing interests were disclosed.
The authors have developed a UNIX-based program to study the phylogeny of large groups of proteins focusing on LPMOs. The program is novel, performs faster and contains features that no other program currently contains.

The manuscript is written well, everything is clearly, accurately and sufficiently explained.

The methods used, prior art and references are addressed appropriately.

Specific comments and questions:
- LPMOs are a very interesting group of enzymes that have emerged as essential in degradation of biomass.
 The authors mention this briefly in their Introduction section (first paragraph).

How do the authors envisage the utility and impact of their program for people who work with LPMOs in the wet-lab (enzyme discovery and screening, for example)?

This should be reflected upon in the Conclusions section.
- The authors mention development of the program for UNIX-based platforms such as Linux and MacOS. Have they considered, or plan to implement an online solution? Without an online solution - the usefulness of the program will be severely limited. In addition, informing readers about how and when such a tool will be implemented, with a provisional online link (even if the implementation is not entirely completed) - will certainly increase the impact of the article.

I understand that most Linux code can be run on virtual machines, but from my experience - this is not necessarily accessible to people that are not bioinformaticians. Therefore, in order to make this tool useful for the scientific community - a user-friendly online solution would be highly recommended.

Could the authors comment, as well as include in the manuscript, their plans regarding such implementation?

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes
Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Analytical Chemistry, Bioconjugation Chemistry, Enzyme Screening, Enzyme Characterization, Chemoenzymatic Synthesis, Data Analysis, High-Throughput Screening, High-Throughput Data Analysis, Assay Development, Method Development

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 30 Jan 2020

Erik Vijgenboom, Institute of Biology Leiden, Leiden, The Netherlands

Dear Dr. Kračun,

Thank you for taking the time to read and comment on our manuscript.

We expect this tree to provide guidance to enzyme discovery by allowing an easy means to identify novel LPMOs and placing those with known activity into their respective subbranch. Other possible use cases are indicated in the “Use cases” section. This is actually nicely illustrated by a recent paper by Labourel *et al.* (2020, https://doi.org/10.1038/s41589-019-0438-8), describing one of the early LPMO branches showing in our tree.

We ourselves are interested in using the tree to get a better understanding of substrate evolution and stability and applying this knowledge for the industrial application of LPMOs.

We agree that having an online implementation of PRCx will increase its impact. However, we currently do not have the resources for such an endeavor. We would be willing to collaborate with interested parties to help to put PRCx into operation online.

Competing Interests: No competing interests were disclosed.
Miaomiao Zhou
School of Life Sciences, Avans University of Applied Sciences, Breda, The Netherlands

The authors have developed a program to study the phylogeny of large groups of proteins. This new method, named PRC Extended (PRCx), was applied on the lytic polysaccharide monoxygenase (LPMO) from over seven families. Conventional pHMM-pHMM methods failed to perform such a large construction due to the overwhelming calculation requirements. In this study, the authors used both pHMM-sequence searches and pHMM-pHMM alignments, they extended the original Profile Comparer program (PRC) and added several capabilities. It is plausible that the authors updated the popular original PRC program with the ability to load HMMer3.0 pHMM files, this is a very desired feature among the users of the original PRC program.

The authors applied PRCx on the large LPMO superfamily to study the inter and intra-family enzyme evolutionary relationship. This study was not feasible without the newly constructed PRCx program due to the large size of the superfamily. The PRCx program was able to build the phylogenetic tree for hundreds of HMMs within a few days, which is a huge improvement comparing to the original pHMM-based method.

During the preparation of the phylogenetic studies, the authors identified the PFAM LPMO_10 (PF03067) and GH61 (PF03443) families to be the in-groups. They also found PFAM Egh16-like family to be a distant relative of the LPMO family. They found the evidence to correct the mis-predicted cleavage site of the Egh16-like family PFAM HMM and used this family as the out-group for the study. The close examination of the resulting tree revealed several interesting features of the LPMO family. Many of these features point to potential experimental targets, for example, altering arginine, lysine and histidine in AA9 LPMOs might give impact on the activity level of the enzyme.

Last but not the least, it is interesting to notice that the core LPMO pHMM has a model length of merely 165. Would a much bigger pHMM model compromise the performance of PRCx? Considering the fact that the authors tested the PRCx program on a moderate computer of Intel Core i5 with 8 GB of memory, a high performance computer with more RAM might solve the problem?

As a researcher in the fields of applied Bioinformatics in biotechnology, I would recommend PRCx, together with the phylogenetic analysis of LPMO, to be published. The PRCx program will be a very useful tool to study big enzyme groups beyond the LPMO superfamily.

*availability: The authors have made their program available via github, the supporting data is all accessible via Zenodo.

Is the rationale for developing the new software tool clearly explained? Yes

Is the description of the software tool technically sound? Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Biotechnology, Machine learning, High dimensional statistics, Comparative genomics, Computational Biology, Evolutionary biology, High performance computing

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 Jan 2020

Erik Vijgenboom, Insitute of Biology Leiden, Leiden, The Netherlands

Dear Dr. Zhou,

Thank you for taking the time to review our manuscript.

You are correct in your observation that increased model length leads to decreased performance. Since HMMs tend to be short, the longest HMM in PFam is ~2000 match states long.

Memory in general is not the bottleneck. The HMM-HMM calculation is the limiting step. For tree building a relatively simple solution could be to implement multi-threading support using for example OpenMP and calculate the distance scores in parallel.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com