Anaemia in solitary acyanotic ventricular septal defect in comorbid with pneumonia or pulmonary hypertension: A retrospective study of 75 paediatric cases [version 2; peer review: 2 approved with reservations]

Geoffrey Joseph Changwe¹, Haizhou Zhang¹, Hongxin Li¹, Zeeshan Farhaj¹, Marlvin Anemey Tewara², Wenlong Zhang¹, Chengwei Zou¹

¹Departments of Cardiovascular Surgery and Ultrasound, Shandong Provincial Hospital affiliate of Shandong University, Jinan, 250021, China
²School of Public Health, Shandong University, Jinan, 250010, China

Abstract

Background: Ventricular septal defects (VSD) are the second commonest congenital heart defects after bicuspid aortic valve. When left unrepaired, they can undergo spontaneous closure or elicit a spectrum of complications including pneumonia (PNA) or pulmonary hypertension (PH) with subsequent anaemia. In this retrospective study, we aim to establish and compare the prevalence of anaemia in patients with solitary acyanotic VSD in comorbid with PNA or PH.

Methods: A total of 75 case files of patients with solitary acyanotic VSD, who underwent surgical closure or device occlusion had haemoglobin level analysed prior to the procedure. The cohort included patients with (history of) PNA and PH, and asymptomatic. The cohort included 27 females and 48 males with mean age and weight of 8.3±5.72 (3-24) months and 5.9±3.9 (2.7-17.8) kilograms, respectively. Depending on associated complication and age, the cohort was divided: PNA (A), PH (B) and Control (C); and (I) young children (≥3-6≤) and (II) older children (>6-≤24) months. We used 95 and 105 grams per litre as haemoglobin lower threshold level for (I) and (II), respectively.

Results: According to data analysis 27 patients (36%) in total had anaemia. Of the anaemia cohort 16 (59.3%) had PNA, 9 (33.3%) PH and 2 (7.4%) were asymptomatic. Of the cohort, 42 were young children, with anaemia prevalence of 19/42 (45.2%), while 24.2% of the older children had anaemia. Intergroup ANOVA independent sample t-test was significant (p<0.05). In addition, intergroup Tukey HSD test for haemoglobin: A/B (p>0.05), A/C (p<0.01), B/C (p<0.01).

Conclusion: Paediatric patients with acyanotic VSD in comorbid with PNA or PH are 8 and 4 times more susceptible to develop anaemia compared to asymptomatic counterparts. Susceptibility is even higher among young children (3-6months). However, a prospective study is needed to validate our findings.

Keywords
Keywords
Ventricular septal defect, Pneumonia, Pulmonary hypertension, Anaemia

Corresponding author: Haizhou Zhang (zhz_doctor@163.com)

Author roles: Changwe GJ: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Zhang H: Methodology, Resources; Li H: Formal Analysis, Supervision; Farhaj Z: Data Curation, Methodology; Tewara MA: Formal Analysis, Software; Zhang W: Validation, Visualization; Zou C: Funding Acquisition, Project Administration, Validation

Competing interests: No competing interests were disclosed.

Grant information: Funding for this project was provided by Shandong University PR China; and National Key R & D program of P.R. China (Grant no. 2017YFC1308000)
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Changwe GJ et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Changwe GJ, Zhang H, Li H et al. Anaemia in solitary acyanotic ventricular septal defect in comorbid with pneumonia or pulmonary hypertension: A retrospective study of 75 paediatric cases [version 2; peer review: 2 approved with reservations] F1000Research 2019, 8:101 (https://doi.org/10.12688/f1000research.17907.2)

Introduction
Anaemia is a common complication of a myriad medical conditions often met in general ward. Its etiology is complex and multifactorial, encompassing intrinsic and extrinsic factors. Additionally, large intracardiac defects (cyanotic ventricular septal defects) can cause pulmonary vascular overload, infection, and anaemia. Further, pulmonary hypertension (PH) due to pulmonary vascular overload can elicit a cascade of events leading to poor quality of life, morbidity, and mortality. In the developing world with no heart surgery centers, pneumonia (PNA) due to large intracardiac defect(s) (cyanotic VSDs) is responsible for retardation, persistent morbidity and mortality.

Nevertheless, the effect(s) of small to moderate VSD’s on the occurrence of both PNA and PH amongst paediatric patients, especially infants has not been fully explored. Adult and older children may tolerate and survive the effects. However, infants with limited iron storage and supply (exclusive breast milk) may not withstand. For these reasons, we hypothesize that paediatric patients with solitary acyanotic VSD coexisting with PNA or PH retain a risk of developing anaemia. In this retrospective study, we aim to establish the prevalence of anaemia in patients with solitary acyanotic VSD in comorbid with PNA or PH.

Methods
Case file details and classification
Between February 2014 and September 2018, 90 case files of patients with solitary acyanotic-VSD, who underwent either surgical or minimal invasive closure in our Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated of Shandong University were primarily selected for this study.

However, only 75 case files met study criteria, which included patients with recurrent (history of...) pneumonia of proven PNA by chest radiography with positive bacterial culture of trans-tracheal aspirate or polymerize chain reaction from nasopharyngeal swab. Pulmonary hypertension diagnosis was echocardiography based, except in 5 patients from PNA group, who presented in heart failure state. Excluded from this study were 15 files of patients: 7, sickle cell; 4, β-Thalassemia; 4, blood transfusion.

Among the 75 files were 48 males (75.64%) and 27 females with mean age and weight of 8.3±5.7 (3–24) months and 3.8±3.0 kilograms, respectively. Depending on the associated complication, the cohort was then divided into three groups: A, PNA (n=30); B, PH (n=25); and C, control (n=20). Based on age, the cohort was further split into two groups: I, young children (≥3–≤6); II, older children (>6–≤24) months. The patient demographic and clinical characteristics (Table 1) and hematologic profile (Table 2) reflects pre-procedure state.

Data variables
Statistical analysis. Data was analysed using SPSS-IBM-21 software (one-way-ANOVA) and all statistics expressed as mean ± standard deviation. Intergroup haemoglobin level was compared using independent samples student’s t-test. Statistical comparison of proportions was analysed using Tukey HSD Test, and the probability value of less than 0.05 was considered significant. Patient proportions are expressed in number and percentage (n, %).

Table 1. Patient demography and clinical characteristics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>N</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>Age, months, mean± SD</td>
<td>8.3±5.7 (range, 3–24)</td>
<td>10.8±19</td>
</tr>
<tr>
<td>Gender (female/male)</td>
<td>27/48</td>
<td>9/21</td>
</tr>
<tr>
<td>Weight, kgs, mean±SD</td>
<td>5.9±3.9 (range, 2.7–17.8)</td>
<td>4.9±3.2</td>
</tr>
<tr>
<td>Ventricular septal defect, cm, mean±SD</td>
<td>0.93±0.31 (range, 0.4–1.6)</td>
<td>1.2±0.3</td>
</tr>
<tr>
<td>Pulmonary hypertension, mmHg, mean±SD</td>
<td>25.5±8 (range, 16–55)</td>
<td>21.2±3.4</td>
</tr>
</tbody>
</table>
Results
In this case study, we used hemoglobin reference ranges based on age as follow: (I) young children (95–135) and (II) older children were (105–135) gram per liter, as per local protocol. According to data analysis reflected in Table 3, 27 patients (36%) in total had anaemia. Of the anaemia cohort, 16 (59.3%) had PNA, 9 (33.3%) PH and 2 (7.4%) asymptomatic. Of the cohort, 42 were young children with anaemia prevalence of 19/42 (45.2%), while the older children had 24.2%. Hb Intergroup (ANOV A) independent sample t-test was significant (p<0.05). In addition, intergroup Tukey HSD test for hemoglobin: A/B (p>0.05), A/C (p<0.01), B/C (p<0.01). The mean white blood cells in patients with PNA was higher and intergroup p-value was significant (p<0.05).

Discussion
Anaemia, defined as haemoglobin (Hb) concentration below the 5th percentile for age at sea-level, is a common complication of a myriad medical conditions often met in the general ward. Its aetiology is complex and multifactorial, encompassing intrinsic and extrinsic factors. Both pneumonia (PNA) and pulmonary hypertension (PH) due to cyanotic congenital heart defect (CHD) have been implicated in the occurrence of anaemia. In addition, sporadic reports linking anaemia to PNA or PH amongst patients with acyanotic ventricular septal defect (VSD) have been publish.

VSD is the second commonest CHD after bicuspid aortic valve, and solitary cases account for almost 20%. One of the most

Table 2. Mean hematologic profile and laboratory results according to age groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Young children (≥3–≤6 months)</th>
<th>Older children (>6–≤24 months)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (g/l; mean±SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>109±25.1</td>
<td>108.3±21.2</td>
<td>132.2±18</td>
</tr>
<tr>
<td>B</td>
<td>110.9±25.8</td>
<td>117.9±15.4</td>
<td>133.6±6.8</td>
</tr>
<tr>
<td>C</td>
<td>110.9±25.8</td>
<td>117.9±15.4</td>
<td>133.6±6.8</td>
</tr>
<tr>
<td>Mean corpuscular volume (f/l)</td>
<td>76.9±7.3</td>
<td>85.7±2.1</td>
<td>83.9±9</td>
</tr>
<tr>
<td>A</td>
<td>74.6±5</td>
<td>82.8±6.6</td>
<td>85.6±4.8</td>
</tr>
<tr>
<td>B</td>
<td>74.6±5</td>
<td>82.8±6.6</td>
<td>85.6±4.8</td>
</tr>
<tr>
<td>C</td>
<td>74.6±5</td>
<td>82.8±6.6</td>
<td>85.6±4.8</td>
</tr>
<tr>
<td>Mean corpuscular haemoglobin (pg; mean±SD)</td>
<td>27±3.1</td>
<td>30.3±2.1</td>
<td>28.4±1.8</td>
</tr>
<tr>
<td>A</td>
<td>33.9±7.2</td>
<td>29±2.9</td>
<td>30.4±2</td>
</tr>
<tr>
<td>B</td>
<td>33.9±7.2</td>
<td>29±2.9</td>
<td>30.4±2</td>
</tr>
<tr>
<td>C</td>
<td>33.9±7.2</td>
<td>29±2.9</td>
<td>30.4±2</td>
</tr>
<tr>
<td>Lactate dehydrogenase (mean±SD)</td>
<td>236.8±76.8</td>
<td>222.4±61.6</td>
<td>213.6±61.6</td>
</tr>
<tr>
<td>A</td>
<td>300.9±119.2</td>
<td>174.3±50</td>
<td>147±30</td>
</tr>
<tr>
<td>B</td>
<td>300.9±119.2</td>
<td>174.3±50</td>
<td>147±30</td>
</tr>
<tr>
<td>C</td>
<td>300.9±119.2</td>
<td>174.3±50</td>
<td>147±30</td>
</tr>
<tr>
<td>White blood cell (×10⁹/L; mean±SD)</td>
<td>12.5±5.3</td>
<td>7.8±2.4</td>
<td>6.9±0.9</td>
</tr>
<tr>
<td>A</td>
<td>15.4±5.7</td>
<td>6.7±1.5</td>
<td>5.9±2.1</td>
</tr>
<tr>
<td>B</td>
<td>15.4±5.7</td>
<td>6.7±1.5</td>
<td>5.9±2.1</td>
</tr>
<tr>
<td>C</td>
<td>15.4±5.7</td>
<td>6.7±1.5</td>
<td>5.9±2.1</td>
</tr>
<tr>
<td>Red blood cell (×10¹²/L; mean±SD)</td>
<td>3.8±0.9</td>
<td>3.6±0.9</td>
<td>3.8±0.4</td>
</tr>
<tr>
<td>A</td>
<td>3.2±0.5</td>
<td>4.3±0.6</td>
<td>4.8±0.4</td>
</tr>
<tr>
<td>B</td>
<td>3.2±0.5</td>
<td>4.3±0.6</td>
<td>4.8±0.4</td>
</tr>
</tbody>
</table>

Table 3. Association between age and anaemia prevalence.

<table>
<thead>
<tr>
<th>Group</th>
<th>N; age (months; mean±SD)</th>
<th>Haemoglobin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Anaemia</td>
</tr>
<tr>
<td>Young children (≥3–≤6 months; n=42)</td>
<td>19; 4.85±1.07</td>
<td>45.2</td>
</tr>
<tr>
<td>Older children (>6–≤24 months; n=33)</td>
<td>6; 12.69±6.02</td>
<td>18.2</td>
</tr>
</tbody>
</table>

Association between complication and anaemia distribution

<table>
<thead>
<tr>
<th>N (%)</th>
<th>Anaemia</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>16; 30</td>
<td>53.3</td>
</tr>
<tr>
<td>B</td>
<td>9; 25</td>
<td>36</td>
</tr>
<tr>
<td>C</td>
<td>2; 20</td>
<td>10</td>
</tr>
</tbody>
</table>
common defects associated with elevated pulmonary artery pressure is a large VSD. Elevated pulmonary artery pressure in CHD can be due to pulmonary hyper-circulation, pulmonary vasoconstriction, and pulmonary vascular disease, either alone or in combination. In an infant, despite pulmonary pressure being at systemic level, pulmonary vascular resistance is low; therefore, minor shunt easily elicits hyper-circulation2,4,6,10.

PH, defined as mean pulmonary artery pressure of ≥25mmHg at rest as measured by cardiac catheterization in children aged ≥3months, is a serious disorder with a high morbidity and mortality rate1. Blood shunt may cause haemolysis due to shear stress and produce free haemoglobin, which in turn depletes nitric oxide leading to endothelial dysfunction, vasoconstriction, pulmonary oedema and hypoxia. Furthermore, haemolysis produces arginase, which converts L-arginine to ornithine; therefore, bypassing nitric oxide production2,3,11.

PNA as defined by Ozdemir and colleagues is a serious reason for morbidity and mortality in children (≤2years) with hemodynamic significant VSD11. Both PNA and PH share a common interface; inflammation, homostasis, hypoxia, and subsequent upregulation of erythropoiesis12-14. Prolonged upregulated erythropoiesis in young children with low iron store and limited iron supplement leads to anaemia. In addition, microangiopathic hemolytic anaemia in CHD and PH has been reported15, a complication commonly observed in primary PH. Unlike in PH, Mycoplasma Pneumonia and Plebsiella are known to cause anaemia in PNA14-16.

This study shows that acyanotic VSD within mean sizes: 1.2±0.3 and 0.89±0.2 centimeters, thus, defect measured from the left ventricular septal side are prone to pulmonary vascular infection/dysfunction. Both transthoracic and transoesophageal echocardiography were employed in the diagnosis and delineation of VSD and PH17. Although, right heart catheterization (RHC) is regarded as gold standard, our center favor echocardiography due to less vascular and technical challenges, especially in clinically compromised infants. According to 2018 guidelines issued by British Society of Echocardiography, aforementioned is recommended and RHC superiority is insignificant18. Young infants (3moths old) with small defects were considered for closure if defect(s) showed no trait of spontaneous closure in the presence of symptoms after 2 consecutive follow-up at 2-month interval. Apical VSDs (Swiss cheese) seldom achieved closure, hence, inclusion. Although this study is not focused on closure techniques, suffice to mention that surgical and minimally invasive, i.e. 1. percutaneous19, 2. peratrial20 and 3. percutaneous (<10%) device closure were used. Surgical was employed when device implantation proved futile, while percutaneous was limited to a small potion due to vascular limitation and possible complications. Recent publication cited small weight and age as recipe for complication during percutaneous intervention19. In addition, surgical technique was employed with utmost care due to bypass related complication and blood transfusion complications related in PH subjects. Its worthy mentioning that this study does not include prevalence of anaemia post intervention. Symptomatic subjects became asymptomatic at dismissal, and both aforementioned and asymptotic ones progressively improved anthropometric parameters during sequential follow-ups21.

Conclusion

Paediatric patients without hematologic disorders, diagnosed with hemodynamic significant acyanotic VSD in comorbid with pneumonia or pulmonary hypertension are 8 and 4 times susceptible to develop anaemia compared to asymptomatic counterparts. Susceptibility is even high amongst young children (3–6 months). However, a long post closure follow-up study is required to exclude possibly missed intrinsic (genetical/gastro-intestinal) and extrinsic (ecomonomical) etiologies and validate findings.

Ethical considerations

The Shandong Provincial Hospital Ethics Committee approved this study, and waived individual patient consent as the study was based on archived data.

Data availability

Harvard Dataverse: Anaemia in solitary acyanotic ventricular septal defect in comorbid with pneumonia or pulmonary hypertension; a retrospective study of 75 paediatric cases, https://doi.org/10.7910/DVN/2B328D22.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements

We thank the management and staff of the Department of Cardiovascular Surgery and Imaging of Shandong Provincial Hospital, affiliated to Shandong University.

Open Peer Review

Current Peer Review Status: ✔ ✔

Version 2

Reviewer Report 05 December 2019

https://doi.org/10.5256/f1000research.23523.r56774

© 2019 Haddad R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Raymond N. Haddad
Department of Pediatrics, Hotel Dieu de France University Medical Center, Saint Joseph University, Beirut, Lebanon

- The entire article must be grammatically reviewed (however I can't propose corrections as I don't have the article lines numbered):
 - A lot of pleonasm.
 - A lot of misspelled words.
- Information that should be mentioned in the methods:
 - Why did you only include patients with closed VSD? In other terms what were the exact indications of VSD closure in included patients? At what age VSD was closed?
 - How was hemodynamically significant VSD confirmed? TTE, hemodynamic evaluation?
- More detail on the minimally invasive approach is needed.
- Did all patients with VSD and anaemia have anaemia diagnosis workup since authors said the 15 excluded patients had differential anaemia diagnosis? What was the sequence of actions?
- "Among the 75 files were 48 males (75.64%) and 27 females with a mean age and weight of 8.3±5.7 (3–24) months and 3.8±3.0 kilograms, respectively. Depending on the associated complication, the cohort was then divided into three groups: A, PNA (n=30); B, PH (n=25); and C, control (n=20). Based on age, the cohort was further split into two groups: I, young children (≥3–≤6); II, older children (>6–≤24) months. The patient demographic and clinic characteristics (Table 1) and hematologic profile (Table 2) reflects a pre-procedure state." This paragraph should be in the results and not in the methods.
- The First-line in the results should be in the methods.
- Discussion paragraph 5: Why did TEE use for in VSD? What is the advantage of TEE over TEE?
- The statistical analysis section must be reorganized. Please find an example below:

'Statistical analysis.'
Statistical analyses were performed using the Statistical Package for the Social Sciences Statistics (SPSS), version 21 for Macintosh (IBM, Armonk, NY). Categorical variables were reported as frequency and percentage. Continuous variables are represented as mean with standard deviation or median with the range depending on normality of distribution. Intergroup haemoglobin level was compared using independent samples student’s t-test. Statistical comparison of proportions was analyzed using Tukey HSD test. A p-value < 0.05 was considered statistically significant. All reported p values are two-sided.

- I don't recommend indexing with this form before all comments are addressed appropriately.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Pediatrics, Pediatric cardiology, Pediatric interventional cardiology.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

© 2019 Li S et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shengli Li
Department of Ultrasound, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China

Yimei Liao
Affiliated Shenzhen Maternity Child Healthcare Hospital, Southern Medical University, Guangzhou, China

1. This is a small-size retrospective study with only 75 patients, which is not enough to support their conclusions.

2. In the previous review comments, we asked two questions:
 1. For the VSD patients with PNA or PH, does the increased incidence of anaemia have any influence on the therapy or clinical management?

 2. As the aetiology of anaemia is multi factorial, any intrinsic and extrinsic factors should be analysed in this article. This is crucial.

However, I didn’t see any reply and revision to them. Major revisions are needed.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Fetal medicine, fetal cardiology.
We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

Version 1

Reviewer Report 15 October 2019
https://doi.org/10.5256/f1000research.19583.r54739

© 2019 Haddad R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Raymond N. Haddad
Department of Pediatrics, Hotel Dieu de France University Medical Center, Saint Joseph University, Beirut, Lebanon

Firstly, I want to thank The Editorial Team of F1000Research for this opportunity to review the following manuscript.

I want to also thank the authors for recommending as a reviewer for their manuscript. Although this comparative concept is extremely new and interesting, I will generate candid comments which at times may seem overly critical. Please accept these criticisms in the positive spirit in which they are intended. I believe that the manuscript would be suitable for indexing if the comments/questions are addressed and appropriate changes made.

1. The authors in their Introduction largely reviewed the anemia and the contributing factors of PNA and PH which in large part are repeated in the discussion section. For that, I recommend that authors should summarize their introduction while briefly reviewing the role of VSD closure in the anemia (especially when all their patients had repaired defects either surgically or with minimal invasive approach).

2. Authors are encouraged to detail the method of defect repair. When is was performed? Is it early on diagnosis or later in time? The reason for closure especially in small defects? What do they actually mean by minimal invasive closure? Is it percutaneously or using a hybrid approach? Moreover, authors should explain why did they consider PNA as the only lower respiratory tract infection? And diagnosis of PHT should be more clearly detailed and if international guidelines were used reference must be cited. Additionally, where all patients screened for other possible hematological diseases to be excluded from the study?

Table 1: What does the patients mean by VSD size? is it the LV entry or the RV exit? I advice the authors to mention minimum and maximum values especially in each of the 3 groups for the PHT row as it may seems that some of Group A patients had PHT.

4. Table 1 and 2 should be briefly described in the results sections.

5. Table 3 must be just reported in the text.

6. The first 4 paragraphs of the discussion are pure literature review without any relevant discussion with the study results. In fact excessive review could impose more stratified results: should authors report the etiology on the PNA since the described the possible implications of infectious organisms in anemia. Therefore, discussion should focus in some part on the prevalence of anemia in repaired VSD (and if possible discussing the timing of closure and its possible effect of the results) while highlighting what is has been previously written by the authors.

7. No changes are needed for the limitations and conclusions section.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Pediatrics, Pediatric cardiology, Pediatric interventional cardiology.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 27 March 2019

https://doi.org/10.5256/f1000research.19583.r44745

© 2019 Li S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Shengli Li
Department of Ultrasound, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China

1. The manuscript is a small-size retrospective study about the prevalence of anaemia in patients with solitary acyanotic VSD in comorbid with PNA or PH; they find that patients with acyanotic VSD in comorbid with PNA or PH were 8 and 4 times more susceptible to develop anaemia compared to asymptomatic counterparts.

2. For the VSD patients with PNA or PH, does the increased incidence of anaemia have any influence on the therapy or clinical management?

3. As the aetiology of anaemia is multifactorial, any intrinsic and extrinsic factors should be analysed in this article. This is crucial.

4. As mentioned above, it suggests that this article needs to be revised before accepting for indexing.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Fetal medicine, prenatal diagnosis of fetal malformations

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

The benefits of publishing with F1000Research:
- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com