Methane emissions in triple rice cropping: patterns and a method for reduction [version 2; peer review: 1 approved, 1 approved with reservations, 1 not approved]

Masato Oda, Huu Chiem Nguyen

1Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
2Department of Environmental Science, Can Tho University, Can Tho, Vietnam

Abstract
The Mekong Delta paddies are known as hotspots of methane emission, but these emissions are not well studied. We analyzed methane emission patterns based on monitoring data from typical triple rice cropping paddies collected over 5 years. We found that the total emissions in a crop season doubled in the second crop, tripled in the third crop, and reset after the annual natural flood of the Mekong River. The emission peaks occurred around 0 to 3 weeks after starting irrigation, then gradually decreased. This suggests that methane was generated by the soil organic matter, because the small rice plants provide little carbon for methanogenesis. In general, the main source of emitted methane is rice-derived carbon by current-season photosynthates and the emission peaks at the rice heading stage. However, the contribution of the rice-derived carbon is negligible in the hotspot paddies while total emission is high. The increase in emission levels from the first to the third crop can be explained by the accumulation of rice residue from the preceding crops, especially rice straw incorporated into the soil. The reset of emission levels after annual flood means that the rice straw is decomposed without methanogenesis in water with dissolved oxygen. Thus, the annual emission pattern shows that decomposing rice straw in paddy surface-water is an effective method to reduce methane emissions.
Introduction

Vietnam is the world’s fifth largest rice producer (FAO 2018). The Mekong Delta produces the half (23.8 million tons) (General Statistics Office of Vietnam 2016). The climate of tropical monsoon (Am) enables high productivity by triple rice cropping (cropping three times a year). Rice paddies are a methane emission source, and the Mekong Delta is a hotspot (Arai et al., 2018; Werner et al., 2016). The high emissions are caused by the rice straw incorporation (Oda & Chiem, 2019). However, this has not been well studied (Vo et al., 2018).

The Mekong’s natural flood of two months (starting from around late September to late October) limits the rice cultivation period. The 1st crop (winter-spring) begins after the natural flood, then after harvesting the rice straw is incorporated into the soil. The 2nd (spring-summer) and the 3rd crop (summer-autumn) follows without interval. Just after the 3rd crop, the natural flood starts so the straw is left on the paddies and decomposes under the floodwater. Then, the 1st crop begins again without incorporation of the straw in the soil (field leveling only), because they are sufficiently decomposed by that time.

Can Tho University (CTU) and the Japan International Research Center for Agricultural Sciences (JIRCAS) conducted joint research and monitored methane emissions in typical triple rice cropping paddies for 5 years (for a total of 15 crops). The present study is a specific analysis of a part of the data set from this project. The results show that the strategy of decomposing rice straw on the surface water effectively reduces methane emission from the paddies.

Methods

Site description

The observation was conducted on a farmer’s paddies (three fields) managed by the above typical triple-cropping in Thuan Hung village (10°22’ N, 105°58’ E), Thot Not district, Can Tho city, Vietnam from 2011 to 2016. Normally, from May to October is the rainy season. The farmer managed the water with continuous flooding using a dike system. The rice variety Jasmine was used for the 1st crop, and OM501 was used for the 2nd and 3rd crop every year. The average number of growth days per crop were 103, 89, and 92, for the 1st, 2nd, and 3rd crops, respectively. The average intervals between the 1st and the 2nd crop and the 2nd and the 3rd crop were 5.6 and 6.6 days, respectively. This study was conducted with the approval of the farmer. The details were described previously (Oda & Chiem, 2019).

Methane measurement

We used the closed chamber method established by NARO and IRRI (http://globalresearchalliance.org/research/paddy-rice/), and the measurements were taken at 8 a.m. (ca. 90% of the average daily emissions). The details were described previously (Oda & Chiem, 2019). In periods of natural flood, chambers with attached Styrofoam floats were used. Measurements were taken once a week throughout the rice growing stage, but every 3 days for 2 weeks after seeding, heading stage, and around draining.

Statistical analysis

The cumulative CH4 emissions were calculated by linear interpolation. Descriptive statistics were calculated using Microsoft Excel 2016.

Results

Emission level

According to the IPCC guidelines, standard methane emissions over 100 days of continuously flooding rice cropping are 130 kg ha−1 crop−1. Wassmann et al. (1996) reported very high emissions (160–240 kg ha−1 crop−1) from double cropping rice paddies in the Philippines after organic matter incorporation. However, we observed larger emissions (710–1845 kg ha−1 crop−1). Vo et al. (2018) measured the same level of emission in the Mekong Delta (ca. 900 kg CH4 ha−1 crop−1). The emission level doubled in the 2nd crop, and tripled in the 3rd crop, then reset after the natural flood (Figure 1). Furthermore, the total emissions during the flood period and the 1st crop was lower than that of the 3rd crop (Figure 1). The total emission should be higher than that of the 3rd crop; because, the absence of rice plants doubles the methane emission from the field (Oda & Chiem, 2019). Note, we confirmed that no rice straw (the source of methanogenesis) was lost to the floodwater. Raw results are available as Underlying data (Oda, 2019a).

Emission pattern

The previous study (Oda & Chiem, 2019) indicated three types of methane emission patterns during the rice growth period. Generally, the emissions peak at the heading stage due to the methanogenesis substrate provided by the present rice. Another pattern can occur with an additional peak at the early stage of rice growth if organic matter was incorporated beforehand. The third is the pattern in the triple rice cropping. The emission peaks at the early stage of rice growth, then gradually decreases; the peak at the heading stage is undetectable because of the high emission levels. This means the contribution of the rice-derived carbon is small. In the present study, the pattern was the same as the previous study (Oda & Chiem, 2019). The emissions began with irrigation, reached peaks from 0 to 3 weeks after the start of irrigation (see Extended data, Supplemental figure; Oda, 2019b), and gradually decreased, and the peak at the heading stage was undetected. Furthermore, the emissions during the natural flood appeared to be a continuation of the emissions of the 3rd crop (Figure 2).
Discussion

Emission pattern

The total emissions in a crop season doubled in the second crop, tripled in the third crop, and reset after the natural flood. This can be explained by the accumulation of rice residue from the preceding crops, especially by the rice straw incorporated into the soil, because the contribution of the present rice-derived carbon is small (Oda & Chiem, 2019).

The reset of emission levels after the annual flood means that the rice straw is decomposed without methanogenesis in water because the water includes dissolved oxygen. The fact that the emissions under natural flood appeared to be a continuation of the emissions of the 3rd crop suggests that the rice straw on the paddy surface contribute to no methane emission. A portion of emission in the first crop will be caused by incorporation of the remaining rice straw related to the leveling of the field.

Method for methane reduction

Our results indicate that the main cause of the increase in methane emissions was the incorporation of rice straw into the soil. In contrast, decomposing rice straw in paddy surface-water generated less methane. Thus, decomposing rice straw in paddy surface-water is an effective method to reduce methane emissions.

Conclusion

We analyzed the methane emission patterns of triple rice cropping paddies in the Mekong Delta. Methane emissions increased with rice straw incorporation into the soil. The natural flood resulted in decomposition occurring in the water, leading to less methane emission. Therefore, the annual emission pattern suggests that decomposing rice straw in paddy surface-water is an effective method to reduce methane emissions. The development of practical technology to attain this reduction is a subject for a future study.

Data availability

Underlying data

Extended data

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements

We thank our former colleagues for the use of legacy data.
References

Open Peer Review

Current Peer Review Status:

Reviewer Report 19 February 2020

https://doi.org/10.5256/f1000research.23378.r59810

© 2020 Yagi K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kazuyuki Yagi
The Joint Graduate School of Energy and Environment (JGSEE), Center of Excellence on Energy Technology and Environment, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

The study reports original and remarkable findings in increasing methane emissions from triple cropping of rice. Although it is not clearly stated in the manuscript, there are very few studies that reported methane emissions from triple rice cropping. In addition, the major finding of this study, that is the increasing methane emissions in the 2nd crop relative to the 1st one, and further in the 3rd crop, in response to the accumulation of rice residue from the preceding crops, is a remarkable fact for understanding the intensity of emissions, as well as designing options for climate change mitigation. Therefore, the research is recognized to be valuable in reporting in an international scientific journal.

However, at the same time, I have to report that current manuscript has substantial lack of basic components and requirements as a scientific paper at each section throughout the manuscript, even though this paper has submitted as a Brief Report. Note that filling those lack of details is essential as a scientific paper to make sure that readers have enough information to understand the description of the work. The specific points of problems are listed below. As a result, I can approve the manuscript only after it was revised by responding to my comments in an appropriate manner.

Introduction:
- Background (the need for this study) and objectives of the study should be clearly presented. Why did you study methane emissions from paddy fields? What gaps of knowledge did you try to approach? What are the objectives of this study?

Methods:
- The major finding of this study is the importance of straw incorporation into the soil after harvesting rice for increasing methane emissions in the following season. From this viewpoint, it is requested to report management of rice straw after every harvest more
quantitatively in detail in the Method section. It is required to provide the amount of rice straw (and preferably that of stubbles and roots) returned to the fields from previous harvest, because it is essential to discuss the increase in methane emissions. Otherwise, it is vague to discuss the emission pattern in Discussion.

Data analysis:
- The statistical analysis for judging the differences in methane emissions among the seasons is insufficient, because no statistical analysis was made for the data in Figure 1. As a result, it is difficult to conclude the differences in methane emissions among the seasons.

Results:
- In this section, the results of experiment should be simply presented. Information of previous studies and discussion with them should be presented in Introduction or Discussion sections, respectively. From this, the sentences in Line 1–6 of ‘Emission level’ part and in Line 1–11 of ‘Emission pattern’ part should be moved.

Data presentation:
- The amounts of total seasonal methane emission should be numerically presented, at least those of five-year average for each crop with the values of interannual variation.

Discussion:
- There is fundamental lack of discussion with referring to previous studies by other researches who reported methane emissions from paddy fields. A sweeping revision is necessary in this section.

In addition, some minor comments are listed below:
1. Throughout the manuscript, the term ‘natural flood’ or ‘annual flood’ should be corrected to ‘fallow flood’ because it is confusing. ‘After natural (annual) flood’ can be ‘during the fallow flood period after harvesting the 3rd crop’.

2. Abstract, Line 2: The statement that ‘these emissions are not well studied’ is incorrect. A number of field measurements for methane emissions from paddy fields in the Mekong Delta have been published, such as Vo et al., 2018 (already cited in this paper), and references cited in the paper.

3. Introduction, 1st paragraph, Line 9: The statement that ‘this has not been well studied’ is incorrect. IPCC Guidelines provides the quantitative effects of rice straw incorporation on increasing methane emissions as a scaling factor based on a number of field measurements including those in the Mekong Delta.

4. Introduction, 3rd paragraph, Lines 6–8: The reference that shows effectiveness of the strategy should be cited.

5. Methods, Site description: It is suggested to report the type of soil and its characteristics, because the information is essential for discussing the intensity of methane emissions from paddy fields and is not presented in the previous paper. I would suggest to report, at least, soil texture, organic carbon content, and pH, all of which are recognizes as the major factors controlling methane emissions.
6. Figures 1 and 2: The period of data ‘Flood’ is confusing. It is recommended to correct it with ‘Fallow flood’.

7. Results, Emission level, Lines 9–11: The emission level doubled in the 2nd crop, and tripled in the 3rd crop, compared with that in the 1st crop, then reset after the fallow flood. Same correction should be made at Discussion, Emission pattern, Lines 1–3.

8. Results, Emission level, Lines 13–: The total emission during the fallow flood should be higher ...

9. Results, Emission level, Lines 13–15: Why the result was not consistent to the ‘previous’ report. Please discuss it.

10. Results, Emission pattern, Lines 1–11: This statement is not the results in this study. Therefore, it should be moved to Discussion. Also, the difference of data in ‘previous’ study and this one should be clarified. Understanding from the ‘previous’ paper (Oda & Chiem, 2019), the ‘previous’ study reported the results of experiments during 2016 and 2017, whereas this study during 2011 and 2016. If it is correct, using the term ‘previous’ is not appropriate.

11. Discussion, 2nd paragraph, Line 6: no methane emission -> little methane emission

Is the work clearly and accurately presented and does it cite the current literature?
No

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
No

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: biogeochemistry, soil sciences

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 21 Feb 2020

Masato Oda, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan

Thank you for deeply considering our manuscript. We considering your helpful comments and improved the manuscript. However, we are afraid that adopting the term “fallow flood” is not right in case of the Mekong Delta triple cropping rice. In addition, we think the matter of writing style is not constructive because that is largely affected by the background of the main journal we have read. Finally, we are glad to have helpful comments from you. The details of our response are as follows.

Introduction:
• Background (the need for this study) and objectives of the study should be clearly presented. Why did you study methane emissions from paddy fields? What gaps of knowledge did you try to approach? What are the objectives of this study? *As you mention “there are very few studies that reported methane emissions from triple rice cropping.” That is the reason. We described more clearly the aim of the study.

Methods:
• The amount of rice straw
*They were added.

Data analysis:
• No statistical analysis was made for the data in Figure 1. *You mention the significant tests, don't you? Now, that is no longer recommended; instead, 95% confidential interval is recommended (https://www.nature.com/articles/d41586-019-00857-9). That can be known from the SD and the n. However, we found that the figure is needed correction of the way of calculation of the mean (each crop has three replications but means should be calculated by year, and the n should be changed from 15 to 5). In addition, the error bars were not SD but were SE. We corrected the figure and show the 95% confidential interval (CI). We deeply thank that you give us a chance to correct the error bars.

Results:
• In this section, the results of experiment should be simply presented. Information of previous studies and discussion with them should be presented in Introduction or Discussion sections, respectively. From this, the sentences in Line 1–6 of ‘Emission level’ part and in Line 1–11 of ‘Emission pattern’ part should be moved. *This is a matter of writing style. The consideration of the values using citations is common in the results section.

Data presentation:
• The amounts of total seasonal methane emission should be numerically presented, at least those of five-year average for each crop with the values of interannual variation. *We showed them as a range, but we changed that as each average.
Discussion:

- There is fundamental lack of discussion with referring to previous studies by other researchers who reported methane emissions from paddy fields. A sweeping revision is necessary in this section.
 *This is a matter of writing style. We cited the studies in the introduction section. As you know, they are few.

In addition, some minor comments are listed below:

1. Throughout the manuscript, the term ‘natural flood’ or ‘annual flood’ should be corrected to ‘fallow flood’ because it is confusing. ‘After natural (annual) flood’ can be ‘during the fallow flood period after harvesting the 3rd crop’.
 *There is no fallow flood. We show the condition by describing the cropping days and the intervals in the manuscript.

2. Abstract, Line 2: The statement that ‘these emissions are not well studied’ is incorrect. A number of field measurements for methane emissions from paddy fields in the Mekong Delta have been published, such as Vo et al., 2018 (already cited in this paper), and references cited in the paper.
 *We cited the description “not well studied” of Vo et al. The situation has not changed after a year.

3. Introduction, 1st paragraph, Line 9: The statement that ‘this has not been well studied’ is incorrect. IPCC Guidelines provides the quantitative effects of rice straw incorporation on increasing methane emissions as a scaling factor based on a number of field measurements including those in the Mekong Delta.
 *See above. We think this kind of rebuttal is not constructive.

4. Introduction, 3rd paragraph, Lines 6–8: The reference that shows effectiveness of the strategy should be cited.
 *This is a matter of writing style. Showing the main finding of the work at the end of the introduction section is common.

5. Methods, Site description: It is suggested to report the type of soil and its characteristics, because the information is essential for discussing the intensity of methane emissions from paddy fields and is not presented in the previous paper. I would suggest to report, at least, soil texture, organic carbon content, and pH, all of which are recognizes as the major factors controlling methane emissions.
 *The details of the soil properties will be published in another paper. That is the reason why we don’t describe the details. We think this kind of problem that comes from closed science should be diminished in the future.

6. Figures 1 and 2: The period of data ‘Flood’ is confusing. It is recommended to correct it with ‘Fallow flood’.
 *We think the word “Fallow flood” imagines a fallow paddy with ponding water. The paddy in the Mekong Delta is really a flood, a natural disaster.
7. Results, Emission level, Lines 9–11: The emission level doubled in the 2nd crop, and tripled in the 3rd crop, compared with that in the 1st crop, then reset after the fallow flood. Same correction should be made at Discussion, Emission pattern, Lines 1–3.
*You understood correctly without the phrase, “compared with that in the 1st crop”. Flood is not fallow. We think this kind of rebuttal is not constructive.

8. Results, Emission level, Lines 13–: The total emission during the fallow flood should be higher ...
*We cannot agree to use the term.

9. Results, Emission level, Lines 13–15: Why the result was not consistent to the ‘previous’ report. Please discuss it.
*That is in the discussions section. The reset of emission levels after the annual flood means that the rice straw is decomposed without methanogenesis in water because the water includes dissolved oxygen.

10. Results, Emission pattern, Lines 1–11: This statement is not the results in this study. Therefore, it should be moved to Discussion. Also, the difference of data in ‘previous’ study and this one should be clarified.
*Generally, “what the data are” is describes in the results section; instead “what the data meaning” is describes in the discussions sections. According to these criteria, Lines 1-11 is suitable for the results section.

Understanding from the ‘previous’ paper (Oda & Chiem, 2019), the ‘previous’ study reported the results of experiments during 2016 and 2017, whereas this study during 2011 and 2016. If it is correct, using the term ‘previous’ is not appropriate.
*Only published studies can cite in the paper. They are called previous studies, not future studies. We think this kind of rebuttal is not constructive.

11. Discussion, 2nd paragraph, Line 6: no methane emission -> little methane emission
*Theoretically and practically "no" but we follow your recommendation for avoiding unconstructive rebuttal. Thank you.

Competing Interests: No competing interests were disclosed.
Environmental Engineering and Disaster Management Program, Mahidol University Kanchanaburi Campus, Kanchanaburi, Thailand

I still have concerns about the accuracy of the methodology applied for this work since the result is double the maximum value given by prior studies conducted in the same region. Though the author is convinced that extremely high CH$_4$ is usual in the studied areas but no scientific evidence is shown in context.

Furthermore, the suggestion given by the authors on the decomposing rice straw in flooding field may not be feasible due to a lower gain of the farmers. The authors are convinced that the yield in the tripled crop is low, and the farmers will have much more profit by practising organic farming. This discussion is out of the ring because there is no evidence on rice yield, and organic farming is out of the scope of this work.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Environmental Engineer

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Author Response 12 Feb 2020

Masato Oda, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan

1) Methodology
We followed the standard method so replication by others is capable. As you know, to say overestimate requires grounds; however, data for methane emission in triple cropping rice
is little. Note conditions of the reference we indicate are milder than that of the present study. We think the discussion should start waiting for more data.

Importantly, the theme of this brief report is not the emission levels but is the pattern, especially the role of the flood period reducing methane emission. They are not affected by whether we overestimated or underestimated.

2) Discussions
We guess that you might be confusing the personal response and the manuscript because of the system. That is actually "out of the ring".

We hope you agree with the above explanations.

Competing Interests: No competing interests were disclosed.

Author Response 26 Feb 2020

Masato Oda, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan

We found an example of high emission in Japan (https://www.naro.affrc.go.jp/org/warc/research_results/skk_seika/h06/94017-z1.jpg). The total amount roughly estimated about 2000 kg CH4 ha-1 crop-1. The result obtained under the condition of 5 Mg of wheat straw and 6 Mg of rice straw. Wheat straw is rapidly decomposed than rice straw. The fresh rice straw in the Mekong Delta triple-cropping rice is considered the middle of those organic materials. We added the information of the quantity of applied rice straw to the revised manuscript. That is about 9 Mg per crop. We think this additional information provides enough reason to understand the high emission in our results.

Competing Interests: No competing interests were disclosed.

Reviewer Report 13 November 2019

https://doi.org/10.5256/f1000research.23378.r56458

© 2019 Dang Hoa T. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tran Dang Hoa
University of Agriculture and Forestry, Huế University, Hue, Vietnam

The revised version is good enough. I agree with the responses of the authors.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Low carbon rice production

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
order to explain this study is a representative.

Method:
- Site description should be more clear, such as, what about the field practices of the farmer on their fields? Were the three observed fields similar in these practices? What about the water management in the fields? The author said the fields was continuously flooding, but how about water level/regime in three observed fields? How about straw management? What about the height of stubble for each season? How was about fertilization?...

- Methane measurement: The author said the closed chamber method described by Oda & Chien, 2019. However, a brief description should be added. What time of the day were GAS samples take? How was CH$_4$ calculated?

- Statistical analysis: A one-way ANOVA should be analysed to compare the means among season?

Discussion:
- The authors just explained the difference of CH$_4$ emission among seasons was due to straw incorporation into the soil. However, I did not see any information on straw incorporation in the observed fields (as above commented). Other factors such as rice varieties, weather, fertilization... should be discussed. In this case, these factors differed among seasons, why did only straw incorporation influence on CH$_4$ emissions?

Conclusion:
- As above commented, the conclusion on CH$_4$ emission increase being due to straw incorporation is not clear.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Low carbon rice production

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Author Response 05 Nov 2019

Masato Oda, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan

Thank you very much for giving valuable comments.

1. Introduction: a general information in order to explain this study is a representative Thank you. We added.

2. Methods
 2-1. Site description:
 The sentence was improved to clarify that the present study was an observation of typical farmer's paddies mentioned in the introduction (including rice straw treatment).

 2-2. Farmers practices:
 Thank you. We added the reference. The height of the stubble is about 30 cm. The daily average water levels were monitored with water level loggers at the corner of the fields; the average levels were 2.0 cm (−0.6 to 6.1 cm) until drained (the data will be published in another paper).

 2-3. Methane measurement:
 Thank you. We added.

3. Statistical analysis:
 Figure 1 is clear enough to omit ANOVA (see the standard deviation (not SE)).

4. Discussion:
 The information on straw incorporation in the observed fields is mentioned in the introduction. Rice straw incorporation enhances methane emission. We added a referred to our previous study that is a kind of short review of the effect of straw incorporation.

Competing Interests: No competing interests were disclosed.

Reviewer Report 18 October 2019

https://doi.org/10.5256/f1000research.22010.r54183

© 2019 Bridhikitti A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The idea of estimating methane emissions from rice paddy fields is not novel. Many publications, including those conducted in SE Asia, have been widely accepted, such that collected and reported in the 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual. The study on triple rice cropping in the Mekong River Delta is quite interesting since few studies carried on such the cropping system, but usually estimating the total flux based upon one single cropping experiment.

My first significant concern in this work is involved with the methodology of methane sampling and analysis. The closed chamber method used in this study (Oda and Chiem, 2019) had not yet been validated with other traditional closed chamber studies. Furthermore, methane emission using this method seems to return significantly higher methane emissions compared to those emissions reported worldwide in the IPCC report. Since very much high emission rates can result in significantly overestimating methane emissions from the SE Asia region, I suggest the authors carefully discuss the reliability of the proposed method in comparison to the traditional method.

My last concern is on the suggestions given by the authors. They claim that decomposing rice straw in paddy surface-water (nonrice period) is an effective method to reduce methane emissions. This suggestion is not conforming to the fact that the wetland system is a significant source of methane emission. I think the author could mean lower methane emission during the nonrice flooding period, but the conclusion written in the manuscript is not clear that way. Although, I think the conclusion given by the authors is not feasible since promoting long-term nonrice flooding instead of rice cropping could mean lower rice yield.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 05 Nov 2019

Masato Oda, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan

Thank you for giving valuable comments for improving our manuscript.

1. The methodology of methane sampling and analysis.
 Our methodology is the traditional method and there are high emission data in An Giang province. The water management conditions are better than our site because of the full-dike system. Thus, we think our data are reliable. We added the explanations.

2. Suggestion by authors
 We agree with you that the wetland system is a significant source of methane emission. We also agree with you that the methane emission in the paddy field is extremely high compared to the simple wetland. Our finding is that the cause of the high emission in the paddy field is the incorporation of rice straws. The recent spread of combine harvesting decreases the need for rice straw burning. The methane emission will increase much more. Therefore, decreasing the methane emission of the paddy field to the levels of the simple wetland is still significant according to the data. Our suggestion is directly led by the results of the present study; although there are many other indirect options.

 For the yield of rice, we think by the profit. A recent study reported that the profit of triple rice is only 6% higher than double cropping ([Environ Manage.](https://doi.org/10.1007/s00267-018-1245-9). 2018). However, utilizing rice straw enables organic farming and that brings much profit by the high unit price. We are trying to establish cultivation practice. Furthermore, using the ratooning triple cropping is also possible.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com