BRIEF REPORT

Identification of *Mycoplasma genitalium* from clinical swabs by direct PCR [version 1; peer review: awaiting peer review]

Robinson M. Irekwa¹, Perpetual Ndung'u², Peter Kipkemboi³, Tonny Teya³, Anne Wanjiru Mwangi³,⁴, Matthew Mutinda³, Caroline Njoroge³, Joanne Yego³, Irumva Vanessa¹, Samson Muuo Nzou³,⁵

¹Department of Molecular Biology and Biotechnology, Pan Africa University Institute of Basic Sciences, Technology and Innovation (PAUSTI-JKUAT), Juja, Kiambu, Kenya
²Department of Parasitology, Jomo Kenyatta University of Agriculture and Technology, Juja, Kiambu, Kenya
³Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute Project (NUITM-KEMRI-Project), Nairobi, Kenya
⁴Production Department, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
⁵Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan

Abstract

Mycoplasma genitalium is one of the smallest self-replicating organisms. It is an obligate parasite found in the human genital tract. In men, the bacteria cause both acute and chronic non-gonococcal urethritis (NGU). In women, it has been associated with pelvic inflammatory disease and cervicitis among other related infections. Treatment of *M. genitalium* related infections has been effective using antibiotics such as the macrolides (e.g. azithromycin) and fluoroquinolones. However, there have been recorded cases of resistance to these antibiotics in various parts of the world as a result of a mutation in the 23SrRNA gene, although the antibiotic resistance has not been well established. The aim of this study was to detect *M. genitalium* in 352 swab samples collected from a clinic for sex workers in Nairobi, Kenya. DNA was extracted from the swabs and stored as a crude extract at -31°C. The swab lysates were subjected to direct polymerase chain reaction using primers that specifically target the 16S rRNA gene for *M. genitalium*. A total of 29 samples tested positive for *M. genitalium*. The data results showed a *M. genitalium* prevalence of 8.24% among sex workers in Nairobi, Kenya.

Keywords

Direct PCR, Mycoplasma genitalium
Corresponding author: Robinson M. Irekwa (robinsonmugo@gmail.com)

Author roles: Irekwa RM: Conceptualization, Methodology; Ndung'u P: Supervision; Kipkemboi P: Methodology; Teya T: Investigation; Wanjiru Mwangi A: Investigation; Mutinda M: Investigation; Njoroge C: Investigation; Yego J: Investigation; Vanessa I: Investigation; Muuo Nzou S: Conceptualization, Supervision

Competing interests: No competing interests were disclosed.

Grant information: This project was funded by the Pan Africa University Institute of Basic Sciences, Technology and Innovation hosted at the Jomo Kenyatta University of Agriculture and Technology (PAUSTI-JKUAT) and Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute project (NUITM-KEMRI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Irekwa RM et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Irekwa RM, Ndung'u P, Kipkemboi P et al. Identification of Mycoplasma genitalium from clinical swabs by direct PCR [version 1; peer review: awaiting peer review] F1000Research 2019, 8:1993 (https://doi.org/10.12688/f1000research.21218.1)

Introduction

Mycoplasma genitalium is an emerging sexually transmitted disease that was first identified and isolated in 1980 from men with non-gonococcal urethritis (NGU). Its epidemiology in connection to other STI syndromes has been established since nucleic acid amplification assay development in the early 1990s. The bacteria have been detected in substantial amounts from men with urethritis and women with cervicitis. *M. genitalium* prevalence in the general population has been studied and found to be ranging between 1–3%.

M. genitalium is found in roughly 15% of men with NGU and in 22% of men with non-chlamydial NGU. However, the associated infections do not have unique clinical symptoms, making it difficult to use clinical signs as a mode of identification. Cervicitis has been detected as the female version of male urethritis. *M. genitalium* is found in 10% of women with cervicitis. Chlamydial coinfections in women with cervicitis are also common in some settings. *M. genitalium* is a fastidious bacterium and culturing of the bacterium is exhaustive and time consuming.

The introduction of polymerase chain reaction (PCR) assays has provided the necessary data for its clinical prevalence. Many assays have been developed for the detection of *M. genitalium* in human specimens. Most of these assays are mainly based on the PCR detection technique. Use of these PCR tests has shown that the disease spectrum is similar to those caused by *Chlamydia trachomatis* and *Neisseria gonorrhoeae* in both males and females. However, these assays differ in their target DNA sequences, specimen preparation and amplicon detection methods. Many of these detection methods target the 16S rRNA and the MgPu protein genes. Conventional and, more recently, real-time PCR assays have been applied. Most of the detection studies have been conducted in the U.S.A, Europe and Australia, with various strains being discovered. In line with the detection of the bacterial species and its related infections in Africa, more studies need to be conducted on possible strains and their epidemiology. Whether the bacteria have links with other sexually transmitted infections do not have unique clinical symptoms, making it difficult to use clinical signs as a mode of identification.

Table 1. Primer sequences.

<table>
<thead>
<tr>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG16-45F (TACATGCAAGTCGATCGGAAAGTAGC)</td>
<td>MG16-447R (AAACTCCAGCCATTGCCTGCTAG-3')</td>
</tr>
</tbody>
</table>

Methods

Ethical statement

This study was approved by the Jomo Kenyatta University of Agriculture and Technology Institutional Ethics Review Committee (JKUAT-IERC): reference number JKU/2/4/896B. The swab samples were collected with written informed consent for the performance of further analysis.

Source of samples

The samples used in this study were collected as part of the sex workers outreach program (SWOP) central business district clinic in Nairobi, Kenya. As part of this program, patients who showed STI symptoms and consented to the study were sampled by taking vaginal swabs. The specimens were then put into sterile containers and transported to the Pan Africa Hub Laboratory (NUITM-KEMRI) within an hour and stored at -80°C. Anonymized samples were retrieved for use in this study.

Sample preparation

The 352 swab lysates were prepared using the MightyPrep reagent for DNA (TAKARA BIO INC, Kusatsu, Shiga Prefecture, Japan; Cat No: 9182) using the manufacturer’s protocol with a slight modification. Swabs were cut and put into 1.5ml Eppendorf tubes. A total of 200μL of the MightyPrep reagent was added to the tubes and later centrifuged at 15krpm for one minute. The tubes were then transferred to a heated block at 95°C with shaking at 800rpm for 15 minutes. Later, the tubes were cooled down by lowering the heat block temperature to 25°C, followed by hard vortexing of each tube for one minute and, finally, centrifugation at 15krpm for two minutes before storage at -31°C.

Direct PCR

The master mix was prepared using the manufacturer’s protocol with slight modifications (Hotstar Taq® Master Mix Kit 2.5 Units, Qiagen; Cat No: 203443). 100μM primer concentration was achieved by adding 303μl and 353μl of Tris EDTA (Nippon Gene Company Ltd, Japan, Cat No: 314-90021; 10mM Tris-HCl [pH 8.0], 1mM EDTA [pH 8.0]) to the forward and reverse primers (Table 1; Sigma-Aldrich, Darmstadt, Germany), respectively. The primers targeted the 16S rRNA gene giving 433bp amplicon size fragments. Master mix components were: RNase- free water (1x = 7.84μl); primer mix (1x = 0.08μl, 0.2μM of each primer); and HotStar Taq® master mix (2x), comprised of 2.5 units HotStarTaq DNA polymerase (1x = 10μl),1x PCR buffer (1x, contains 1.5mM MgCl₂) and 200μM of each dNTP.

After vortexing the master mix for five seconds, 18μl was aliquoted to each of the labeled 96 PCR tubes. 2μl of the swab lysates was added to each tube to make a final reaction
volume of 20μl and the tubes were finger tapped for five seconds to mix the contents. A positive control (\textit{M. genitalium} positive sample) and negative control (PCR water) were used. The PCR tubes were placed in the SimpliAmp™ Thermal Cycler (Applied Biosystems) and run under the following reaction conditions.

An initial antibody inactivation step was carried at 95°C for 15 minutes, followed by 35 cycles of: denaturation at 94°C for 60 seconds, annealing at 67°C for 60 seconds and extension at 72°C for 60 seconds. A final extension step was carried out at 72°C for 10 minutes, followed by the final hold at 4°C for ∞.

\textbf{Agarose gel electrophoresis}

The PCR products were subjected to gel electrophoresis using 2.5% agarose gel SeaKem® GTG® agarose (Lonzza, Rockland, ME, USA; Cat No: 50074) at 100V for 45 minutes. 6x loading dye (Nippon Gene; Cat No: 314-90261) was diluted with sample to make 1x and loaded onto the gel. The 100bp GelPilot® Ladder marker (Qiagen; Cat No: 239035) was used. The gels were stained with 2x GelRed™ Nucleic Acid Gel Stain (Biotium; Cat No: 41003) for one hour on a shaker. The image was viewed using the UltraSlim UV Transilluminator (Maestrogen).

\textbf{Amplification of the PCR products}

The PCR products were subjected to another PCR. Master mix components were as described above. 18μl was aliquoted into the PCR tubes. 1μl of the sample products was added to the tubes to make a 19 μl final volume. The PCR tubes were placed in the SimpliAmp™ Thermal Cycler (Applied Biosystems) and run under the following reaction conditions.

An initial antibody inactivation step was carried out at 95°C for 15 minutes, followed by 30 cycles of: denaturation at 94°C for 60 seconds, annealing at 69°C for 60 seconds and extension at 72°C for 60 seconds. A final extension step was carried out at 72°C for 10 minutes, followed by the final hold at 4°C for ∞.

The products were run on a 2.0% agarose gel at 100V for 40 minutes. A 3000bp ladder (Solis BioDyne, Tartu, Estonia) was used. The gels were stained using 2x GelRed for one hour and viewed under an UltraSlim UV Transilluminator.

\textbf{Results}

A total of 352 lysates were analyzed in this study. The results show evidence for the presence of \textit{M. genitalium} from swabs taken from the female sex workers who were sampled. 352 lysates were prepared using the MightyPrep reagent.

\textit{M. genitalium} detection

\textit{M. genitalium} was detected among the 352 swab lysates. Examples of \textit{M. genitalium} detection are shown in Figure 3 to Figure 4. Figure 1 shows clear bands at positions 1, 2, 9, 10 and 17 on a 26-well agarose gel. The same kind of bands can be seen in Figure 2 at positions 9, 10, 11 and 18. The positive and negative controls are at positions 24 and 25, respectively, on each gel. A 600bp ladder was used at positions 1 and 26 to track the \textit{M. genitalium} amplicon sizes of interest.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image1.png}
\caption{First representative gel for \textit{Mycoplasma genitalium} detection using direct PCR. Ultraviolet camera gel image showing 22 samples run on a 26-well gel. The ladder is at positions 1 and 26 (Gel Pilot®). Clear \textit{Mycoplasma genitalium} positive bands can be seen at positions 1, 2, 9, 10 and 17 (Sexually transmitted infection lysates S099, S100, S108, S109 and S116, respectively). The positive control (PC) and negative control (NC) are at positions 24 and 25, respectively.}
\end{figure}
The PCR products were subjected to another amplification reaction. After the reaction, the products were run on a 13-well agarose gel. A 3000bp ladder was loaded on positions 1 and 13, with the positive and negative controls at positions 11 and 12, respectively, as can be seen in Figure 3 and Figure 4. Out of the 352 swab lysates used, 29 tested positive for *M. genitalium*.

M. genitalium prevalence

M. genitalium prevalence among the cohort of female sex workers was found to be at 8.24% (29/352), showing one out of eight patients had *M. genitalium* related infections.

Discussion

Recently, DNA amplification protocols using PCR have been employed in the detection of *M. genitalium*. To investigate the presence of *M. genitalium* from the clinical swab samples collected from a clinic for sex workers in Nairobi, Kenya, a direct PCR technique was used for the detection of *M. genitalium*. This technique involves the use of target-specific primers to select the DNA of interest from a crude extract. The study detected *M. genitalium* using primers that bind to the 16SrRNA gene from the crude DNA extract. Jensen and his colleagues\(^3\) developed a wide range of primers...
that target the 16S rRNA gene, producing different amplicon sizes. A novel PCR was used to detect *M. genitalium* using oligonucleotide primers that corresponded to sequences along its 16S rRNA gene.

The study was able to detect 29 *M. genitalium* positive samples out of the 352 lysates. However, the challenge experienced with this method was non-specific amplification, realized from the multiple fragments produced. A possible solution to this is in the use of more precise target-specific primers to prevent the amplification of genes with closely related sequences. Application of this method can be a remedy to the constant loss of DNA due to long extraction processes, at the same time maintaining its quality for further downstream analysis.

M. genitalium prevalence was shown to be at 8.24%. This shows that one out of every eight patients sampled was positive for *M. genitalium* related infections. Balkus and colleagues in 2018 were able to detect *M. genitalium* from 25 out of 221 (11.3%) women from Kenya and the US. Prevalence rates of 12.9% and 16% have also been reported among sex workers in Nairobi, Kenya. The prevalence obtained in this study therefore does not show any significant drop in *M. genitalium* infections. Despite better and improved access to healthcare, *M. genitalium* infections seem to continue to be a burden. Possible reasons might be due to having multiple sex partners or antibiotic resistance to drugs of choice such as macrolides and fluoroquinolones.

Overall, the prevalence results suggest that more measures need to be taken to control *M. genitalium* infections. Awareness campaigns need to be carried out to sensitize people on preventive measures rather than taking potential risks that may lead to exposure to the infection. Studies need to be done to investigate *M. genitalium* drug resistance. This will be helpful in informing policy and practice. As a result, screening can be done in patients to check for resistance before prescribing medication.

Data availability

Underlying data

This project contains the following underlying data:

- Direct PCR 1.docx – Direct PCR 4.docx (lists of the samples tested for *Mycoplasma genitalium* in four sets of 88 samples)

- Exp 1 Gel 1.JPG - Exp 4 Gel 4.JPG (gel electrophoresis of PCR products; 100bp GelPilot® Ladder marker [Qiagen] at positions 1 and 26, samples from positions 2 to 23, positive control at position 24 and negative control at position 25)

- Amplification Gel 1.JPG - Amplification Gel 3.JPG (gel electrophoresis of the amplified products; 100bp ladder [Solis BioDyne] at positions 1 and 13, samples from positions 2 to 10, positive control at position 11 and negative control at position 12)

- Amplification Gel 4.JPG (gel electrophoresis of the amplified products; 100bp ladder [Solis BioDyne] at positions 1 and 13, samples from positions 2 to 7, positions 8, 11 and 12 contain no samples [blanks], positive control at position 9 and negative control at position 10).

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements

The authors would like to thank the Nagasaki University Institute of Tropical Medicine in collaboration with the Kenya Medical Research Institute (NUIITM-KEMRI), The Pan Africa University Institute of Science Technology and Innovation hosted at the Jomo Kenyatta University of Agriculture and Technology, Kenya (PAUSTI-JKUAT) for the research conceptualization and support.
References

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com